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Abstract. An inverse approach is presented for calculating the flexibility coefficient of open-side cracks
in the cross sectional of beams. The cracked cross section is treated as a massless rotational spring which
connects two segments of the beam. Based on the Euler-Bernoulli beam theory, the differential equation
governing the forced vibration of each segment of the beam is written. By using a mathematical
manipulation the time dependent differential equations are transformed into the static substitutes. The
crack characteristics are then introduced to the solution of the differential equations via the boundary
conditions. By having the time history of transverse response of an arbitrary location along the beam, the
flexibility coefficient of crack is calculated. The method is applied for some cracked beams with solid
rectangular cross sections and the results obtained are compared with the available data in literature. The
comparison indicates that the predictions of the proposed method are in good agreement with the reported
data. The procedure is quite general so as to it can be applicable for both single-side crack and double-
side crack analogously. Hence, it is also applied for some test beams with double-side cracks. 
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1. Introduction

Cracks are one of the most important damage types in both mechanical and civil structures which

can cause catastrophic failures. The existence of cracks in a structural member changes the physical

characteristics of component which affects the dynamic behavior of the whole structure, e.g. its

presence in a member causes a local increase in flexibility which subsequently changes the modal

response of structure. 

Cracks may take place in structures due to several reasons: as a result of the limited fatigue

strength in a structural component, the fatigue cracks may occur due to cyclic loading, a type of

crack may also be commenced during the manufacturing processes which are usually small in sizes

and another group of cracks may take place due to the mechanical defects.

There are two types of surface cracks which have received attention by researchers. Breathing

cracks are those which open and close during vibration of the component. The stiffness of a

component having breathing cracks is most affected when it is under tension. The breathing cracks

introduce non-linearity in the beam vibration.
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Cracks which are always open during the loading state are named gaping cracks or open cracks.

They are also more commonly called notches. Gaping cracks are easy to simulate in a laboratory

condition and hence most experimental research have been concentrated on this particular crack

type. 

The dynamics of cracked beam has received much attention in the past two decades due to its

importance in mechanical and civil engineering applications such as bridge structures and railways,

etc. There are three categories of crack simulation approaches presented in literatures which are

stated as: equivalent reduced section model, the local flexibility model based on the fracture

mechanics theory and the continuous crack flexibility model. 

A study has been done by Friswell and Penny (2002) which compares different approaches in

crack modeling. They also studied the non-linearity effects of breathing cracks on the response of a

simple beam.

According to the review on various methods dealing with cracked structures by Dimarogonas

(1996), only during the 10 years before that survey over 500 papers were published which shows

the importance of studying the behavior of cracked members.

The first attempts to simulate the effect of notch on flexibility of the structural elements have

been made by Thomson (1943) and Kirmsher (1944). They simulated the crack by a local bending

moment or reduction in cross section of component with magnitudes which were evaluated by

experiments.

Since 1957, several researchers computed local flexibility for a variety of crack shapes in

structural member having different geometries. Using existing results from fracture mechanics

Liebowitz et al. (1967), Liebowitz and Claus (1968) and Okamura et al. (1969) calculated the local

rotational flexibility induced by a transverse surface crack with uniform depth in a beam with

rectangular cross section. According to the above works, a beam type structure with a crack can be

considered as two pinned segments in which a rotational spring placed at the crack location.

Gudmunson (1983), Rauch (1985), Chen and Wang (1986) calculated the local flexibility induced

by cracks in structural members using finite element methods. Christides and Barr (1984) developed

a continuous crack flexibility model which presents the stiffness reduction in a rectangular cross

sectional Euler-Bernoulli beam. The model consists of an exponential function which expresses the

flexural rigidity decay in terms of the distance from the crack section and contains a parameter

which needs to be determined by experiments.

Zheng and Fan (2003) calculated the local flexibility coefficient of cracked hollow-sectional

beams by using the fracture mechanics theory. They derived formulas for calculating the flexibility

coefficient of a range of cross sectional geometries in which the derived formulas are dependant to

the crack depth ratio. In the second part of the above work the derived flexibility coefficients have

been applied to study the vibration and stability of cracked hollow-sectional beams. However, the

authors stated that the validity of the proposed formulas depends on the future experimental works.

Recently, the effect of double-sided cracks on dynamic characteristics of Timoshenko beam has

been studied by Ayatollahi et al. (2010).

In the present study, a new approach for determining the local flexibility coefficient of an open

crack with different depth is presented. In this procedure two models of a cracked beam are

incorporated. Firstly a mathematical model of a cracked beam which relies on Euler-Bernoulli beam

theory is used. Secondly a finite element model of a simply supported beam having a V-shaped

open surface crack is used for obtaining the output data due to the excitation on the cracked beam. 

