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Abstract. In this study, Pasternak foundation model, which is a two parameter foundation model, is
used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential
energy variation of the system is written to formulate the problem that yielded the required field equations
and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by
variational method and are validated by photo elastic experiments. Exact solution of the deflection of the
beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem
and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter
G also depends not only on the material type but also on the geometry and the loading type of the
system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained
and another method is proposed to determine the foundation parameters using the solution of this
problem. 

Keywords: Pasternak foundation; variational method; photo elastic method; experimental method for
Pasternak constants; boundary conditions; sub grade; two parameter foundation 

1. Introduction

Laterally loaded beams embedded in semi-infinite media is a common problem that can be used

to model a variety of applications in engineering, dentistry and even orthopedics; such as structure

foundation members, piles, rails, pipelines, fibers in composites, implants, to name a few. The origin

of the solution to this problem may be traced back to Winkler’s foundation model developed for

rails (Hetenyi 1946). Foundation models in literature can be classified within two basic classical

approaches as Winklerian and Continuum models. Winkler model acts as if it consisted of infinitely

many closely spaced linear springs, where only one parameter k, which is subgrade modulus,

characterizes the behavior of the foundation. Interactions between springs are not considered, so it

does not accurately represent the characteristics of many practical foundations (Zhaohua and Cook

1983, Alemdar and Gulkan 1999, Civalek 2007). Pasternak model is an improved Winklerian

approach that is modified to introduce continuity through interaction amongst the spring elements
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(Dutta and Roy 2002), where both k and a second parameter G, which is shear modulus,

characterize the behavior of the foundation.

Finite element method is the most popular one among the solution methods considered to analyze

the problem, but it is time consuming to obtain the parametrical results with this method. In order to

understand the characteristic behavior of the beam, we need to study the parametric relations that

can be obtained from a theoretical solution.

In this study, the media that the elastic beam is embedded is modeled as Pasternak foundation

(Fig. 1). Field equations and boundary conditions of the problem will be determined using energy

and variation methods. Implicit closed solutions will be presented where the parameters of the

problem are clearly identified and easy to follow.

The most important distinctive property of the Pasternak foundation model is that it exposes the

discontinuity of the shear resultant force at the point where the beam enters the media. This

discontinuity can only be exposed with the Pasternak foundation model and can easily be obtained

within the variational method (Gelfand and Fomin 1963, Kerr 1976). If the second parameter is set

to zero, the formulas of the two-parameter Pasternak foundation model reduce to those of the one-

parameter Winkler foundation model, which is a special case of Pasternak foundation model. To

check the results, the same solutions are obtained with Winkler foundation for engineering purposes,

but the discontinuity in the shear resultant force could not be obtained as expected. 

We should emphasize two important points of this study. First, discontinuity of shear force is

obtained theoretically and validated by photo elastic experiments. Second, the method is proposed to

obtain the second parameter G and this method is used to solve this specific problem. This method

can be easily applied to similar problems to obtain G.

2. Pasternak foundation model

In this section, the behavior of a laterally loaded beam embedded in a semi-infinite plane is

studied using the Pasternak foundation model (Fig. 1). Here,  is the deflection of the beam

section along the embedded length L and  is the deflection of the beam section along the

cantilever beam length a as shown in Fig. 1. 

Total potential energy Π of the beam can be written as follows.
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Fig. 1 The geometry of the problem and Pasternak foundation model
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Where, EI is the flexural rigidity of the beam. The first parameter k and the second parameter G

of the Pasternak foundation model have units N/mm/mm and N, respectively. The variation of the

total potential energy δΠ can be written as follows. Here, δ prefix is to denote the arbitrary
variation of the variable.

After applying required partial integrations, following equation can be obtained.

(2)

The beam enters the medium at  and z = 0, which is named as transition section in this

study. In order to complete the formulation of the problem, the continuity of the beam and its

variations at the transition section should be written as follows.

(3)

According to the variational theorem (Gelfand and Fomin 1963, Kerr 1976), since the variations

of the variables are arbitrary, the integrands in Eq. (2) must be equal to zero as follows.

(4)

Here, λ and η are defined as in Eqs. (5a-b).

(5a)

(5b)

Also from Eq. (2), the following equation can be written.

(6)

The field equations of the problem can be written as follows. 
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(7b)

Boundary conditions are written as follows.

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

To be able to complete the problem, the continuity of the displacement and the rotation at the

transition point must be added to the boundary conditions as follows. 

(8g)

(8h)

Finally, the problem is mathematically expressed with two differential governing equations Eqs.

(7a-b) and eight boundary conditions Eqs. (8a-h). The solution of Eq. (7a), which is in the interval

, is given as follows.

(9)

Where, δo and θo are the displacement and the rotation at , respectively. For the solution of

the differential equation given in Eq. (7b), the proposed form ν = exp(pz) yields three conditions

according to the characteristic equation roots which depend on the material constants η and λ. Two

cases, which are η = λ and η > λ, are rarely encountered in applications. General solutions for both

are given here, but the boundary conditions are not studied. These cases are discussed by Gulkan

and Alemdar (1999) in detail. 

