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Abstract. This paper attempts to determine the inclination of the compression strut within variable
angle truss models for RC beams loaded in shear-flexure through a proposed semi-analytical approach. A
truss unit is used to analyze a reinforced concrete beam, by the principle of virtual work under the truss
analogy. The inclination of the compression strut is then theoretically derived. The concrete contribution is
addressed by utilizing the compatibility condition within each truss unit. Comparisons are made between
the predicted and published experimental results of the seventy one RC beams with respect to the shear
strength and the inclined angle of the compression strut at this state to investigate the adequacy of the
proposed semi-analytical approach. 
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1. Introduction

The truss analogy has been widely used as the basis of most shear design procedures for

reinforced concrete (RC) beams (Collins et al. 1991, Ramirez et al. 1991, Li and Tran 2008, Wong

and Kuang 2011). The inclined compression struts of the truss are assumed to represent the concrete

stress blocks between adjacent cracks at the failure stage as shown in Fig. 1. The compression struts

transfer external loads in the transverse direction to the tension ties. These tension ties provide the

shear resistance in this truss analogy. The top and bottom chords of the truss consist of concrete

stress blocks and longitudinal reinforcement, respectively. The chords are assumed to not contribute

to the shear capacity of RC beams.

According to the aforesaid classical truss analogy, shear reinforcement ratio and inclination of

compression strut θ are two key quantities directly related to obtaining the shear capacity of RC

beams. For simplicity, Ritter et al. (1899) and Morsch et al. (1902) assumed the compression struts

to be inclined at 45o corresponding to the first shear cracking angle. The ACI 318 code adopted this
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assumption. However, this assumption may lead to an underestimation of the contribution from the

shear reinforcement, especially when the shear strength of lightly reinforced concrete beams are

required to be determined. Consequently, Ramirez and Breen (1991) and Priestley et al. (1994)

suggested taking 30o as the strut inclination. This approach uses a constant strut angle over the

entire shear span of beams. However, all empirical results indicate that cracks form at variable

orientations and at different regions of a beam, indicating the varying directions for diagonal

compression. Hence, a variable angle of inclination would be more realistic. On this basis, variable

angle truss models have been conceptually developed by Regan et al. (1969). However,

quantification of the variable strut inclinations through mathematical or mechanical approaches has

not been explicitly determined by these conceptual models. Also, little has been said about how

these variable angle truss models can be related to a design process.

In the ACI 318 code (2008), the stirrup contribution is determined through a rational approach.

The concrete contribution represents the difference between the stirrup contribution and the shear

strength. A similar approach is taken by some other codes, in which, most of the concrete

contribution terms are achieved through regression analysis of data from tested beams. A

mechanical model considering some influential factors would provide a proper means to represent

model codes for the shear carried by concrete.

Kim and Mander (1999) proposed a differential variable angle truss model in order to develop a

comprehensive theory for modeling inelastic shear and flexural behavior. The model estimates the

stiffness of a diagonally cracked short column in which the disturbed region prevailed. Numerical

integration schemes were introduced to find the stiffness solution and then implemented on a truss

model to determine the positions of the transverse ties and the dimensions of the compression struts.

Decoupled shear and flexural analysis was performed on a few variable angle truss models to

determine the deflection response and inclination of struts. Concrete tensile members were used to

represent the concrete contribution to strength. Kim and Mander (1999) provided a valuable

mathematical methodology to deal with the variable angle truss model of short columns. However,

their formulations and solutions are limited to the disturbed region of short columns. By applying

Kim and Mander (1999)’s method, the authors propose a rational approach to compute the

inclination of compression struts in a variable angle truss model for shear-critical RC beams

subjected to shear and flexure.

 

 

2. Inclination of strut in variable angle truss model

Fig. 2 shows the shear transfer mechanism for a typical region along a beam member. This

transfer mechanism can be reasonably represented by the truss analogy as shown in Fig. 3. Under

Fig. 1 Truss analogy for cracked beams subjected to shear and flexure
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this analogy, truss units can be formed along the shear span of a cracked slender beam member. In

each truss unit, the inclined diagonal strut transfers the shear force to the vertical tension tie. The

top and bottom chords are responsible for its flexural resistance. The rigidity and stiffness of each

truss unit are then determined by deconstructing the beam shear span. The stiffness of the truss unit

is the summation of all the members that form the unit. Using this stiffness, the external work done

by each truss unit can be determined. This allows the inclination angle of struts to be examined by

minimizing the external work done. 

