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Abstract. Sandwich elements have high flexural rigidity and high strength per density. They also have
excellent anti-vibration and anti-noise characteristics. Therefore, they are used for structures of airplanes
and high speed ships that must be light, as well as strong. In this paper, the Reissner-Mindlin’s plate
theory is studied from a Hamilton’s principle point of view. This theory is modified to include the
influence of shear deformation and rotary inertia, and the equation of motion is derived using energy
relationships. The theory is applied to a rectangular sandwich model which has isotropic, asymmetrical
faces and an isotropic core. Investigations are conducted for five different plate thicknesses. These plates
are identical to the sandwich plates currently used in various structural elements of surface effect ships
(SES). The boundary conditions are set to simple supports and fixed supports. The elastic and shear
moduli are obtained from the four-point bending tests on the sandwich beams. 
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1. Introduction

A sandwich structure is one of the most important structural elements used in aircrafts and high

speed ships that require light weight and high strength materials. It has high flexural rigidity, high

strength per density, high stiffness, and superior anti-vibration and anti-noise characteristics.

Sandwich structures have been studied over a long period of time. During the 1940s and 50s,

based on Reissner (Reissner 1945, Reissner 1950)’s plate theory that accounts for shear

deformation, a static theory for sandwich plates that considers the shear deformation of the core was

introduced and tested for different boundary conditions. In the 50s, Mindlin (1951) published a

vibration theory for isotropic, homogeneous plates with rotary inertia and shear deformation. In the

60s, Yu (1966) used Mindlin’s theory while analyzing sandwich structures. Ueng (1966) conducted

natural frequency analysis by applying the Lagrange multiplier method that meets the boundary

conditions for the energy method. In the 70’s, several studies using shear deformation theory have

been conducted for the free vibration analysis of composite plates (Yang 1966, Whitney 1970, Sun
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1973, Reddy 1979). In the vibration analysis of isotropic moderately thick plates, the shear

deformation theory will usually suffice. It is, however, inadequate to model the dynamical behavior

of highly orthotropic, composite or sandwich plates using the shear deformation theory, unless

appropriate shear correction factors are provided (Liew 1995). Thus many plate theories have been

developed to overcome the deficiency of shear deformation theory. From 90s to 2000s, Smeared

displacement-based higher-order shear deformation theories were developed first (Lo 1977,

Levinson 1980, Kant 1982, Reddy 1984, Pandya 1988, Timarci 1995, Kant 2001). The assumed

displacement of these higher-order theories is expressed as a polynomial form of the thickness

coordinate. These theories do not account for continuity of the transverse shear stresses and cannot

accurately describe the through-the-thickness variation of stresses. A better description can be

obtained by layerwise theories (Reddy 1987, Cho 1991, Nosier 1993) that are known to be fairly

accurate since they allow a kink in the slope of deflection at each interface between layers. There

are several reports on plate vibrations with added point masses, very few reports on plate vibrations

with distributed mass loading can be found in the literature (Kim 2007, Alibeiglooa 2008). In the

other hand, the free vibration of a simply supported laminated composite plate with distributed

patch mass is emphasized (Wong 2002). Rastgaar et al. (2006) also presented natural frequencies of

laminated composite plates using third-order shear deformation theory. Singh et al. (2001) presented

natural frequencies of composite plates with random material properties using higher-order shear

deformation theory (including rotatory inertia effect). In Korea, using the Rayleigh-Ritz method

with a modified plate theory that accounts for shear deformation and the coating effect, a vibration

analysis was conducted on sandwich structures that consist of an expanded foam core and FRP

symmetric faces. Considering that the structure had very thin, high density faces, that study ignored

rotary inertia; the thickness ratio of the face to the core was between 1/70 and 1/100 (Seyed 2009,

Afzal 2008, Xin 2008). However, the face to core thickness ratio of an actual ship is much higher

than this; it ranges from 1/15 to 1/10. Therefore, its influence has to be considered.

In this study, accounting for shear deflection and rotary inertia of the cross-section due to

rotational deflection, a plate theory is derived from Hamilton’s principle. This theory is applied to a

rectangular sandwich plate model with isotropic and asymmetric faces and core. In addition, a

natural frequency analysis is conducted comparing the equation of motion and the Rayleigh-Ritz

method. The result is also compared with cases that consider the shear deformation alone.

Additional comparison is made between cases that take into account the core density and cases that

do not. An investigation is conducted on the influence of the thickness of the core and the faces on

the natural frequency. 

