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Abstract. This paper presents an improved 8-node shell element for the analysis of plates and shells.
The finite element, based on a refined first-order shear deformation theory, is further improved by the
combined use of assumed natural strain method. We analyze the influence of the shell element with the
different patterns of sampling points for interpolating different components of strains. Using the assumed
natural strain method with proper interpolation functions, the present shell element generates neither
membrane nor shear locking behavior even when full integration is used in the formulation. Further, a
refined first-order shear deformation theory, which results in parabolic through-thickness distribution of the
transverse shear strains from the formulation based on the third-order shear deformation theory, is
proposed. This formulation eliminates the need for shear correction factors in the first-order theory.
Numerical examples demonstrate that the present element perform better in comparison with other shell
elements. 

Keywords: enhanced membrane and shear interpolation; locking behavior; full integration; refined first-
order shear deformation theory; plates and shells

 

1. Introduction

 

As commonly accepted, two kinds of locking phenomena may occur in curved shear flexible

bending element, namely shear and membrane lockings. While the shear locking may occur in both

flat and curved shear-flexible bending element, the membrane locking occurs only in curved shell

element. The classic 8-node isoparametric serendipity shell elements suffer shear locking when the

thickness of the shell becomes too small. To avoid this phenomenon, some techniques of reduced/

selective integrations have been proposed, Unfortunately, spurious zero-energy kinematic modes

may occur and disturb the finite element response in a mesh. 

To design an improved 8-node quadrilateral shell element, a standard procedure can be employed
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to obtain the bending stiffness matrix. Special treatments are needed to evaluate the in-plane normal,

the in-plane shear and the transverse shear strains. By a so-called “assumed strain method”, the

strain-displacement compatibility is fixed at discrete points leading to a surprisingly accurate results.

Bathe and Dvorkin (1986) proposed an eight-node shell element, named as MITC8, being free of

membrane and shear locking. The strain tensor was expressed in terms of the covariant components

and contravariant base vectors. The performance of this element was quite satisfactory and

performed reasonably well in complex shell structures. Bucalem and Bathe (1993) have improved

previous studies on the MITC8 shell elements (1986) and concluded that while it performed quite

effectively, in certain cases the element exhibited very stiff behavior. Thus its improvement is

warranted. 

The 8-node shell element developed by Hinton and Huang (1986) passed relevant tests but its

accuracy appeared to be inferior to the 9-node quadrilateral element. Lakshminarayana and Kailash

(1989) used appropriately chosen interpolation functions based on Hinton and Huang’s concept to

derive a locking-free 8-node shell element. 

Ma and Kanok-Nukulchai (1989) developed a 9-node assumed strain shell element based on the

desirable displacement concept. Then Han et al. (2004, 2008) applied the same concept to develop a

special shell element for laminated composite shells. In order to eliminate both the shear locking

and membrane locking, the assumed strain method developed by Ma and Kanok-Nukulchai (1989)

for the 9-node shell element was applied to the natural coordinate. Kim and Park (2002) and Kim et

al. (2003) presented an 8-node shell finite element. In 8-node shell element, the persistence of

locking problems was found to continue through numerical experiments on the standard test

problem of MacNeal and Harder (1985).

 So far a great number of 9-node shell elements show excellent performance (Bathe et al. 2003,

Li et al. 2008, Wu et al. 2008) while only few 8-node shell elements perform reasonably. Although

other works deal mostly with the 9-node Lagrangian quadrilateral element, it is not considered in

this study as its internal node tends to cause problems in engineering practice. 

 The aim of this paper is to propose an improvement of the curved quadrilateral 8-node shell

finite element, based on a refined higher-order shear deformation theory. In this new element, a new

combination of sampling points for the assumed strain is proposed. The proposed shell element will

also consider parabolic through-thickness distribution of the transverse shear stresses and strains

based on simple corrections to the first-order theory proposed by Tanov and Tabiei (2000). The

implementation was shown to be quite simple and straightforward (Han et al. 2008).

 Finally, in order to validate the present shell element model, numerical examples are investigated

and the results compared with other solutions in the literature. 

 

 

 2. Modified first-order shear deformation theory

 

The geometry of an 8-noded shell element with six degrees of freedom is shown in Fig. 1. 

The higher-order shear deformation theory to be adopted in this study is based on the assumption

that the originally straight normal to the mid surface can deform into a cubic-order function with

respect to the thickness coordinate. Thus, we start with the third-order kinematic fields as follows

 

(1) 
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and

 (2)

where P denotes the position vector of a generic point in the shell element;  and  are the

position vector of a point in the mid-surface and a normal vector to the mid-surface;  and  are

the translational displacement vector and the fiber displacement vector respectively of a point in the

mid-surface; Φ, Ψ and ϕ, ψ are the corresponding higher order terms in  and 

respectively.