The principle of virtual work is used in the analysis of each truss unit where the axial rigidity of

each member forming the truss unit is the most important part and must be studied with care.

Consider again the typical truss unit subjected to a shear force V as shown in Fig. 3, it is assumed

that the shear reinforcement is uniformly distributed over the length of the member. Under this

smeared shear reinforcement assumption, the axial rigidity of the tension tie is

  (1)

where  is the axial rigidity of the tension tie; θ is the inclination of compression strut;  is

the shear reinforcement ratio; n is the modular ratio of Es/Ec; Es is the modulus of elasticity for

steel; Ec is the modulus of elasticity for concrete; Asa is the effective sectional area for shear of RC

beam.

For the inclined strut, the cross-sectional area is determined geometrically. Conventionally, it is

taken as

EA( )t cotθρwnEcAsa=

EA( )t ρw

Fig. 2 Shear transfer mechanism for a typical region along a beam member

Fig. 3 Typical truss unit analyzed by the principle of virtual work
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(2)

where  is the cross-sectional area of the inclined strut; bw is the beam sectional width; jd is the

flexural lever arm.

Then the axial rigidity of the strut is

 (3)

where  is the axial rigidity of the strut.

For flexural members, the bottom tensile member is assumed to be at the centroid of the bottom

longitudinal bar, while the top compression member is assumed to be at the centroid of the concrete

stress block. Hence, the height of the truss is the internal lever arm jd. A distinction in axial rigidity

should also be made between the bottom tensile member and top compressive member. For the

tensile member, the concrete in the region is normally cracked and does not contribute significantly

to axial rigidity as compared to the regional reinforcement. In addition to concrete stiffness, there is

a rigidity contribution from the compression reinforcement located at the top compression member.

Usually, the centroid of the compression reinforcement differs from that of the concrete stress block.

For simplicity, in this paper, the compression reinforcement is assumed to be at the centroid of the

concrete stress block. This simplification may cause a slightly different external work done of the

compression reinforcement when the centroid of the stress block for concrete is deeper or shallower

than that of the position of the longitudinal reinforcement. Thus, the axial rigidity of the bottom

tensile member is

 (4)

where  is the rigidity of the bottom tensile member; As is the area of bottom longitudinal

reinforcement; ρs is the bottom longitudinal reinforcement ratio, ; Ag is the gross

sectional area of reinforced concrete beam.

For the top compression member, the axial rigidity is taken as

 (5)

where  is the axial rigidity of the top compression member; c is the depth of concrete stress

block at the ultimate moment capacity of the beam section; h is the beam sectional depth;  is area

of top longitudinal reinforcement;  is the top longitudinal reinforcement ratio, .

These two equations describe the dimensioning of the top and bottom chord members of the truss.

Member forces of the truss are found by applying conditions of static equilibrium. As shown in

Table 1, principle of virtual work is then applied to determine the deformation of the truss unit.

The deformation of the truss unit is the sum of the member deformations, thus 

 (6)

where l is the updated shear span length; V is the applied shear force.

Eq. (6) is configured in such a way that the first term is the deformation contribution from shear

members (struts and ties) and the second term is that from flexural members. The drift angle is

Astrut bwjdcosθ=

Astrut

EA( )s bwjdcosθEc cosθEcAsa= =

EA( )s
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EA( )T
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determined by dividing the deformation by the length of the truss unit, thus 

(7)

Therefore, the stiffness of one typical truss unit about the drift angle is

(8)

The first term of Eq. (8) represents the shear stiffness of a typical truss unit while the second term

represents its flexural stiffness. The first term of Eq. (8) is the same as the shear stiffness presented

by Dilger et al. (1966) for 90o shear reinforcement of a general truss model. By deriving this shear

stiffness term on a typical truss unit in the way shown in Eq. (8), it may not only be taken as shear

stiffness for a constant angle truss model, but may also be used as a general description of shear

stiffness. Together with the flexural stiffness derived in the expression, a variable angle truss model

can be developed. 

As noted previously, the inclination of the compression strut θ is very important as it affects the

shear capacity as well as the stiffness (Eq. (7)) of a RC beam. A theoretical determination of the

angle θ is needed. From the above analysis, the external work due to an applied unit shear force on

the typical truss unit is the total deformation obtained. Thus 

(9)
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Table 1 Analysis by the principle of virtual work
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The diagonal compression is assumed to develop in the orientation that requires a minimum

amount of external energy. Hence, the angle θ that minimizes Eq. (9) is the inclination of strut. By

differentiating Eq. (9) with respect to θ and minimizing the external work done the inclination of

strut is found 

(10)

Carrying out the differentiation of Eq. (10) leads to the following solution for the crack angle θ

(11)

Eq. (11) is a four degree-one variable equation in θ. An analytical solution of this equation is

possible; however, a trial and error procedure is sufficient. 