Five FRP sandwich plate models, which would constitute the upper structure of a surface effect

ship (SES), are used in this study. Simple supports are applied as the boundary conditions to this

model. Material properties, such as bending and shear moduli of elasticity, are determined from the

bending-shear test which is conducted in accordance with “the application manual of the FRP ship

structure” of the Korean Register of Shipping.

2. Plate theory

2.1 Hamilton’s principle

Dynamic effects are ignored in the principle of minimum potential energy which is often used in
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static analysis. The assumptions behind this principle are as follows :

- The mass of the structure is ignored.

- The load is applied to the structure so slowly that the inertial force is zero.

Hamilton’s principle expanded this theory to the field of dynamics. By substituting the inertial

force acting in the opposite direction for an external force of D’Alembert’s principle, a dynamic

problem can be solved as a static problem similar to the principle of minimum energy. Following

Hamilton’s principle, the Euler-Lagrange equation, which describes the force equilibrium, i.e. the

equation of motion of the system, is derived from the 1st order variation of the energy relationship.

2.2 Shear deformation and rotary inertia

The plate theory takes into account vertical deformation alone, and it is applicable to plates that

are very thin for the area. However, if the thickness is significant compared to the other dimensions,

the accuracy of the plate theory would deteriorate. Mindlin considered the rotational deflection of a

thick plate and expanded the plate theory to account for shear deformation and rotary inertia. When

the rotational deflection is combined with the vertical deformation due to pure bending, the normal

to the neutral axis of the plate’s cross-section fails to be perpendicular to the axis. Therefore, shear

deformation and rotary inertia have to be taken into account along with the inertia in the vertical

plane. The assumptions related to this are as follows:

- The plate is isotropic and homogeneous.

- The plate’s free surface is the plane 

- σz = 0 (plane stress is considered)

- The cross-section perpendicular to the mid plane of the plate remains straight even after

deformation.

3. Vibration theory of the sandwich plate 

The bending strain energy of the top and bottom faces, the shear strain energy of the core, and the

kinetic energy of the whole structure are applied as the sandwich plate model to the Mindlin’s plate

theory. In this case, the shear coefficient is defined to be a constant determined based on the

z ±h/2=

Fig. 1 Analysis model of an asymmetric sandwich plate
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geometry of the cross-section, i.e., the width, the thickness of the faces and the core, and the

Poisson’s ratio. The shear coefficient of a sandwich plate is almost 1 because the core, which has a

lower density and strength compared to the faces, hardly resists the bending of the faces. The

relationship between the strain, the deformation, and the stress in Mindlin’s plate theory is applied

to each face and the core. The coordinate system and the analysis model are shown in (Fig. 1).

3.1 Assumptions

The assumptions in the vibration theory of a sandwich plate are as follows:

- The faces and the core are perfectly attached to each other.

- The faces and the core are isotropic. The core is an anti-plane which has a constant shear force

regardless of the distance from the center axis. 

- The rigidity of the core in the X-Y plane is ignored as it is much smaller than that of the faces.

- The Z direction stresses of the faces and the core are ignored.

- The shear deformation of the faces is ignored.

In other words, the sandwich plate used in this analysis is assumed to exhibit bending deformation

of the faces and shear deformation of the core. The deformed cross-section of the sandwich plate

due to deflection is illustrated in (Fig. 2).

3.2 Equation of motion

Considering the vertical inertia and the rotary inertia, the kinetic energy of the faces and the core

of an isotropic, homogeneous plate can be given as

 

 (1)

As the top face, core, and the bottom face may have different densities, depending on their

thicknesses, (Eq. (1)) is modified for the sandwich plate as

 

Fig. 2 The Z-X plane cross-section of the sandwich plate
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 (2)

where, Iuf, Ic, and Ilf are the second moments of inertia of the top face, the core, and the bottom

face, respectively.

The strain energy equation of the plate, ignoring the stress along the Z-direction, is

Here, the strains due to the plane stress, , and , are all zeros. Therefore, the shear strain

alone is accounted for in the shear strain energy of the core.

  (3)

The bending strain energy of the face is given as 

For the faces, only the plane stress is considered and σz, γxz, and γyz are all zeroes in the equation

for the strain energy, U. Therefore, the bending strain energies of the top and bottom faces are 

(4)

 (5)

The total bending strain energy of the face Uf is

  (6)

Where, Iuf and Ilf are the second moments of inertia of the top and bottom faces, respectively, with

respect to the centroid axis.

