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Abstract. This paper focuses on post-buckling analysis of functionally graded Timoshenko beam
subjected to thermal loading by using the total Lagrangian Timoshenko beam element approximation.
Material properties of the beam change in the thickness direction according to a power-law function. The
beam is clamped at both ends. The considered highly non-linear problem is solved by using incremental
displacement-based finite element method in conjunction with Newton-Raphson iteration method. As far
as the authors know, there is no study on the post-buckling analysis of functionally graded Timoshenko
beams under thermal loading considering full geometric non-linearity investigated by using finite element
method. The convergence studies are made and the obtained results are compared with the published
results. In the study, with the effects of material gradient property and thermal load, the relationships
between deflections, end constraint forces, thermal buckling configuration and stress distributions through
the thickness of the beams are illustrated in detail in post-buckling case. 

Keywords: functionally graded materials; geometrical non-linearity; post-buckling analysis; total
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1. Introduction

Functionally graded materials (FGMs) are a new generation of composites where the volume

fraction of the FGM constituents vary gradually, giving a non-uniform microstructure with

continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc..

Typically, in an FGM, one face of a structural component is ceramic that can resist severe thermal

loading and the other face is metal which has excellent structural strength. FGMs consisting of heat-

resisting ceramic and fracture-resisting metal can improve the properties of thermal barrier systems

because cracking and delamination, which are often observed in conventional layered composites,

are reduced by proper smooth transition of material properties. FGMs have many practical

applications, such as reactor vessels, biomedical sectors, aircrafts, space vehicles, defense industries

and other engineering structures. Especially, as aerospace vehicles, nuclear power plants, thermal

power plants etc. are subject to thermal loadings, FGMs have found extensive applications in these

applications. With the increased use of FGMs, understanding the mechanical behavior of FG
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structures is very important. In recent years, much more attention has been given to the thermal

buckling of FG beam structures. Thermal buckling of thick, moderately thick and thin cross-ply

laminated beams subjected to uniform temperature distribution are analyzed by Khdeir (2001).

Thermoelastic equilibrium equations for a functionally graded beam are solved in closed-form to

obtain the axial stress distribution by Sankar and Tzeng (2002). Thermal buckling load of a curved

beam made of functionally graded material with doubly symmetric cross section is investigated by

Rastgo et al. (2005). Ching and Yen (2005) studied 2D functionally graded solids, which is

subjected to either mechanical or thermal loads by using the meshless local Petrov-Galerkin method.

Three – dimensional surface cracking of a graded coating bonded to a homogeneous substrate is

studied by Inan et al. (2005). Librescua et al. (2005) investigated the thermoelastic modelling and

behaviour of thin-walled beams made of functionally graded materials. Ching and Yen (2005)

studied Transient thermoelastic deformations of functionally graded (FG) beams by using the

meshless local Petrov-Galerkin method. Li et al. (2006) investigated thermal post-buckling of

Functionally Graded clamped-clamped Timoshenko beams subjected to transversely non-uniform

temperature. Buckling and vibration behaviour of a functionally graded sandwich beam having

constrained viscoelastic layer is studied in thermal environment by using finite element formulation

by Bhangale and Ganesan (2006). Nirmula et al. (2006) derived analytical expressions for the

thermo-elastic stresses in a three-layered composite beam system whose middle layer is a

functionally graded material. Three-dimensional thermal buckling and postbuckling analyses of

functionally graded materials subjected to uniform or non-uniform temperature rise are examined by

using finite element method by Na and Kim (2006). Two-dimensional thermoelasticity analysis of

functionally graded thick beams is presented using the state space method coupled with the

technique of differential quadrature by Lu et al. (2006). Thermoelastic stress field in a functionally

graded curved beam, where the elastic stiffness varies in the radial direction, is considered by

Mohammadia and Drydena (2008). The problem of thermo-elastic stress analysis in multi-layered

nonhomogeneous beams is considered by Carpinteri and Paggi (2008). Rahimi and Davoodinik