The solutions of θ vary along the shear span of the beam as the variable l, which represents the

available shear span length, is different for each truss unit. For a particular shear level, the solution

procedure starts from the loading point and moves towards the support in a shear span. According to

Eq. (11), θ for the first truss unit can be found by substituting the total shear span length a to the

variable l. With this θ value, a check of jdcotθ which represents the length of this unit truss can be

done. If the result shows that jdcotθ is smaller than a, the solution procedure should continue for the

next truss unit by updating the variable l with a new value (a − jdcotθ). Then θ for the next truss unit

can be obtained with Eq. (11) again. The process will be terminated when the check shows that the

variable l used to calculate θ for a new truss unit is smaller than the length (jdcotθ) of this newly

formed truss unit (i.e., available shear span length is not enough for a new truss unit). So the

solutions of the inclination of struts for truss units along the shear span of the beam differ in a

decreasing manner when moving towards the support as the variable l gets smaller. Moreover, when

the shear increases, a few variables such as c in Eq. (11) are also affected, and hence the solutions of

the inclination of struts are different. Thus, a continuous profile of struts orientation development can

be found in this analysis. Fig. 4 shows the results of this analysis at the ultimate stage of a RC beam.

The beam and the crack pattern were extracted from Bresler and Scordelis (1963). 
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Fig. 4 Comparison of calculated θ and observed angle of cracks for Beam A-2 (Bresler et al. 1963)
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In summary, this theoretical method has two distinct characteristics for the evaluation of θ. Firstly,

inclinations of the struts calculated from this method are different along the shear span from the

load point to the support (i.e., different inclination of strut for different truss unit). This effectively

produces a variable angle truss model for the reinforced concrete beam. Secondly, inclination of the

struts can vary with increasing shear force level. Thus, the change of direction in the development

of diagonal compression can be seen. This intends to correspond with the crack patterns observed in

most of the RC beam tests. 

 

 

3. Strain compatibility 

Shear carried by concrete has long been recognized as an important portion of the shear strength

of a reinforced concrete member. Some research has tried to use other parameters to represent this

concrete contribution. But amongst all these parameters, transverse tensile stress and strain have

prevailed (Vecchio et al. 1986). In this paper, the concrete contribution is assumed as the amount of

force transferred across cracks, as shown in Fig. 5. Transverse tensile stress and strain were used to

indirectly incorporate this amount of force transferred across cracks into the shear strength of

reinforced concrete beams through the compatibility conditions. By assuming a uniform distribution

of transverse reinforcement along cracks and that the tensile strain in the transverse direction is

equal to the strain in the transverse reinforcement, the tensile strain in the transverse direction can

be calculated as

(12)

where εy is the strain in y-direction; Vs is the shear strength contribution from shear reinforcement; s

is the spacing of transverse reinforcements.

The principal stress directions are the direction of inclined strut (θ). At this stage, the element has

a compressive stress along the strut direction and a tensile stress perpendicular to it. However, the

directions of the principal strains deviate from the principal stress directions. Vecchio and Collins

(1986) have summarized a number of experimental data and found that the direction of the principal

strains only differed from the principal stresses by ±10o. Therefore, it is reasonable to assume that

the principal stress and strain directions for an infinitesimal element of concrete coincide with each

other. The principal strain in the compressive direction  is readily determined by the stress and

geometrical condition of a strut as illustrated in Fig. 5, thus 

εy
Vss

AvEsjdcotθ
---------------------------=

Fig. 5 Local stresses and strains at a crack
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(13)

where ε2 is the principle compressive strain in concrete. 

With the known values of θ, εy, and ε2, a Mohr’s circle can then be constructed as shown in Fig. 6

to calculate the tensile strain ε1, given below

 (14)

This equation takes into consideration that θ may be more than 45o.