In order to develop the approach a simply supported beam with an open crack subjected to a
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sinusoidal concentrated force is considered. It is assumed that the crack is open during the vibration

and also a linearly elastic assumption has been made to develop the approach. In the first part of the

approach, the cracked beam has been divided into two segments which are connected together by

hinges and a rotational spring placed at the crack location. By applying the Euler-Bernoulli beam

theory, the governing differential equation of each part is written and then by integrating the

differential equation of forced vibration of the beam due to the time, the dynamic problem

transformed to the static one. For calculating the crack flexibility coefficient, the time history of

transverse displacement of an arbitrary location along the beam is needed to be measured. In the

absence of such measurement one can use a finite element model of the cracked beam and obtain

the necessary time history response. Hence, in the second part of the approach an in-house finite

element software is applied for the simulation of the cracked beam to obtain the desired dynamic

response. For finding the effect of finite element model on the performance of the proposed method,

both plane stress and 3D model of the cracked beam are used. By applying the present method the

local flexibility coefficient of cracked solid rectangular cross sectional beam is calculated and

compared with the reported data. This comparison indicates the capability of the proposed method

in good predictions. Due to the fact that the proposed method is general in essence and not limited

to the single surface crack analysis, it is also applied for the beam with a double-side cracks located

on top and bottom surface of the beam.

This paper is organized as follows: in section two the relevant equations regarding to the crack

flexibility coefficient are presented from the fracture mechanics theory; in section three the

background theory of the proposed approach is discussed. In section four the configuration of

simulated cracks and the geometrical and mechanical characteristics of the beam and the applied

load are illustrated. Section five presents the finite element model of the beam. In section six the

results obtained for the plane stress and 3D models are compared with the reference results. Finally,

in section 7 the conclusions are presented.

2. Calculation of the flexibility coefficient of an open-side crack using the fracture

mechanics theory

In this section the fracture mechanics based approach for the calculation of the crack flexibility

coefficient is presented briefly. Fig. 1 shows a solid rectangular cross section of a beam with a

single-side V-shaped open crack having uniform penetration depth a along the width b. The crack

surface area is a × b which is assumed to be constant, in other words the open crack assumption is

Fig. 1 A V-shaped one sided sectional crack in a rectangular sectional of a beam
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applied. According to Paris equation (Tada et al. 2000), the relative rotation of the cracked section

shown in Fig. 1, carrying bending moment M, can be expressed as

 (1)

where G is the strain energy release rate function during the crack extension (Anderson 1995) and

other parameters of Eq. (1) are shown in Fig. 1. The flexibility coefficient of the cracked section,

the reciprocal of the stiffness coefficient, can be obtained as

  (2)

Substituting Eq. (1) into Eq. (2) gives

 (3)

By expressing the energy release rate function in terms of the stress intensity factor (Anderson,

1995) one can obtain the following relation

 (4)

where  for plane stress problem and  for plane strain problem, in which E is

the Young’s modulus and ν is Poisson’s ratio.

The parameter F is given as

 (5)

in which .

Zheng and Fan (2003) have computed Eq. (4) numerically and then they used the least-squares

technique to find the best fitted expression which resulted in the following formula

 

(6)

As can be seen in Eq. (6), the flexibility coefficient is dependent on crack extent and beam’s

cross-sectional geometries and also beam’s mechanical properties. 

3. Calculation of crack flexibility coefficient by using beam forced vibration data

In this section an inverse approach for the calculation of the crack flexibility coefficient is

presented. The presented approach with similarities has been already applied for the identification of

model parameters by Langer and Ruta (1995), Ruta and Szyd o (2005), Sieniawska et al. (2009)

and Jarczewska et al. (2011).
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b × h having an open crack at the distance of xc from the left end of the beam is subjected to a

dynamic pulse at the distance of x0 from the left end of the beam (Fig. 2). 

According to the Euler-Bernoulli beam theory the differential equations governing the vibration of

the cracked beam are as follows

(7)

where the above two differential equations are coupled through the crack boundary conditions. In

Eq. (7) EI stands for the flexural rigidity of the beam, c is the damping coefficient, m is the mass

per unit length of the beam and F(x, t) represents dynamic load which can be decomposed by time

dependent part f(t) and space dependent part p(x). For a concentrated force acting at x = x0, the

space dependent part p(x) can be expressed using the Dirac delta function as follows 

 (8) 

By assumption of rest and un-deformed initial conditions for the beam vibration, we have 

(9) 
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Fig. 2 simply supported beam with an open crack subjected to a consentrated dynamic load