(2008) studied thermal behaviour analysis of the functionally graded Timoshenko beam. A third-

order zigzag theory based finite element model in conjunction with the modified rule of mixtures

and Wakashima-Tsukamoto model for estimating effective modulus of elasticity and coefficient of

thermal expansion, respectively, is presented for layered functionally graded beams under thermal

loading by Kapuria et al. (2008). Based on Kirchhoff’s assumption of straight normal line of beams

and considering the effects of the axial elongation, the initial curvature and the stretching-bending

coupling on the arch deformation, geometrically nonlinear governing equations of functionally

graded arch subjected to mechanical and thermal loads are derived by Song and Li (2008). The free

and forced vibration of a laminated functionally graded beam of variable thickness under thermally

induced initial stresses is studied within the framework of Timoshenko beam theory by Xiang and

Yang (2008). Free vibration analysis of thermal postbuckled functionally graded beams with

surface-bonded piezoelectric layers subject to both temperature rise and voltage is studied by Li et

al. (2009). The postbuckling response of beams made of functionally graded materials (FGMs)

containing an open edge crack is studied based on Timoshenko beam theory and von Kármán

nonlinear kinematics by Ke et al. (2009). Thermo-mechanical vibration analysis of functionally

graded beams and functionally graded sandwich beams are presented by Pradhan and Murmu

(2009). Lim et al. (2009) investigated temperature-dependent in-plane vibration of functionally

graded (FGM) circular arches based on the two-dimensional theory of elasticity. Malekzadeh et al.

(2010) presented a first known formulation for the out-of-plane free vibration analysis of
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functionally graded circular curved beams in thermal environment. Buckling of beams made of

functionally graded material under various types of thermal loading is studied based on the Euler–

Bernoulli beam theory by Kiani and Eslami (2010). Alibeigloo (2010) investigated analytical

solution for functionally graded beams integrated with piezoelectric actuator and sensor under an

applied electric field and thermo-mechanical load. Thermal post-buckling behaviour of uniform

slender FG beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation

and the versatile finite element analysis based on the von-Karman strain-displacement relations by

Anandrao et al. (2010). Free vibration analysis of initially stressed thick simply supported

functionally graded curved panel resting on two-parameter elastic foundation (Pasternak model),

subjected in thermal environment is studied using the three-dimensional elasticity formulation by

Farid et al. (2010). Kocaturk et al. (2011) investigated the full geometrically non-linear static

analysis of a cantilever Timoshenko beam composed of functionally graded material under a non-

follower transversal uniformly distributed load. Akbas (2011) studied termal post – buckling of

functionally graded beams. Akbas and Kocaturk (2011) studied post- buckling analysis of an axially

functionally graded simple beam within Timoshenko beam theory under temperature rising. Also,

Akbas and Kocaturk (2011), Kocaturk and Akbas (2011) investigated post buckling analysis of

beams under uniform and non-uniform temperature rising respectively considering full geometric

non-linearity.

As far as the authors know, there is no study on the post-buckling analysis of FG Timoshenko

beams under thermal loading considering full geometric non-linearity investigated by using finite

element method: In the present study, the post buckling analysis of FG clamped-clamped

Timoshenko beams under thermal loading is considered by using the total Lagrangian finite element

method by taking into account full geometric nonlinearity.

The development of the formulations of general solution procedure of nonlinear problems follows

the general outline of the derivation given by Zienkiewichz and Taylor (2000). The related

formulations of post-buckling analysis of FG Timoshenko beam subjected to thermal loading are

obtained by using the total Lagrangian finite element model of FG Timoshenko beam. Convergence

studies are performed for various numbers of elements. In deriving the formulations for post

buckling analysis of FG Timoshenko beams under thermal loading, the total Lagrangian

Timoshenko beam element formulations for homogeneous material given by Felippa (2011)] are

used. There is no restriction on the magnitudes of deflections and rotations in contradistinction to

von-Karman strain displacement relations of the beam. With the effects of material gradient

property on the post-buckling, the relationships between deflections, end rotational angles, end

constraint forces, thermal buckling configuration, stress distributions through the thickness of the

beams and temperature rising are illustrated in detail in post-buckling case.

2. Theory and formulations

The clamped-clamped beam configurations, made of functionally graded elastic material, with co-

ordinate system O(XYZ) are shown in Fig. 1.