General solutions for η = λ and η > λ are given below in Eq. (10) and Eq. (11) respectively.
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Where, µ1 and µ2 are defined as follows. 
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(12)

Where 

(13)

New material constants κ and ϕ are defined in terms of old material constants η and λ as follows.

(14)

The characteristic equation can be rewritten using the trigonometric relations in Eq. (13) as

follows. 

n, k  =  0, 1 (15)

We define α and β in terms of λ and θ as follows.

(16a)

(16b)

The following relations exist between the constants those which significantly facilitate the

calculations.

(17)

Solution of the differential Eq. (7b) can be written as follows for this condition.
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(18c)

(18d)

Here, KIJ (I, J = 1, 2) are the functions of z given as follows. 

K11 = ch(α z) cos(β z)

K12 = ch(α z) sin(β z)

K21 = sh(α z) cos(β z)

K22 = sh(α z) sin(β z) (19)

Here, F1 and F2 are defined as follows.

(20)

The solution ν(z) given in Eq. (18a) and the solution  given in Eq. (9) have six unknown

constants as A, B, C, D, δo and θo. Using four boundary Eqs. (8c-f) and two continuity conditions

Eqs. (8g-h), problem is reduced to two equations and written in the matrix form as follows. 

(21)
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(23)

Where,  constants are the values of KIJ functions at z = L. After solving the linear system of

equation in Eq. (21), δo and θo can be determined. Thus, the expressions for the deflection, slope,

bending moment, transverse shear force and distributed foundation reaction along the beam can be

calculated. 

3. Material constants

Foundation parameters are used as input data to analyze the structure foundation interaction in

numerous studies in literature, thus a study on the determination of the foundation parameters is

extensively favorable. Experimental and/or computational studies are mostly limited only to the first

parameter of the foundation (Kobayashi et al. 2008, Kim and Jeong 2011, ASTM 1998). Material

constants k and G depend not only on the material but on geometry and loading type as well (Dutta

2002, Setiadji 2009). To show that k depends on both geometry and material constant, we consider

a tensile bar of length L, cross sectional area A and material constant E, subjected to load P.

Extension of the bar is calculated as ∆ = (L/EA)P where coefficient of P is known as 1/K, i.e., K =
EA/L. Since E is a fundamental material property, there are several theoretical and experimental

studies to obtain the relationship between k and the Elastic modulus in literature (Bowles 1974,

Setiadji and Fwa 2009, Dinçer 2011). 

In this section, the problem of the deflection v of the semi-infinite plate boundary subjected to a

singular load P is considered and it is aimed to determine the material constants, which are the

parameters of Pasternak foundation. The problem is depicted in Fig. 2. 

The total potential energy Π of the system can be written as follows. 

(24)

Where, vo is the deflection at the point where singular load P is applied. The variation of the total

potential energy can be written as follows.
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After the application of the required partial integrations, the following expression is obtained.

M1 η
2
K11 κK22–=

M2 η
2
K21 κK12–=

M3 η
2
K22 κK11+=

M4 η
2
K12 κK21+=

M5 αK11 βK22+=

M6 αK21 βK12+=

M7 αK22 βK11–=

M8 αK12 βK21–=

KIJ

Π 2
G

2
---- v′( )2

k

2
---v

2
+⎝ ⎠

⎛ ⎞ zd Pv 0( )–

0

∞

∫=

δΠ 2 Gv′δv′ kvδv+( ) zd Pδv 0( )–

0

∞

∫ 0= =



8 A.Yalç n Akoz and Hale Erguni

(26)

According to the fundamental principles of the variational theorem, the multipliers must be equal

to zero, since the variations of variables are arbitrary (Gelfand and Fomin 1963). Thus, in the field,

the following governing equation can be written.

0 < z < ∞ (27)

Where, . And at the boundaries, the following conditions can be written.

z = 0 (28a)

z = ∞ (28b)

The solution of the differential equation Eq. (27), after applying the boundary conditions

Eqs. (28a-b), can be determined as follows.

(29)

Suppose that the deflections at z = 0 and z = s points are measured as vo and vs respectively as

shown in Fig. 2. From the substitution of these two conditions in Eq. (29), k and G parameters can

be found as follows.

(30a)

(30b)

For simpler expressions, besides the measured vo deflection, if the distance se is measured

provided that the relation e = vo/vs is met, where e is Euler’s constant, Eqs. (30a-b) can be rewritten

as follows.
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Fig. 2 The schematic drawing of singular loading experiment
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(31b)

Solving Eqs. (31a) and (31b), relation between G and k is as follows.

(32)

4. Self calibration and experimental verification

To be able to check the mathematical model and verify the solutions, we have it found beneficial

and complementary to appeal to the photo elastic experiments. The beam and the media were

represented by a polymer plate of 0.5 cm thickness. The beam was h = 2 cm in height and 16 cm in

length. The embedded length of the beam was L = 6 cm, and the beam distances from the transition

section to the point where the lateral load P = 39 N applied at the outside of the foundation were

chosen to be a = 3 cm, a = 6 cm and a = 9 cm.