It should be noted that the Green strain tensor and the natural strain have the following tensor

transformation relationship

  

 

 

 (3)

 

By substituting Eq. (1) and Eq. (2) into Eq. (3), and remove the nonlinear terms, one can obtain 

 

 (4)

 

P V

u e

P ξi( ) u ξi( )

 

 

 Fig. 1 Geometry of 8-node shell element with six degrees of freedom
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The in-plane strains with the exception of the  terms can represent the through thickness

distribution with sufficient accuracy. Neglecting the higher-order terms in the general expression of

the in-plane strains will result in identical form to the in-plane strain expressions based on the first-

order theory. Then the transverse natural shear stains can be obtained as

 

 (5)

In view of the vanishing of the transverse natural shear stress at the top and bottom shell surfaces,

i.e., , and the corresponding natural shear strains, the position vector, Eq. (1),

and the displacement vector, Eq. (2) can be simplified into

 

 (6)

 

(7)

 

By substituting Eq. (6) and Eq. (7) into Eq. (5), the transverse natural shear strains can obtain 

 

(8)

 

The transverse natural shear strains in Eq. (8) are identical to those in the first-order shear

deformation theory if the  term is excluded. Accordingly, the combination of the transverse

natural shear strains in the first-order shear deformation theory and Eq. (8) results in a parabolic

through-thickness distribution for the transverse natural shear strains and satisfies the zero transverse

shear stress requirement at the shell surfaces. Thus, it eliminates the need for the shear correction

factors in the first-order theory. Finally, the ratio, hξ of effective transverse shear energy Us to the

average transverse shear energy  can be determined. In this paper, we present, in brief, the more

general case of multilayer laminated composite plates where stresses are not continuous across the

inter-lamina boundaries.

 Assume that the effective magnitudes of transverse shear stress and shear strains are denoted as

and , respectively, the actual transverse shear stress and strain through the thickness are

expressed accordingly as

 

 (9a)

 

(9b)

where  and  are distribution shape function of transverse shear stress and strain,
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respectively (Qi et al. 1996). For isotropic plates and shells,  and  take a special

parabolic form.

The transverse shear energy Us through the thickness is expressed as

(10)

 

On the other hand, the transverse shear strain energy can also be expressed in terms of the

average shear strain. Namely

 

 (11)

 

Equating these two transverse shear strain energy expressions ( ) and solving for the

nominal uniform transverse shear strain  give

 

(12)

 

Alternatively, the ratio of transverse shear strain effective magnitude  to the nominal uniform

shear strain  is 

 

 (13)

 

The refined first-order shear deformation theory can then be presented as a function of 

and hξ factorizing the transverse shear strains in the first-order shear deformation theory as follows

 

 (14)

 

With the displacement fields and stress-strain relationships defined as above, the membrane and

shear forces and bending moments can be evaluated from the constitutive equations. For single

layer plates and shells, these equations are quite straightforward. The membrane forces, the bending

moments and the transverse shear forces can be obtained by integrating the relevant stresses through

the thickness using the equivalent constitutive equations 

 

 (15)

where  and .

The matrix sizes of the membrane-bending rigidity Dmb and shear strain rigidity Ds are 6 × 6 and

2 × 2 respectively. They can be evaluated as follows

 

(16)

where C1 is the elastic constitutive coefficient, and
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(17)

 

When the entire cross section is homogeneous, the rigidity matrix reduces to the following form

 

 (18)

where C1 and C2 are the elastic constitutive coefficients of the membrane-bending and the

transverse shear components.

 

 

3. Various enhanced strain interpolation patterns 

 

The 8-node shell elements have been studied in various papers (Hinton and Huang 1986,

Lakshinarayanan et al. 1989, Macneal and Harder 1992, Bucalem and Bathe 1993, Kim et al. 2002,

2003). For the new efficient 8-node shell element, the usual 8-nodes of Lagrangian displacement

interpolations are employed and the various combinations of assumed natural strain interpolation

functions are used. Fig. 2 lists various patterns of sampling points that can be employed for

membrane, in-plane shear and transverse shear strain interpolations for the new 8-node shell

element. Based on Fig. 2, the α pattern is used for membrane (αδβ and αδγ) and the β pattern is

used for membrane (βδγ) as well as transverse shear (αδβ). The δ pattern and γ pattern are used for

in-plane and transverse shear, respectively.