In this study, it is assumed that the FG beam is made of ceramic and metal, and the effective

material properties of the FG beam, P, i.e., Young’s modulus E, coefficient of thermal expansion αX,

coefficient of thermal conductivity K, temperature rise T, Poisson’s ratio υ and shear modulus G vary

continuously in the thickness direction (Y axis) according to a power-law function (1990) as follows 
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 (1)

where PT and PB are the material properties of the top and the bottom surfaces of the beam. It is

clear from Eq. (1) that when , , and when , . where n is the non-

negative power-law exponent which dictates the material variation profile through the thickness of

the beam.

The considered problem is a nonlinear one. Even linear problems may not admit exact solutions

due to geometric and material complexities, but it is relatively easy to obtain approximate solutions

using numerical methods (Reddy 2004). For the solution of the total Lagrangian formulations of TL

plane beam problem, small-step incremental approaches from known solutions are used. In this

study, the TL Timoshenko beam element is used and the related formulations are developed by

using the formulations given by Kocatürk et al. (2011) which was developed for FG beam by using

the formulations given by Felippa (2011) for isotropic and homogeneous beam material. Interested

reader can find the related formulations in Kocatürk et al. (2011) and Felippa (2011).

The second Piola-Kirchhoff stresses with a temperature rise can be expressed by inclusion of the

temperature term as follows 

(2)

where  are initial stresses, E is the modulus of elasticity and G is the shear modulus,  is

coefficient of thermal expansion in the X direction and T is the temperature rise and their

dependence on Y coordinate are given by Eq. (1). The temperature rise  is governed by

heat transfer equation of 

 (3)

By integrating Eq. (3) using boundary conditions  and , the following

expression can be obtained 

 (4)

where K is the coefficient of thermal conductivity and dependence on Y coordinate are given by

Eq. (1). 
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Fig. 1 Clamped-clamped beam and cross-section
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Using constitutive Eq. (2), axial force N, shear force V and bending moment M can be obtained

as

(5)

 (6)

(7)

 (8)

where e, γ and κ are axial strain, shear strain and curvature of the beam, respectively. The details of

these expressions can be found in Kocatürk et al. (2011) and Felippa (2011).

, , (9)

 (10)

 (11)

 (12)

where  and , are the extensional, coupling, bending transverse shear rigidities,

respectively. NT and MT are the thermal axial force and the bending moment, respectively.

For the solution of the total Lagrangian formulations of TL Timoshenko beam element, small-

step incremental approaches from known solutions with Newton-Raphson iteration method are

used in which the solution for th load increment and ith iteration is obtained in the following

form

 (13)

where  is the system stiffness matrix corresponding to a tangent direction at the ith iteration,

 is the solution increment vector at the ith iteration and th load increment,  is the

system residual vector at the ith iteration and th load increment. This iteration procedure is

continued until the difference between two successive solution vectors is less than a selected

tolerance criterion in Euclidean norm given by

 (14)
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 (15)

where

 (16)

The residual vector  for a finite element is as follows 

 (17)

where f is the vector of external forces and p is the vector of internal forces given by Felippa

(2011).

The element tangent stiffness matrix for the total Lagrangian Timoshenko plane beam element is

as follows which is given by Felippa (2011)

 (18)

where  is the geometric stiffness matrix, and  is the material stiffness matrix given as

follows by Felippa (2011)

 (19)

The interested reader can find the explicit forms of the expressions in Eq. (19) in Kocatürk et al.

(2011) and Felippa (2011). After integration of Eq. (19), KM can be expressed as follows

  (20)

where  is the axial stiffness matrix,  is the bending stiffness matrix,  is the shearing

stiffness matrix and explicit forms of these expressions are given by Felippa (2011). As defined

before,  and  are the extensional, coupling, bending and transverse shear rigidities,

respectively. Axx appear in the matrix , Dxx appear in the matrix ,  appear in the matrix

. These  and  quantities are calculated for FG beam by Kocatürk et al. (2011) and

replaced in the related stiffness matrixes.  is the coupling stiffness matrix which arose for FG

material and obtained by Kocatürk et al. (2011).

The geometric stiffness matrix KG, and the internal nodal force vector p remains the same as given

by Felippa (2011).

After obtaining the displacements of nodes, the second Piola-Kirchhoff stress tensor components

 can be obtained by using Eq. (2). The relation between the Cauchy stress tensor

components  and the second Piola-Kirchhoff stress tensor components  is

given in Kocatürk et al. (2011) and Felippa (2011).