Fig. 3 The shapes of  and their corresponding parameters as W0(x) and F0w x t,( )  f t( ),
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The boundary conditions at the beam ends with simply supports are as follows

(10)
The boundary conditions at the crack location are:

(1) The continuity of deflection at the crack location is represented as

(11a)

(2) The slope of deflection of the beam at the crack location is discontinuous and is related to the

crack stiffness, , as follows

(11b)

(3) The internal moment at the both sides of the crack are the same and denoted as follows

(11c)

(4) The shear consistency at the crack location is represented by

 (11d)

Since the actuation time of the applied force is finite, due to the presence of damping, it can be

concluded that

(12)

Having Eq. (12) in mind and integrating Eq. (7) within the time interval (0, ), the static

equivalence of Eq. (7) will be obtained as follows (Ruta and Szyd o 2005, Sieniawska et al. 2009).

 (13)

where

(14)

As shown in Fig. 3, the parameter T in Eq. (14) is the actuation time of the dynamic pulse. Fig. 3

illustrates w(x, t), f(t) and their corresponding functions of W0(x) and F0.

By doing integration within the time interval  on boundary conditions presented in Eqs.

(10)-(11) and using second part of Eq. (14), one can analogously get 
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(15b)

Solving Eq. (13a) in which  results in

(16)

And also solving Eq. (13b) in which  results in

(17)

where in Eqs. (16),  is the Heaviside function which is defined as follows

 (18)

As can be seen in Eqs. (16)-(17) the number of unknowns are 8  and

the number of equations from the boundary conditions (Eq. (15)) are also 8 but κτ as an unknown is

included in them, so one more equation is needed to be considered for finding the final solution of

Eq. (13). The 9th equation is deduced from the time history transverse response of an arbitrary
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corresponding to that location. In the absence of such experiments, one can rely on the vibration
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this work the above data is obtained from the vibration simulation of cracked beam using a finite
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(19)

If , then

(20)

Depending on the measuring location, by using Eq. (19) or Eq. (20) and solving the resulted

simultaneous equations, all unknowns can be calculated. The inverse of parameter κτ, known as the

crack flexibility coefficient is denoted by C which will be used thereinafter. 

For the case  can be calculated from the following equations

(21)

By solving Eq. (15), finally we have

(22)

Similarly, an equation can be obtained for the calculation of κτ in the case of . 

4. Crack configurations and applied load properties

In the following sections, the flexibility coefficient of the V-shaped side crack is calculated using

simply supported prismatic beam based on the procedure presented in the previous sections. The

beam has the following geometrical properties: length L = 300 cm, cross sectional dimensions are

width b = 6 cm and height h = 12 cm. 

The material properties of the beam are: the Young’s modulus (E) is 210 (GPa), the density (ρ) is

7850 (kg/m3) and Poisson’s ratio (υ) is 0.3.

To study the effect of crack depth on the crack flexibility, five crack depths from 1.2 cm to 6 cm

by increasing 1.2 cm at each step are considered. The location of the crack is considered at the

middle of the beam span (xc = 150 cm) (see Fig. 2). A concentrated dynamic sinusoidal load with

the amplitude of 20 (kN) and period of 1 sec applies to the beam at the location 75 cm from the left

end of the beam. The actuation time, T, is considered 0.5 sec. The numerical errors hidden in the

procedure are inevitable in which the numerical calculations for finding the parameter Wo (see Eq.

(14b)) is the main source of it. Hence, to decrease the effects of such errors on the results accuracy,

the transverse response w(t) of different locations including, xe = 180, 195, 210, 225 cm are used in

the procedure and the calculated flexibility coefficients are averaged. 
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5. Finite element modeling

An in-house finite element software is applied to find the transverse response w(t) which is

needed for solving the simultaneous equations involving unknown crack flexibility coefficient.

Hence, a simple beam model with V-shaped edge-crack and with the aforementioned geometries

and material properties is developed. Both plane stress (2D) and 3D models are considered. For 2D

analysis, 4-node quadrilateral elements are used in discretization and also for 3D analysis 8-node

brick elements are used, see Fig. 4. 

6. Results and discussion

6.1 Single-side crack

The flexibility coefficient of crack in simply supported beam is calculated using the two and three

dimensional modeling of the beam with the assumed properties. In order to validate the procedure,

the results obtained are compared with the results reported in literature.

Okamura et al. (1969) presented the following formula based on the fracture mechanics theory for

calculating the flexibility coefficient of cracked rectangular cross sectional beam

(23a)

where function f(ζ) is given as

(23b)

Rizos et al. (1990) presented the following formula for calculating the flexibility coefficient

(24a)
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Fig. 4 Finite element mesh, (a) 2D model; (b) 3D model
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in which

(24b)

In the above equations, h is the height and b is the width of the cross-section, EI is the flexural

rigidity, ζ = a/h and a is the crack depth. For plane-stress problem  and for plane-strain

problem , in which υ is Poisson’s ratio.