Many researchers including Walraven et al. (1981) have concentrated on the experimental

relationships between the shear carried by concrete vc and the tensile strain ε1. Vecchio and Collins

(1986) derived the equation for the limiting value of shear stress transferred across the crack; the

equation further used by Walraven et al. (1981) in his study is given below

(15)

where  is the maximum aggregate size in millimeters; fci is the compressive stress on crack

surface (assumed as zero in this model);  is the compressive strength of concrete and w is the

average crack width over the cracked surface. The crack width can be taken as 

(16)

Where

(17)

and where smx and smy are the indicators of the crack control characteristics of the longitudinal and

transverse shear reinforcement, respectively. Bhide and Collins (1989) used the provision of the

CEB-FIP Code (1978) for calculating the crack spacing 
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Fig. 6 Compatible strain conditions in a RC element
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(18)

(19)

where k1 is equal to 0.4 for deformed reinforcing bars or 0.8 for plain reinforcing bars; cx is the

distance to longitudinal reinforcement; cy is the distance to shear reinforcement; dbx is the bar

diameter of longitudinal reinforcement; dby is the bar diameter of shear reinforcement.

The calculated vc from Eq. (15) is the shear stress transferred at cracks surface. In the truss model

proposed in this paper, crack surface can be approximated along the strut direction. Hence the shear

strength contributed from concrete is 

(20)

Additional contribution to the truss unit from transverse reinforcement can be defined as

(21)

This paper is based on the premise that the stirrups yield when shear failure occurs in the slender

RC beams. As we know, the height of the compressive zone of the section decreases rapidly after

the stirrups yielding, and there is a rapidly increasing compressive stress of the diagonal concrete

strut, till the strut crushes. Because all the shear failure modes belong to brittle failure, the actual

shear strength at shear compression failure is a little higher than the shear force at stirrups yielding.

The shear force at stirrups yielding is taken as the shear strength, which is a little conservative for

design but without sacrificing accuracy.

4. Solution algorithm for shear strength 

In the previous sections of this paper, inclinations of struts and concrete contribution have been

addressed for the variable-angle truss model theoretically. The method to develop the variable-angle

truss model and treatment of the concrete contribution can be verified by predicting the shear

strength of RC beams subjected to shear. The strength of each truss unit of the variable-angle truss

model is made up of two portions: Vs and Vc. Vs is the shear reinforcement contribution which will

cause a deformation in each truss unit. Consequently, it mobilizes Vc (the shear carried by concrete)

in the truss unit. At a low shear level, Vc calculated from Eq. (20) may be larger than the applied

shear force. This probably explains why the concrete has not been cracked and only part of the Vc

mechanism has been utilized. At this point, shear reinforcement might not participate in the shear

resistance. At a higher shear level, Vc is fully utilized first and then followed by the shear

reinforcement subjected to the shear stress generated. With an increase in the load level, the

transverse reinforcements may eventually yield. In this model, each truss unit is assumed to reach

its shear strength when the transverse reinforcements of that truss unit yield. The yield strain of

steel is assumed as fy /Es to calculate Vc at the failure state. The compression softening of the

concrete and tension stiffening of the reinforcement were ignored implying that original properties
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of steel and concrete were used in the model. The shear strength of RC beams is defined as the

minimum value of the shear strength of every truss unit of RC beams. The step-by-step solution

process is summarized in the flowchart shown in Fig. 7. The MatLab (Rudra et al. 2006) program

was used to solve the flowchart.

Fig. 7 Flowchart showing the solution algorithm for shear strength
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Table 2 Experimental verification

Beam No.
(MPa)

b
(mm)

h
(mm)

a
(mm) (%) (%) (%)

Vexp

(kN)
VModel

(kN)

Bresler et al. 
(1963)

A2 24.3 305 559 2285 4.4 0.15 1.89 0.10 1.05 1.39 1.36 244.5 181.1 1.35 1.32

A3 35.1 307 561 3200 6.2 0.15 2.25 0.10 0.9 1.4 1.32 233.5 212.3 1.10 1.16

Vecchio et al. 
(2004)

A1 22.6 305 552 1830 3.7 0.18 1.43 0.10 0.85 1.06 1.02 229.5 156.1 1.47 0.97

A2 25.9 305 552 2285 4.6 0.18 1.78 0.10 1.1 1.5 1.36 219.5 166.3 1.32 0.99

A3 43.5 305 552 3200 6.5 0.18 2.14 0.04 1.18 1.44 1.26 210.0 178.0 1.18 1.18

B1 22.6 229 552 1830 3.7 0.24 1.90 0.15 0.87 1.17 1.01 217.0 142.8 1.52 1.04

B2 25.9 229 552 2285 4.6 0.24 1.90 0.15 0.9 1.35 1.14 182.5 149.6 1.22 1.06

B3 43.5 229 552 3200 6.5 0.24 2.38 0.06 1.09 1.46 1.32 171.0 148.7 1.15 1.11

C1 22.6 152 552 1830 3.7 0.36 1.67 0.20 0.99 1.5 1.2 141.0 108.5 1.30 1.10

C2 25.9 152 552 2285 4.6 0.36 2.86 0.20 0.71 1.06 0.92 145.0 122.9 1.18 1.22

Al-Nahlawi et al. 
(1989, 1992)