3.3 Application of the Rayleigh-Ritz method

In order to use the Rayleigh-Ritz method, shape functions w, ψx, and ψy are defined as

 

 

εxy εxx, εyy

 

Uf Ulf Uuf+=
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(7)

 (8)

 (9)

ψx and ψy reflect the rotation angle due to the deflection of the plate. Therefore, for an isotropic

material, the coefficients bmn and cmn would be the same. Using these shape functions, the kinetic

and strain energies of the core and the faces are arranged as

   (10)

   (11)

 (12)

The condition for a stationary value obtained by differentiating the Lagrangian with respect to the

shape function coefficients, amn and bmn, is 

Therefore, the natural frequency in the (m, n) mode is calculated as 

  (13)

Where,

 

 

 

 

 

 

∂ T Uc– Uf–( )
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∂ T Uc– Uf–( )

∂bmn

--------------------------------- 0= =

 

 



A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces 507

From the Rayleigh-Ritz method which can be compared the maximum potential energy and

kinetic energy for a system. We can get the fundamental mode frequency and shape. To get higher

natural frequencies the approximation function of deflection can be assumed as a series of

independent function nth and be applied to the Rayleigh method.

 is linearly independent function. For ci of any magnitude since the Rayleigh Quotient is

to be a stationary value as the following relations.

The necessary condition for obtaining a non-trivial solution is

 

W x( ) ciφi x y,( )
i 1=

n

∑=

φi x y,( )

∂ω
2

∂ci

--------- 0 1 2 3 …, , , ,=
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(14)

Finally, through the Rayleigh-Ritz method, we can basically get the frequency of (i, j) mode from

Eq. (14) condition.

4. Structural test and structural properties of sandwich plates

4.1 Bending-shear test

The bending-shear test was conducted according to the FRP structure application manual of the

Korean Register of Shipping, and the bending and shear moduli of elasticity were determined. The

test setup to measure the second moment of inertia and the shear stress per unit area is illustrated in

(Fig. 3). Once the width and the thickness of the specimen are measured, it is supported by the

rollers and the load is applied through a crosshead in the middle.

The bending and shear moduli of elasticity are obtained from the test using (Eq. (15) and

Eq. (16)), respectively.

   (15)

Where,  and  is the deflection. 

 (16)

Where, b is the width of the specimen.

4.2 Dimensions and structural properties

The specimens used for the tests are identical to the sandwich plates used in actual ship parts.

(Table 1) shows the dimensions of the specimens, and the measured structural properties are listed

in (Table 2).
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Fig. 3 4-point bending test
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5. Numerical analysis

5.1 Analytical solution 

The natural frequencies calculated using the equation of motion and the Rayleigh-Ritz method are

compared. The results indicate that the two methods give very similar frequencies for the (n, n)

modes. However, as seen in (Figs. 4-8), the natural frequencies in the (n, n ± 2) modes show

discrepancies (1-5 Hz) between the two methods. The figures also show differences in the natural

frequencies when the rotary inertia is accounted for and when it is not. The results indicate large

Table 2 Structural properties of the sandwich plates (ν = 0.17)

Plate No.

Ef

(bending modulus 
of inertia)
[kg/mm2]

Gc

(shear modulus
of inertia)
[kg/mm2]

ρ (density) [kg/mm3]

ρuf

(top face)
ρlf

(bottom face)
ρc

(core)

1 151.8 3.179 1.446E-6 1.446E-6 7.5E-8

2 266.6 4.342 1.665E-6 1.408E-6 9.0E-8

3 182.4 3.164 2.526E-6 2.526E-6 7.5E-8

4 383.6 3.168 1.665E-6 1.341E-6 7.5E-8

5 343.1 3.325 1.665E-6 1.341E-6 7.5E-8

Table 1 Dimensions of the sandwich plates

Plate No. Application
a (width)

[mm]
b (height)

[mm]

Thickness [mm]

Tuf Tlf Tc

1 BHD 1500 1000 3.5 2.6 49.9

2 Cross Structure 1500 1000 4.6 3.6 39.8

3 Super Structure 1500 1000 3.2 2.8 39.0

4 Wheel House 1500 1000 3.3 2.3 18.9

5 Main Deck 1500 1000 2.5 1.8 20.7

Fig. 4 Natural frequency results for plate 1 Fig. 5 Natural frequency results for plate 2
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differences between the analysis considering shear deformation alone and the analysis where both

shear deformation and rotary inertia are accounted for. It is inferred that the differences result from

a rotary inertia term, ρl*, that is two orders of magnitude higher than the vertical inertia term, ρh*.