Stress-optic law of photo elasticity in two dimensions is σ1− σ2 = nf/t, where σi are the principal

stresses, t is the thickness of the model and n is the fringe order. When a loaded transparent model

is placed in the field of a standard circular polariscope, bands of equal colors in the stress pattern

appear those are known as fringes. Starting from black, with every repeat of complete rainbow

colors, fringe order counts one more on zero value. Due to stress optic law, a fringe is the locus of

points of constant difference between the principal stresses. Thus, at isotropic and singular points

σ1 = σ2, the fringe order value is zero and black colored in the pictures (Frocht 1941). 

A preliminary experiment, which was a four point bending test, was conducted on the polymer

beam and the Elastic modulus was measured as E = 2.7 GPa and the stress-optic constant was

measured as f = 134 N/cm/fringe approximately.

Three isocromatic pictures are shown in Fig. 3 for three models which are subjected to the same

load P = 39 N. To interpret the isotropic points on these pictures, it is helpful to draw the free body

G
Pse

2vo
--------=

G kse
2

=

Fig. 3 Photo elastic experiments conducted for P = 39 N, L = 6 cm, (a) a = 3 cm, (b) a = 6 cm, (c) a = 9 cm
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and shear force diagrams as shown in Fig. 4(a-b). 

To calculate material constants k and G, two measurements are necessary. 

In the first experiment, at the outer end point where the load P is applied, the deflection δo of the

beam is measured approximately as 2 mm for a = 9 cm. A program is written in Mathematica to

computerize the theory developed in this study. Using this program, k = 0.1 GPa is found to provide

Fig. 4 (a) Free body diagram, (b) Shear force diagram 

Fig. 5 Deflection, shear force, moment and distributed foundation reaction force diagrams for all loading
cases 
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δo = 2 mm. 

To obtain G, the photo elastic experiments are used. Observation of isotropic points in all

experiments shown in Fig. 3 denotes the presence of singular reaction force acting to the beam

(Frocht 1941) at the transition point. In the third experiment for a = 9 cm, P = 39 N, it is observed

that xe = 0, at the same time R1 = P at the transition section which corresponds to T1 = 0. Here, R1

is the singular reaction force that is obtained with the boundary condition in Eq. (8d), xe is the

distance between the transition section and the isotropic point location as shown in Fig. 4(b), T1 is

the transverse shear force value at the embedded side of the transition point. G = 4 kN is found to

verify this result in the Mathematica program. 

Using these parameter values, deflection, shear force, moment and distributed reaction force

diagrams for all loading cases a = 9 cm, a = 6 cm and a = 3 cm are plotted in Fig. 5. In this figure,

positive z-axis in the diagrams corresponds to the embedded region of the beam. Also the results

are given in Table 1, where δ1 and θ1 are the displacement and rotation of the beam at the transition

point (z = 0), respectively. When these diagrams are examined, it can be seen that the characteristic

results observed in experiments are compatible with the theoretical solutions.

5. Conclusions

In this study, to obtain the effects of the laterally loaded beam on the foundation, instead of

inspecting the foundation, the beam, which is easier to analyze, is examined. The elastic media is

modeled as Pasternak foundation.

The field equations and the boundary conditions are obtained by variation of the system total

potential energy. This method is very important especially to obtain the realistic boundary

conditions. Also the field equations can be determined very easily.

The solution is obtained in terms of Pasternak foundation constants G, k and the flexural rigidity

EI for three different cases. 

Good agreement with the solutions obtained from the mathematical model and the ones from the

experiments confirms the validity of the simple model proposed in this study. The advantages

resulted from the cooperation of using both the experiment and the theory together must be

emphasized again with this occasion.

As a result following three results can be extracted:

• One of the most significant results of this study is that shear force discontinuities are exposed by
variational method and validated by photo elastic experiments. This is generally overlooked in

similar problems in literature. 

• It is shown that Pasternak parameter G depends not only on the material but also on geometry
and loading type, maybe that is why it is hard to find G parameters of foundations in literature.

The other important issue is that parameter G for the media is determined by self calibration. And

Table 1 Program output for all loading cases using k = 0.1 GPa and G = 4 kN parameter values 

a (cm) δ
o
 (cm) θ

o
 (cm) δ1 (cm) θ1 (cm) T1 (N)

9 0.208 −0.0275 0.0135 −0.0099 0.876

6 0.083 −0.0148 0.0100 −0.0070 −10.86

3 0.023 −0.0060 0.0060 −0.0040 −22.59
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the theoretical result is obtained for this particular model and loading type. This method can be

applied to similar problems.

• Deflection function of the semi-infinite media subjected to a concentrated load P is obtained.
Using this function, a method that can be used to determine G and k parameters of the foundation

is proposed (Fig. 2).
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