S.6.8-110 46.5 152 406 711 2.0 0.06 1.23 0.14 1.28 1.58 1.02 149.1 95.6 1.56 1.33

S-8-110 55.1 152 406 711 2.0 0.06 1.23 0.14 1.06 1.24 0.83 193.5 102.4 1.89 1.61

S-11-110 73.0 152 406 711 2.0 0.06 1.23 0.14 0.95 0.98 0.74 144.6 115.7 1.25 1.14

Placas et al. 
(2003)

R8 26.7 152 305 914 3.4 0.34 1.46 0.21 1.03 1.53 1.19 79.6 73.0 1.09 1.05

R9 29.6 152 305 914 3.4 0.34 1.46 0.43 1.08 1.9 1.44 104.5 90.9 1.15 1.27

R16 31.6 152 305 979 3.6 2.95 4.15 0.43 0.93 1.35 1.37 139.7 99.1 1.41 1.19

R28 31.6 152 305 979 3.6 2.95 4.15 0.83 0.87 1.48 1.25 179.3 122 1.47 1.19

Tompos et al. 
(2002)

V36-2 27.5 457 915 2553 3.0 0.03 0.92 0.08 1.15 1.32 1.08 487.5 369.3 1.32 1.14

V36-3 27.5 457 915 2553 3.0 0.03 0.92 0.08 0.97 1.13 0.89 511.5 368.0 1.39 1.19

V18-2 27.5 229 486 1276 3.0 0.13 0.91 0.15 1.11 1.54 1.25 172.1 123.8 1.39 1.01

V18-2c 27.5 229 486 1276 3.0 0.13 0.91 0.15 1.06 1.47 1.22 153.0 124.4 1.23 0.89

V18-3 27.5 229 486 1276 3.0 0.13 0.91 0.33 0.99 1.71 1.18 276.7 158.1 1.75 1.59

Karayiannis et al. 
(1999)

B90 26.0 200 300 900 3.5 0.59 1.97 0.13 1.12 1.31 1.28 84.8 71.3 1.19 1.22

Cladera et al. (2005) H60/3 60.8 200 400 1080 3.1 0.13 2.01 0.24 1.04 1.36 1.17 259.0 153.3 1.69 1.15

fc′ a

d
---

ρs′ ρs ρw θexp

θModel

------------
⎝ ⎠
⎛ ⎞ θexp

θAASHTO

----------------
⎝ ⎠
⎛ ⎞ θexp

θCSA

---------
⎝ ⎠
⎛ ⎞ Vexp

VModel

-------------
Vexp

VMCFT

-------------
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Table 2 Continued

Beam No.
(MPa)

b
(mm)

h
(mm)

a
(mm) (%) (%) (%)

Vexp

(kN)
VModel

(kN)

Kong et al. 
(1998)