Taking into account the density of the core does not alter the location of the centroid, which is the

center of the bending moment, but it moves the center of the moment of inertia slightly towards the

top face. In addition, for the cases that ignore the core density, both ρh* and ρl* decrease, resulting

Fig. 6 Natural frequency results for plate 3 Fig. 7 Natural frequency results for plate 4

Fig. 8 Natural frequency results for plate 5

Table 3 Dependence of natural frequencies on the core density

Plate No.
Thickness [mm] Core density included Core density ignored

Tuf Tlf Tc (ρh*) (ρl*) (1,1) mode (ρh*) (ρl*) (1,1) mode

1 3.5 2.6 49.9 0.12E-4 0.68E-2 156.7 0.88E-5 0.60E-2 167.2

2 4.6 3.6 39.8 0.16E-4 0.64E-2 171.2 0.12E-5 0.58E-2 178.9

3 3.2 2.8 39.0 0.17E-4 0.67E-2 139.4 0.14E-5 0.63E-2 143.6

4 3.3 2.3 18.9 0.99E-4 0.99E-2 252.9 0.85E-5 0.93E-2 260.4

5 2.5 1.8 20.7 0.81E-4 0.86E-2 287.1 0.65E-5 0.80E-2 299.1
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in natural frequencies that are 4-12 Hz higher than those that includes the core density. The

differences become larger for higher modes. The results are listed in (Table 3) and shown in

(Figs. 9-13).

The influence of altering the thickness of the faces and the core was investigated as follows: The

natural frequencies were determined for faces that had 10-190% of the baseline thickness, with 5%

increments. The results show higher natural frequencies for thinner faces. In other words, when the

thickness of the high-density face was reduced, the influence of the decreased flexural rigidity was

lesser than that of the decreased inertia due to the reduction in the mass. In the same way, the

natural frequencies for the core that had 10-100% of the baseline thickness were calculated at 1%

increments. Comparing the results of varying the core thickness with that of varying face thickness

shows that the core thickness change shows lesser difference in ρh* and much larger differences in

ρl*. In addition, it is observed that, although a reduction in the core thickness results in a smaller

shear deformation term (khG)*, the increment in the natural frequency is influenced more by the

Fig. 9 Difference of natural frequency as core
density consideration for plate 1

Fig. 10 Difference of natural frequency as core
density consideration for plate 2

Fig. 11 Difference of natural frequency as core
density consideration for plate 3

Fig. 12 Difference of natural frequency as core
density consideration for plate 4
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Fig. 13 Difference of natural frequency as core density consideration for plate 5

Fig. 15 Variation of natural frequency as core
thickness reduction for plate 2 

Fig. 14 Variation of natural frequency as core
thickness reduction for plate 1 

Fig. 16 Variation of natural frequency as core
thickness reduction for plate 3 

Fig. 17 Variation of natural frequency as core
thickness reduction for plate 4 



A study on transverse vibration characteristics of a sandwich plate with asymmetrical faces 513

Fig. 18 Variation of natural frequency as core
thickness reduction for plate 5 

Fig. 19 Variation of natural frequency as face
thickness reduction for plate 1 

Fig. 20 Variation of natural frequency as face
thickness reduction for plate 2 

Fig. 21 Variation of natural frequency as face
thickness reduction for plate 3 

Fig. 22 Variation of natural frequency as face
thickness reduction for plate 4 

Fig. 23 Variation of natural frequency as face
thickness reduction for plate 5
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reduction in the moment of inertia. Thus, the main causes for the increased natural frequencies are

the reduction in the vertical inertia for thinner faces and the reduction in the rotary inertia for

thinner cores. 

6. Conclusions

In this study, the vibration characteristics of a rectangular sandwich plate with isotropic,

asymmetric faces and core were analyzed. The differences between the natural frequencies obtained

with and without rotary inertia were very large. The natural frequency calculated without

considering the core density became higher because of the reduced vertical and rotary inertias. The

vertical inertia was the primary factor that determined the natural frequency for different thicknesses

of the faces, while it was the rotary inertia that mainly affected the natural frequency for different

core thicknesses. 

In the future, detailed studies should include the damping of the core and the faces and research

on anisotropic laminated composite plates should be conducted in detail.
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