The beams considered in numerical examples are elastic, with undeformed length L, rectangular

cross-section of width b and thickness h (see Fig. 1). The dimensionless quantities can be expressed

as
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(21)

where Tr is the ratio of temperature rise of top and bottom surfaces of the beam, Er is the ratio of

Young’s modulus of top and bottom surfaces of the beam,  is the ratio of coefficient of thermal

expansion of top and bottom surfaces of the beam, λ is dimensionless thermal load, RH is

dimensionless constraint force in the horizontal direction, RV is dimensionless constraint force in the

vertical direction,  is dimensionless thermal axial force, m is dimensionless constraint moment,

mT is dimensionless thermal bending moment, ∆ is the total dimensionless axial extension, S is the

length of the beam after deformation, δ is the ratio of L/h (lenght/height),  are dimensionless

Cauchy normal stresses and  is dimensionless Cauchy shear stress.

3. Numerical results

In the numerical examples, the post-buckling deflections as well as the Cauchy maximum and

minimum principal normal stresses, thermal axial force, thermal bending, critical buckling

temperature, axial extension, end constraint moment are calculated and presented in figures for

different material composition and various thermal loads. To this end, by use of usual assembly

process, the system tangent stiffness matrix and the system residual vector are obtained by using the

element stiffness matrixes and element residual vectors for the total Lagrangian Timoshenko plane

beam element. After that, the solution process outlined in the previous section is used for obtaining
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Table 1 Convergence analysis for the dimensionless central deflections V(0.5) of the beam 
number of finite elements m for material power law index n = 3, Tr = 4 and L/h = 6

The dimensionless central deflections V(0.5) of the beam

m λ = 4

6 0.2022

10 0.2053

20 0.2059

30 0.2060

40 0.2060

50 0.2060
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the related solutions for the total Lagrangian finite element model of Timoshenko plane beam

element. The beam considered in numerical examples is made of Aluminum (Al; E = 70 GPa,

ν = 0.31, K = 204 W/(m.K), α = 23 × 10−6 K−1) and Zirconia (ceramic) (ZrO2; E = 151 GPa,

ν = 0.2882, K = 2.09 W/(m.K), α = 10 × 10−6 K−1). When the power index n = 0, the beam material

is reduced to full ceramic (homogeneous ceramic). The bottom surface of the FG beam is

Aluminum, whereas the top surface of the FG beam is Zirconia (ceramic). Convergence and

comparison studies are also performed. In the geometrically non-linear case, the Cauchy stresses

(true stresses) can be obtained after obtaining the second Piola-Kirchhoff stresses by using Eq. (8)

by using the relation between the Cauchy and the second Piola-Kirchhoff stresses tensor

components is given in Kocatürk et al. (2011) and Felippa (2011).

In Table 1, the dimensionless central deflections V(0.5) for dimensionless thermal load parameter

λ = 4 are calculated for various numbers of finite elements m for the material power law index

n = 3, ratio of temperature rise of top and bottom surfaces of the beam  and . It is

seen from Table 1 that, when the number of finite elements is m = 50, the considered displacements

converge perfectly. Therefore, in the numerical calculations, the number of finite elements is taken

as m = 50.

In order to establish the accuracy of the present formulation and the computer program developed

by the authors, the results obtained from the present study are compared with the available results in

the literature. For this purpose, the dimensionless thermal axial forces RT are calculated for various

material power law index n for L/h = 15, λ = 2 and  for clamped-clamped beam and

compared with those of Li et al. (2006). It is clearly seen that the curves of Fig. 2 of the present

study are very close to those of Fig. 3 of Li et al. (2006).

To further verify the present results, the dimensionless specified deflections V(0.5) are calculated

for various material power law index n for L/h = 15,  and dimensionless thermal load

parameter  for clamped-clamped beam and compared with those of Li et al. (2006).

Comparisons of Fig. 3 with Fig. 7 of Li et al. (2006) show that the curves of the present study are

very close to those of Li et al. (2006).