S2-1 72.5 250 350 730 2.5 0.26 2.34 0.11 0.98 0.78 0.8 260.3 159.5 1.63 1.53

S2-2 72.5 250 350 730 2.5 0.26 2.34 0.13 1.02 0.85 0.86 232.5 166.3 1.40 1.19

S2-3 72.5 250 350 730 2.5 0.26 2.34 0.16 1.08 0.98 0.97 253.3 171.1 1.48 1.16

S2-4 72.5 250 350 730 2.5 0.26 2.34 0.16 1.08 0.98 0.93 219.4 171.1 1.28 1.01

S2-5 72.5 250 350 730 2.5 0.26 2.34 0.21 0.88 0.88 0.81 282.1 180.1 1.57 1.12

S3-1 67.4 250 350 730 2.5 0.26 1.41 0.10 0.97 0.88 0.83 209.2 133.9 1.56 1.21

S3-2 67.4 250 350 730 2.5 0.26 1.41 0.10 0.97 0.88 0.83 178.1 133.9 1.33 1.03

S3-3 67.4 250 350 730 2.5 0.26 2.34 0.10 0.88 0.68 0.69 228.6 159.1 1.44 1.30

S3-4 67.4 250 350 730 2.5 0.26 2.34 0.10 0.88 0.68 0.69 174.9 159.1 1.10 1.01

S3-5 67.4 250 350 720 2.4 0.26 3.15 0.10 1.10 0.83 0.83 296.6 164.7 1.80 1.62

S3-6 67.4 250 350 720 2.4 0.26 3.15 0.10 1.10 0.83 0.83 282.9 164.7 1.72 1.54

S5-1 89.4 250 350 880 3.0 0.26 2.34 0.16 1.05 1.09 1.05 241.7 174.6 1.38 1.12

S5-2 89.4 250 350 800 2.7 0.26 2.34 0.16 1.1 1.06 1.06 259.9 181.1 1.44 1.20

S5-3 89.4 250 350 730 2.5 0.26 2.34 0.16 0.78 0.71 0.7 243.8 186.5 1.31 1.13

Ozcebe et al. 
(1999)

S-59-ACI 82.0 150 360 1625 5.0 0.29 3.81 0.14 0.63 0.82 0.77 96.5 139.9 0.69 1.05

S-59-TH 75.0 150 360 1625 5.0 0.29 3.81 0.19 0.95 1.35 1.34 119.3 143.7 0.83 1.12

S-59-TS 82.0 150 360 1625 5.0 0.29 3.81 0.28 0.84 1.32 1.18 125.4 169.5 0.74 0.93

S-39-ACI 73.0 150 360 975 3.0 0.29 3.81 0.14 1.06 0.97 0.91 111.8 141.5 0.79 1.20

S-39-TH 73.0 150 360 975 3.0 0.29 3.81 0.21 1.1 1.24 1.12 142.9 148.9 0.96 1.20

S-39-TS 73.0 150 360 975 3.0 0.29 3.81 0.28 0.94 1.05 1.09 179.2 162.9 1.10 1.25

Naravanan et al. 
(1988)

SS4 43.3 85 150 262 2.0 0.91 1.99 0.21 0.99 0.93 0.98 32.0 29.1 1.10 1.08

Johnson et al. 
(1989)

Beam 7 51.3 305 610 1670 3.1 0.69 2.20 0.07 1.43 1.14 1.2 317.7 269.2 1.18 1.11

Beam 5 55.8 305 610 1670 3.1 0.69 2.20 0.14 1.23 1.3 1.29 433.0 311.5 1.39 0.95

fc′ a

d
---

ρs′ ρs ρw θexp

θModel

------------
⎝ ⎠
⎛ ⎞ θexp

θAASHTO

----------------
⎝ ⎠
⎛ ⎞ θexp

θCSA

---------
⎝ ⎠
⎛ ⎞ Vexp

VModel

-------------
Vexp

VMCFT

-------------
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Table 2 Continued

Beam No.
(MPa)

b
(mm)

h
(mm)

a
(mm) (%) (%) (%)

Vexp

(kN)
VModel

(kN)

Rahal et al. 
(2004)

A65-200 60.9 200 370 900 2.8 0.31 1.99 0.14 0.83 0.68 0.85 175.0 131.6 1.33 1.45

A65-140 62.1 200 370 900 2.8 0.31 1.99 0.20 1.11 1.28 1.22 150.0 150.0 1.00 1.11

A65-110 60.9 200 370 900 2.8 0.31 1.99 0.26 0.55 0.69 0.69 188.0 164.9 1.14 1.16

A65-95 62.1 200 370 900 2.8 0.31 1.99 0.30 0.93 1.22 1.17 220.0 176.0 1.25 1.27

B65-160 65.1 200 370 900 3.0 0.31 3.32 0.18 0.83 0.88 0.83 208.0 135.1 1.54 1.54

B65-140 65.1 200 370 900 3.0 0.31 3.32 0.20 0.96 1.02 1 235.0 136.6 1.72 1.61

B65-125 66.4 200 370 900 3.0 0.31 3.32 0.23 1.27 1.4 1.36 242.0 143.2 1.69 1.54

B65-110 66.4 200 370 900 3.0 0.31 3.32 0.26 0.92 1.02 1.01 270.0 150.8 1.79 1.69

Rahal et al. 
(2006)

