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Abstract. There are a large number of papers in the literature dealing with the free vibration analysis
of single/multi-span uniform beam with multiple spring-mass systems, but that of coupled multi-span
beams carrying spring-mass attachments is rare. In this note, free vibration analysis of a weakly coupled
beam system with spring-mass attachments is conducted. The mode localization and frequency loci
veering phenomena of the coupled beam system are investigated. Studies show that for weakly coupled
beam system with spring-mass attachments, the mode localization and frequency loci veering will occur
once there is a disorder in the system.  
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1. Introduction

The vibration of beams carrying any number of spring-mass systems has been studied by many

researchers. Various techniques have been presented to conduct the free vibration analysis of beam

with point mass or single degree-of-freedom spring-mass systems in the past few decades (Gürgöze

et al. 1996, Wu and Chou 1998, Low 2000, Wu and Chen 2001, Chen and Wu 2002, Lin and Tsai

2007). 

The vibrational characteristics of uniform and non-uniform beams carrying two degrees-of-

freedom spring-mass systems have been studied by several researchers (Wu and Whittaker 1999,

Wu 2004, Qiao et al. 2002). Chan et al. (1996) investigated the vibratory characteristics of a simply

supported Euler-Bernoulli beam with distributed rigid mass. Zhou and Ji (2006) studied the dynamic

characteristics of a beam with continuously distributed spring-mass system using the transfer matrix

method. 

On the other hand, mode localization and frequency loci veering phenomena in weakly coupled

systems have been studied extensively. Pierre et al. (1987) applied a modified perturbation method

*Corresponding author, Professor, E-mail: liujike@mail.sysu.edu.cn
aLecturer, E-mail: huangm7@mail.sysu.edu.cn
bAssociate Professor, E-mail: lvzhr@ mail.sysu.edu.cn

DOI: http://dx.doi.org/10.12989/sem.2012.42.1.013



14 M. Huang, J.K. Liu and Z.R. Lu

to study the mode localization on a disordered dual-span Euler-Bernoulli beam. Chen and Ginsberg

(1992) investigated the relationship between mode localization and eigenvalue loci veering of nearly

periodic structures by applying a perturbation method to a general eigenvalue problem. Lu et al.

(2006) studied the mode localization and frequency loci veering in a disordered coupled beam

system using the finite element method. 

In this technical note, the free vibrations analysis for a weakly coupled beam system with single/

multiple degrees-of-freedom spring-mass systems are analyzed by means of the finite element

method. Vibration characteristics are investigated for the coupled beam systems. Studies in this

paper reveal that for weakly a coupled beam system, a disorder in the physical parameter of the

beam will lead to the occurrence of mode localization. 

2. Theory

2.1 Equation of motion of a coupled beam system with spring-mass attachments 

A coupled beam system that consists of two Bernoulli-Euler beams coupled via a linear and

rotational sprung is shown in Fig. 1. For convenience, the coupled beam system is called a “bare”

beam system if it does not carry any spring-mass systems and is called a “loaded” system if it

carries spring-mass systems.

The governing differential equations of the beams and the ith spring mass are represented,

respectively by Wu and Chou (1998)

(1)

(2)

where E is the Young’s modulus,  are the moment of inertia of the cross-sectional area of the
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Fig. 1 A coupled beams with s attachments (1,101 represent the node number in the FEM) 
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left and right beam, respectively, ρ is mass density,  are the area of the cross-section of the

left and right beam, respectively,  and ki represent the point mass and spring constant of the ith

spring-mass system, s is the total number of the spring-mass system,  denote the displacement

and acceleration of the ith spring-mass relative to its static equilibrium position,  is the location of

ith spring-mass,  is the transverse displacement of the beam at which the ith spring-mass locates.

 is the Dirac’s delta function.

Finite element analysis is adopted for free vibration analysis for the coupled beam system. The

Bernoulli-Euler beam element is used in the finite element model. After assembling all the

elemental stiffness and mass matrices, we can obtain the systematic mass matrix M and stiffness

matrix K of the bare beam. Then, the spring-mass attachments are introduced into the equation of

motion of the beam. Letting  and  be the systematic mass and stiffness matrices of the beam

with spring-mass attachments, respectively, the finite element equation of free vibration for the

coupled beam system with all attachments takes the form 

(3)

2.2 Free vibration analysis for the coupled beam system 

The natural frequencies and associated mode shapes can be obtained from the following

generalized eigenvalue problem 

(4)

where , ω is the circular frequency of the beam system, V is the normalized mode shape

matrix.

2.3 Mode localization and frequency loci veering in a weakly coupled beam system with
attachment 

It is well known that for a weakly coupled system, when it is symmetric, each vibration mode of

the system is either symmetric or anti-symmetric, thus localized vibration modes will not occur.

However, when disorders are introduced in the system, that is to say, the symmetry condition is

broken; it is very likely that the mode localization and frequency loci veering will occur. As shown

in Fig. 1, three kinds of disorders are introduced into the weakly coupled beam system: (a) disorder

in the elemental flexural rigidity EI, (b) disorder in the elemental mass of the beam, and (c) disorder

in the length of the beam. 