The dimensionless thermal bending moments MT are calculated for various material power law

Tr 4= L/h 6=

Tr 1 2 3, ,=

Tr 15=

λ 2 3 5, ,=

Fig. 2 The dimensionless thermal axial force RT versus
material power law index n for L/h = 15,
λ = 2 and Tr = 1, 2, 3 for clamped-clamped
beam 

Fig. 3 The dimensionless specified deflections V(0.5)
versus the material power law index n for L/
h = 15, Tr = 15 and dimensionless thermal load
parameter λ = 2, 3, 5 for clamped-clamped
beam 
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index n for L/h = 15,  and dimensionless thermal load parameter  for

clamped-clamped beam and compared with those of Li et al. (2006). Comparisons of Fig. 4 with

Fig. 4 of Li et al. (2006) show that there is a very good harmony between the present results and

those of Li et al. (2006).

In Fig. 5, the thermal buckled configurations of the beam are shown for , n = 3,

In Fig. 6, critical buckling temperatures versus slenderness ratio are shown for various material

power law index n for Tr = 3. It is seen from Fig. 6 that almost all of the curves have horizontal

asymptotes approximately after the slenderness ratio L/h = 30. It is seen from Figs. 6, 7 that increase

in the material power law index n causes decrease in the dimensionless critical thermal loading. The

form of this decrement can be seen from Fig. 7. After the value of power law index n = 40, the

Tr 1 1.2 1.5 2 3, , , ,= λ 2=

Tr 2, L/h 15= =

λ 4 6 8., ,=

Fig. 4 The dimensionless thermal bending MT with
various the material power law index n for
L/h = 15, λ = 2 and the material power law
index Tr = 1, 1.2, 1.5, 2, 3 at clamped-
clamped beam 

Fig. 5 Thermal buckling configuration of the beam
for Tr = 2, L/h = 15, n = 3, λ = 4, 6, 8

Fig. 6 Dimensionless critical buckling temperature
versus slenderness ratio for various material
power law index n for Tr = 3

Fig. 7 Dimensionless critical buckling temperature
versus the material power law index n for L/
h = 10 and Tr = 3



784 Turgut Kocatürk and eref Do u can AkbaSç g
o

sç sç

material of the beam can be assumed as metal and therefore the  curve has an asymptote

approximately after n = 40. In the case of  n = 0, the functionally graded material beam is reduced

to the homogeneous ceramics beam. 

In Figs. 8, 9 and 10, dimensionless central deflections, dimensionless total axial extensions and

dimensionless end constraint moments are shown for various dimensionless thermal load λ, material

power law index n for L/h = 20 and Tr = 3. It is seen from Fig. 8 that the dimensionless central

displacements and absolute value of the dimensionless end constraint moment increase considerably

within the very small dimensionless thermal load increase after the critical thermal load is reached.
It is seen from Figs. 8, 9 and 10 that increase in the material power law index n causes increase

in the dimensionless central deflections, dimensionless total axial extensions and absolute values of

dimensionless end constraint moments respectively for all values of dimensionless thermal load λ

for L/h = 20, Tr = 3: Because when the material power law index n increase, the material of the

beam get close to the Aluminum and it is known from the physical properties of the Aluminum and

λcr n–

Fig. 8 The dimensionless specified deflections V(0.5)
versus dimensionless thermal load parameter
λ for various material power law index n for
L/h = 20 

Fig. 9 The total dimensionless axial extension ∆

versus various dimensionless thermal load λ
for various material power law index n for L/
h = 20 

Fig. 10 The dimensionless end constraint moment m versus dimensionless thermal load parameter λ with
various the material power law index n for L/h = 20
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Ceramics that the Young modulus of Ceramics is approximately two times greater than that of

Aluminum. 

It is seen from Figs. 11, 12 and 13 that increase in the ratio of temperature rise of top and bottom

surfaces Tr of the beam causes increase in the dimensionless central deflections, dimensionless total

axial extensions and absolute values of dimensionless end constraint moments respectively for all

values of the material power law index n for λ = 2, L/h = 20: Because increase in the Tr causes

increase in the bending moment distribution in the beam. 