S1-25-05 24.3 210 400 1020 3.0 0.37 2.34 0.28 1.11 1.47 1.34 166.0 127.7 1.30 0.92

S2-25-25 25.3 250 400 1020 3.0 0.31 1.96 0.24 1.01 1.3 1.21 194.0 141.6 1.37 0.94

S3-25-50 27.3 300 400 1020 3.0 0.26 1.64 0.19 0.85 1.07 0.93 199.0 156.7 1.27 0.84

S4-25-75 25.3 350 400 1020 3.0 0.22 1.40 0.17 0.92 1.17 1.08 244.0 160.5 1.52 0.99

S2-40-25 43.1 250 400 1020 3.0 0.31 1.96 0.24 1.06 1.36 1.24 257.0 169.1 1.52 1.02

S3-40-50 41.6 300 400 1020 3.0 0.26 1.64 0.19 1.08 1.35 1.35 262.0 178.2 1.47 1.04

S4-40-75 42.2 350 400 1020 3.0 0.22 1.40 0.17 1.05 1.33 1.29 264.0 187.2 1.41 1.02

Yoon et al. 
(1996)

N1N 36.0 375 750 2150 3.2 0.06 2.51 0.08 1.14 0.98 0.99 457.0 357.0 1.28 1.35

M1N 67.0 375 750 2150 3.1 0.06 2.51 0.08 1.19 0.98 1.03 405.0 470.9 0.86 1.10

H1N 87.0 375 750 2150 3.1 0.06 2.51 0.08 1.18 0.97 0.98 483.0 519.4 0.93 1.35

N2S 36.0 375 750 2150 3.1 0.06 2.51 0.08 1.18 1.05 1.02 363.0 349.0 1.04 1.11

N2N 36.0 375 750 2150 3.1 0.06 2.51 0.12 0.96 0.92 0.97 483.0 365.9 1.32 1.27

M2S 67.0 375 750 2150 3.1 0.06 2.51 0.12 0.81 0.78 0.77 552.0 480.0 1.15 1.49

M2N 67.0 375 750 2150 3.1 0.06 2.51 0.16 1.2 1.29 1.14 689.0 510.4 1.35 1.18

H2S 87.0 375 750 2150 3.1 0.06 2.51 0.12 1.05 1.01 0.93 598.0 533.9 1.12 1.32

H2N 87.0 375 750 2150 3.1 0.06 2.51 0.23 0.97 1.18 0.99 721.0 655.5 1.10 1.03

Average 0.97 1.15 1.06 1.24 1.14

CoV 0.15 0.27 0.2 0.24 0.18

Note: CoV= coefficient of variation.

fc′ a

d
---

ρs′ ρs ρw θexp

θModel

------------
⎝ ⎠
⎛ ⎞ θexp

θAASHTO

----------------
⎝ ⎠
⎛ ⎞ θexp

θCSA

---------
⎝ ⎠
⎛ ⎞ Vexp

VModel

-------------
Vexp

VMCFT

-------------
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5. Comparison with test results 

The validation of the proposed truss approach is demonstrated by comparison with published

experimental results from previous investigations with respect to the shear strength and inclination

angle of compression strut at this state. Details of the RC beams can be found in Table 2. These

beams encompass a wide range of sizes and material properties. The beams selected were shear-

critical flexural members. The shear strength of RC beams in the proposed model is governed by

the strength of the transverse reinforcements plus the shear transferred across the cracks. In order to

verify the proposed model, only the lightly shear-reinforced beams with aspect ratios larger than 2

were selected. The reinforced concrete beams with aspect ratios smaller than 2 or thin web, in

which the diagonal cracking strength govern the shear strength of the beams, were excluded.

Among the shear-critical flexural beams, only those with cracking patterns provided were selected.

The model does not apply to beams which are over-reinforced, and to beams with inadequate

transverse reinforcement.

 

5.1 Inclination angle of compression strut

Fig. 8 shows the comparison between calculated inclinations of struts and the experimentally

recorded crack patterns for sample beams presented in Table 2. In these graphs of Fig. 8, the strut

inclinations are observed to have similar orientations as the cracks developed. The analytical results

revealed that the proposed variable-truss angle model was capable of capturing crack patterns of RC

beams with satisfactory accuracy. To further demonstrate the capacity of the proposed variable-truss

angle model in capturing the inclination angle of compression struts along the RC beams, the

maximum inclination angle of compression strut observed from the experiments was compared with

the analytical result as showed in Fig. 9. Overall, the average value of the experimental to predicted

shear-critical angle by the proposed approach is 0.97.