(5)

(6)

(7)

where  and mi denote the flexural rigidity of the ith element, the length of the beam and the

mass of the ith element after perturbation, respectively;  and  denote the flexural rigidity

of the ith element, the length of the beam and the mass of the ith element of the original system,

respectively.  is the perturbation in the parameters, which governs the disorder in the

system. It is worth noting that when ε = 0, there is no disorder. 
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Fig. 2 The first eight modeshapes of the coupled beam system with a disorder in the elemental flexural
rigidity
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Table 1The first eight natural frequencies (rad/s) for weakly coupled beams with four spring-mass systems
(ε = 0.1)

Mode No. Original system
Disorder in elemental 

flexural rigidity
Disorder in mass Disorder in beam length

1 157.91 157.91 157.88 143.26

2 157.93 157.96 157.92 157.92

3 509.43 509.44 509.05 426.25

4 509.45 509.81 509.44 509.44

5 1061.03 1061.10 1059.54 962.90

6 1061.18 1062.55 1061.51 1061.10

7 1820.16 1820.47 1816.26 1651.77

8 1820.82 1824.36 1820.51 1820.49

3. Numerical simulations

As shown in Fig. 1, the coefficients of the coupling spring  and kr are taken as: kt = 5.1 × 109 N/m,

kr = 5.1 × 108 Nm/rad respectively, and the two beams are weakly coupled. The parameters of the

sprung of both ends are ,  N/m. Parameters of the system are: Young’s

modulus  Pa, diameter of the cross-section of the beam , moment of

inertia of the cross-sectional area  m4, mass density ρ = 7837 kg/m3, length of

the two beam . The bare beam is discretized into 100 two-node Euler beam elements,

the total degrees-of-freedom of the coupled beam with spring-mass systems is . It

is assumed that the coupled beam system carries four intermediate spring-mass systems which

locate at the 11th, 41st, 61st and 91st node of the beam in the finite element model. 

Case Study 1: Disorders in the elemental flexural rigidity of the beam

A disorder is introduced into the flexural rigidity of the 2nd and 3rd elements of the left beam to

investigate the mode localization and frequency loci veering. The perturbation parameter ε varies

from −0.1 to 0.1. Fig. 2 shows the first eight mode shapes of the system. The first eight natural

frequencies of the disordered system with  are listed in Table 1. Fig. 3 shows the frequency

loci veering of the first eight modes. From these figures one can see that when there is disorder in

the flexural rigidity, the mode localization and frequency loci veering phenomena occur from the

fundamental mode. 

Case Study 2: Disorder in the elemental mass of the beam

In this Case Study, a disorder in the mass of the 2nd and 3rd elements of the beam is introduced

into the system. The perturbation parameter ε varies from −0.1 to 0.1. Table 1 shows the first eight

natural frequencies of the original system and disordered system with . Fig. 4 shows the

first eight mode shapes of the system. Fig. 5 shows the frequency loci veering of the first eight

modes. From these figures one can see that a disorder in the mass of the beam will also lead to the

mode localization and frequency loci veering phenomena. 
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Fig. 3 Frequency loci veering of the coupled beam system with a disorder in the elemental flexural rigidity
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Fig. 4 The first eight modeshapes of the coupled beam system with a disorder in the elemental mass
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Fig. 5 The frequency loci veering of the coupled beam system with a disorder in the elemental mass
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Fig. 6 The first eight modeshapes of the coupled beam system with a disorder in the length of the beam
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Fig. 7 The frequency loci veering of the coupled beam system with a disorder in the length of the beam
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Case Study 3: Disorder in the length of the beam

A disorder in the length of the second beam is introduced into the system to investigate the mode

localization and frequency loci veering. The perturbation parameter ε varies from −0.1 to 0.1. Table 1

shows the first eight natural frequencies of the original system and disordered system with .

Fig. 6 shows the first eight mode shapes of the system. Fig. 7 shows the frequency loci veering of

the first eight modes. From these figures one can see that when there is a disorder in the spring

coefficient of the attachment, the mode localization and frequency loci veering phenomena will

occur. 

From three cases studied above, one can see, for different kinds of disorders in the weakly

coupled beam system with attachments, mode localization and frequency loci veering are observed.

It is worth noting that for such system, when there is a small damage either in the bare beam, mode

localization will occur. If this is the case, the mode shapes of the damaged system will be

dramatically different from those of undamaged system as no mode localization phenomena will

occur in the undamaged system. Special attention may be paid for damage detection for such

weakly coupled system when frequency domain method is used as the mode shapes of the damaged

system are much different from the undamaged one, it is very likely that one may not obtain a

physically meaningful solution in damage detection. 

 

4. Conclusions

Finite element analysis is used to determine the natural frequencies and mode shapes of weakly

coupled beams with of spring-mass systems. The mode localization and frequency loci veering

phenomena of weakly coupled beams with spring-mass systems are investigated. Studies show that

for a system consisting of weakly coupled beams and attachments, the mode localization and loci

veering will occur once there is a disorder in the system. 
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