It is known that, in the failure analysis, the most important quantities are the principal Cauchy

normal stresses  which can be expressed as follows

 (22)

 (23)
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σxx σyy+

2
--------------------
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-------------------⎝ ⎠
⎛ ⎞

2
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σxx σyy+

2
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σxx σyy–

2
-------------------⎝ ⎠
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2
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Fig. 11 The dimensionless specified deflections V(0.5)
versus the material power law index n for
dimensionless thermal load parameter λ = 2
for L/h = 20

Fig. 12 The total axial extension ∆ versus the material
power law index n for dimensionless thermal
load parameter λ = 2 for L/h = 20

Fig. 13 The dimensionless end constraint moment m versus the material power law index n for dimensionless
thermal load parameter λ = 2 for L/h = 20

Fig. 13 The dimensionless end constraint moment m versus the material power law index n for dimensionless
thermal load parameter λ = 2 for L/h = 20
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It is seen from Fig. 14 and 15 that the dimensionless Cauchy maximum principal normal stresses

and absolute value of dimensionless Cauchy minimum principal normal stresses at the point ξ = 0.5,

η = 0.5 increase considerably within the very small dimensionless thermal load increase after the

critical thermal load is reached. After the very small dimensionless thermal load increase after the

critical load, the dimensionless maximum principal normal stresses and absolute value of

dimensionless minimum principal normal stresses decrease monotonously. Also, for the same

thermal loading, dimensionless maximum principal normal stresses and absolute value of

dimensionless minimum stresses increase considerably when the material power law index n

increases. 

Fig. 14 The dimensionless Cauchy maximum principal
normal stresses versus dimensionless thermal
load parameter λ for various material power
law index n for L/h = 20 at central section
(ξ = 0.5), η = 0.5  

Fig. 15 The dimensionless Cauchy minimum principal
normal stresses versus dimensionless thermal
load parameter λ for various material power
law index n for L/h = 20 at central section
(ξ = 0.5), η = 0.5 

Fig. 16 Dimensionless Cauchy maximum principal
normal stress distributions along the height
of the beam for some given values of the
power-law index n at central section,
ξ = 0.5, for L/h = 20, λ = 4 and Tr = 3  

Fig. 17 Dimensionless Cauchy minimum principal
normal stress distributions along the height
of the beam for some given values of the
power-law index n at central section,
ξ = 0.5, for L/h = 20, λ = 4 and Tr = 3 
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Dimensionless Cauchy maximum and minimum principal normal stress distributions along the

height of the beam for some given values of the power-law index n at central section, ξ = 0.5, for

L/h = 20, λ = 4 and Tr = 3 are given in the Figs. 16 and 17. It is seen from Figs. 16 and 17 that the

material power law index n plays an important role on the dimensionless stress distributions along

the height of the beam. 

4. Conclusions

Buckling and post-buckling analysis of a functionally graded Timoshenko beam subjected to

thermal loading are investigated by using the total Lagrangian Timoshenko beam element

approximation. Material properties of the beam change in the thickness direction according to a

power-law function. The beam is clamped at both ends. The considered highly non-linear problem

is solved by using incremental displacement-based finite element method in conjunction with

Newton-Raphson iteration method and the thermal buckling and post-buckling response of a

transversally non-uniformly heated Timoshenko beam with clamped-clamped ends are obtained. The

obtained results are in a very good harmony with the related available results in the literature.

The following conclusions are reached from the obtained results: 

(1) Increase in the material power law index n causes increase in the dimensionless central

deflections, dimensionless total axial extensions and absolute values of dimensionless end constraint

moments respectively for all values of dimensionless thermal load λ for L/h = 20, Tr = 3.

(2) Increase in the ratio of temperature rise of top and bottom surfaces Tr of the beam causes

increase in the dimensionless central deflections, dimensionless total axial extensions and absolute

values of dimensionless end constraint moments respectively for all values of the material power

law index n for λ = 2, L/h = 20. 

3) The dimensionless maximum principal normal stresses and absolute value of dimensionless

minimum principal normal stresses at the point ξ = 0.5, η = 0.5 increase considerably within the

very small dimensionless thermal load increase after the critical thermal load is reached. After the

very small dimensionless thermal load increase after the critical load, the dimensionless maximum

principal normal stresses and absolute value of dimensionless minimum principal normal stresses

decrease monotonously. Also, for the same thermal loading, dimensionless maximum principal

normal stresses and absolute value of dimensionless minimum stresses increase considerably when

the material power law index n increases.
4) The material power law index n plays an important role on the dimensionless stress

distributions along the height of the beam. 
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