Fig. 8 Comparison of calculated θ and observed angle of crack for sample beams
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The inclined angle of shear-critical beams in the database calculated based on the proposed model,

AASHTO (2004), and CSA (2004) are shown in Table 2. The mean ratio of the experimental to

predicted angle and its coefficient of variation are 0.97 and 0.15, 1.15 and 0.27, 1.06 and 0.20 for

the proposed model, AASHTO (2004), and CSA (2004), respectively. Comparison of available

models with experimental data indicates that the proposed model produce better mean ratio of the

experimental to predicted strength than the AASHTO (2004), and CSA (2004). The results of the

calculated angles by Eq. (11) are shown to be consistent with the experimentally observed angles of

the shear-critical RC beams.

 

5.2 Shear strength 

The shear strengths from the proposed method and experimental results were compared as shown

in Fig. 10. The average value of the experimental to predicted shear strength by the proposed model

is 1.24, showing a fairly good correlation between the proposed variable-truss angle model and the

experimental data. Importantly, most of the analytical results based on the proposed method were on

the safe side as illustrated in Fig. 10. This is due to not taking into account the dowel action and

shear carried by the compression zone in the concrete contribution. The proposed model could be

used to give a lower bound for the shear capacity of the available experimental data. 

Beside the analytical results according to the proposed variable-truss angle model, the predicted

shear strengths based on modified compression field theory (MCFT) (Bentz et al. 2000) are also

presented in Fig. 11. The Response program (Bentz et al. 2000) was used to calculate the predicted

shear strengths. While it can be seen that MCFT (Bentz et al. 2000) shows good accuracy with the

average value of the ratio being 1.14, it is of interest to explore the development of a new model that

is able to explain the shear behavior of RC beams. It is believed that the method presented in this

paper gives a physical significance to the parameters being calculated. The shear strengths of shear-

critical beams in the database calculated based on the proposed model, MCFT (Bentz et al. 2000),

Fig. 9 Correlation of maximum experimental and predicted inclination of compression strut based on the
proposed method
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Fig. 10 Correlation of experimental and predicted shear strength based on the proposed method 

 Fig. 11 Correlation of experimental and predicted shear strength based on MCFT (Bentz et al. 2000)

Table 3 Verification of different shear procedures for shear-critical RC beams

Average 1.24 1.14 1.27 1.59

CoV 0.24 0.18 0.20 0.43

Minimum 0.69 0.84 0.70 0.70

Maximum 1.89 1.62 1.79 2.65

Note: CoV = coefficient of variation.

Vexp

VModel

-------------
Vexp

VMCFT

-------------
Vexp

VACI

---------
Vexp

VEC2 03–

-----------------
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ACI 318 (2008), and EC2-03 (2003) are summarized in Table 3. The mean ratio of the experimental

to predicted strength and its coefficient of variation are 1.24 and 0.24, 1.14 and 0.18, 1.27 and 0.20,

and 1.59 and 0.43 for the proposed model, MCFT (Bentz et al. 2000), ACI 318 (2008), and EC2-03

(2003), respectively. Comparison of available models with experimental data indicates that MCFT

(Bentz et al. 2000) and the proposed model produce better mean ratio of the experimental to

predicted strength than the ACI 318 (2008) model and EC2-03 (2003). The truss model of EC2-03

(2003) does not incorporate the concrete contribution. This leads to very conservative results when

compared with experimental tests of shear-critical reinforced concrete beams.

To investigate the validity and applicability of the proposed model across the range of several key

parameters including compressive strength of concrete, aspect ratio, and transverse reinforcement

ratio; the ratio of experimental shear strength to shear strength calculated from the proposed model

versus compressive strength of concrete f
c
' , aspect ratio a/d, and transverse reinforcement ratio ρ

w

are plot in Fig. 12. The good correlation between the experimental and predicted strengths across

the range of compressive strength of concrete, aspect ratio, and transverse reinforcement ratio

indicates that the proposed model well represents the effects of these key parameters.

 Fig. 12 Variation of experimental to predicted strength ratio as a function of key parameters 
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6. Conclusions

In this paper, a theoretical method to compute the inclination of struts and predict the shear

strength of RC beams is proposed. The predicted developments of inclinations of compression struts

along the shear span of the RC beams agreed fairly well with the experimental results. There is also

good correlation between the shear strengths obtained and the published experimental data with the

average ratio of experimental to predicted shear strength of the 71 RC beams being 1.24. This

proposed method provides a useful tool for obtaining the shear strength of RC beams.
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