As presented in section two, Zheng and Fan (2003) have also obtained a formula for calculating

the flexibility coefficient of cracks in rectangular cross sectional beams which has been expressed in

Eq. (6).

By applying the present method and using the data obtained from the plane stress finite element

modeling of the beam described above, the flexibility coefficient of cracks with different depths are

obtained and the corresponding dimensionless parameter as CEbh2 are calculated. In Fig. 5 the

results obtained are presented and compared with the reference results. A good agreement between

the results of the present approach and the results of Okamura (1969) and those of the Zheng and

Fan (2003) can be observed. 

Analogously, the response of the 3D finite element model is incorporated with the present

approach and the flexibility coefficients of cracks are found and then the corresponding

dimensionless parameter is calculated. The results are presented in Fig. 6 and compared with the

reference results. It can be observed that by applying 3D model, the predictions are also in good

agreement with the results from (Okamura 1969, Zheng and Fan 2003). However, the closeness

of the plane stress results and the results predicted by Okamura (1969) is noticeable. Also the

same observation can be seen between the results of 3D model and those of the Zheng and Fan

(2003). 
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Fig. 5 Dimensionless local flexibility coefficient of a solid rectangular cross sectional beam with a single-
side crack of the different extents
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6.2 Double-side crack

The presence of crack in one side of the beam, so called as single-side crack, or in both sides, so

called as double-side crack, affects crack induced flexibility. Work by Mahmoud (2001) investigated

the effect of crack geometries on stress intensity factor (SIF) and also Orhan (2007) investigated the

effect of crack geometries on vibration of beam with side cracks. Fig. 7 shows both single-side

crack and double-side one. In this section the local flexibility coefficient of a double-side crack is

investigated based on the present approach incorporating the plane stress and 3D finite element

models. It is assumed that the crack occurred on both sides of a rectangular cross sectional beam

with the same extent. The flexibility coefficient of a double-side crack with ζ = 0.1 on each side is

calculated and compared with a single-side crack having ζ = 0.2. Also this study is performed for a

double-side crack with ζ = 0.2 for both upper and lower sides of the beam and for the corresponding

single-side crack with ζ = 0.4. 

The results obtained are presented in Figs. 8-9. It can be seen that the single-side crack is more

flexible than the corresponding double-side one.

Fig. 7 (a) single-side crack; (b) double-side crack

Fig. 6 Dimensionless local flexibility coefficient of a solid rectangular cross sectional beam with a single-
side crack of the different extents
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Also it can be seen that plane stress model predicts larger flexibility coefficients than the 3D

model for both single-side and double-side cracks. It should be noted that these different

predictions can be due to the fact that the plane stress model of a beam is more flexible than the

corresponding 3D model. Although this is a classical issue, however this point can be observed in

the results of some recent works performed by Krueger et al. (2002) and Narmashiri and Jumaat

(2011).

7. Conclusions

In this work an inverse method based on the forced vibration of cracked beams has been presented for

the calculation of the local flexibility coefficient of open-side cracks in solid rectangular cross-

sectional beams. The following conclusions may be drawn:
● The calculated flexibility coefficients for the single-side cracks are in good agreement with the

published results from references (Okamura et al. 1969, Zheng and Fan 2003) which are based on

the fracture mechanics theory. 
● It is found that by incorporating the plane stress finite element simulation of the vibrating

cracked beam and the present procedure; the results obtained are noticeably close to the results

predicted by Okamura et al. (1969). 
● Furthermore, it is observed that by incorporating the 3D finite element simulation of the

vibrating cracked beam and the present procedure; the results obtained are noticeably close to the

results predicted by Zheng and Fan (2003).
● By applying the present procedure for the calculation of flexibility coefficients of double-side

cracks in rectangular cross sectional beams, it is found that when the crack depth of a single-

side crack is equal to the total crack depth of a double-side crack having equal crack depth on

both sides, the single-side crack shows more flexibility than the double-side one.

The presented approach can be extended to calculate the flexibility coefficients of the cracked

beams with different cross-sectional geometries which is the current objective of the authors.

Fig. 8 Predicted dimensionless local flexibility coefficients
of a solid rectangular cross sectional beam with a
single-side crack and a double-side crack using
2D and 3D finite element models

Fig. 9 Predicted dimensionless local flexibility coefficients
of a solid rectangular cross sectional beam with a
single-side crack and a double-side crack using
2D and 3D finite element models
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