The interpolation functions by Huang (1989) are used in the γ pattern. The three cases of the

combinations of various sampling points are used in the analysis.

 

 

 4. Equilibrium equation

 

Using virtual work principle, the following equilibrium equation is obtained based on the

membrane, bending and transverse shear resultant forces as follows 

 

 (19)

where  are membrane, bending and transverse shear strain components and f is the

body force.

If we consider only the linear component in Eq. (19), the linear stiffness matrix can be evaluated

as KL (Han et al. 2004). 

The element stiffness matrix may be written in a matrix form using the equivalent constitutive

equations. Finally the element stiffness matrix has 6 × 6 size on the reference-surface of shell

element. The torsional stiffness term was formed as described by Kanok-Nukulchai (1979) and

added to the stiffness term.
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5. Torsional effect

 

In this study, based on the procedure proposed by Kanok-Nukulchai (1979), the drilling degree of

freedom will be tied to the in-plane twist by a penalty functional through an additional artificial

strain energy as

 (20)

where kt is a parameter to be determined (the value of 0.1 suggested); G is the shear modulus; Ve is

the volume of the element; and dV is the volume element. After integration throughout the

thickness, Eq. (20) can be written as

 (21)

 

 

 Fig. 2 Four possible pattern of sampling points for 8-node ANS shell element
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If ktGh is chosen to be large relative to the factor  (which appears in the bending energy),

Eq. (21) will play the role of penalty function and result in the desired constraint

 (22)

at the Gauss points. A two-by-two Gauss integration scheme is applied for the evaluation of the

torsional stiffness in order to avoid the over-constrained situation. To derive a torsional stiffness

from Eq. (21) the local variables are expressed in terms of global nodal variables, u, by shape

functions. This gives Eq. (21) in the form (Kanok-Nukulchai 1979)

 (23)

The torsional stiffness term  is added as described by Kanok-Nukulchai (1979).

 

6. Numerical results of the 8-node shell element 

Several numerical examples are solved to test the performance of the shell element in linear

applications. The patch test, distortion test and other various numerical tests of the present shell

elements are carried out and validated using FEAP program (Zienkiewicz and Taylor 1989, 2000).

The present shell element shows excellent performance in agreement with references. Several

examples demonstrate the efficiency and accuracy of the present shell element. Note that most of

the results presented here are normalized with the reference solution.

6.1 Patch test

In the study the basic patch tests proposed by Simo et al. (1989) were performed and the results

illustrated in Fig. 3. A patch of five elements is used is this study. Boundary and loading conditions

Eh
3

 

Ut u
T
KtLu=

KtL

Table 1 List of shell elements used for comparison

Name DESCRIPTION (Patterns referred to Fig. 2)

Present
(αδβ)

Sampling points for membrane (Pattern α), in-plane shear (Pattern δ) and transverse 
shear (Pattern β). 

Present
(αδγ)

Sampling points for membrane (Pattern α), in-plane shear (Pattern δ) and transverse 
shear (Pattern γ). 

Present
(βδγ)

Sampling points for membrane (Pattern β), in-plane shear (Pattern δ) and transverse 
shear (Pattern γ).

QUAD8 8-node shell element(Selective Integration) (MacNeal and Harder 1989) 

QUAD8* 8-node shell element (STRAND 7 2000)

QUAD8** 8-node ANS shell element (Lakshminarayana and Kailash 1989)

XSHELL41 4-node quasi-conforming shell element (Kim et al. 2003) 

XSHELL-8-ANS 8-node assumed natural strain shell element (XFINAS 2008)

MITC8 8-node shell element using a mixed interpolation of tensorial components (Bathe and 
Dvorkin 1986)



A refined finite element for first-order plate and shell analysis 199

Fig. 3 Mesh for patch test (Simo et al. 1989). Length of the square L = 10; Young’s modulus E = 1.0 × 107;
Posson’s ratio ν = 0.3; and thickness h = 1.0

Fig. 4 Boundary displacement conditions for patch tests
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are illustrated in Figs. 4 and 5, respectively. Tables 2-4 present the normalized solutions of nodal

displacements on the right edges. The normalized solutions are presented in the non-dimensional

form using the equation

Normalized solution = (24)
Present solution

Reference solution
---------------------------------------------

Fig. 5 Loading conditions for patch tests

Table 2 Results of patch test under Bending (Reference solution : θy = ML/EI = 0.12 × 10−4)

Combinations of Various Sampling Points αδβ αδγ βδγ

Normalized Solutions 1.000 1.000 1.000

Table 3 Results of patch test under out-of-plane shear (Reference solution : w = 6SL/5GA = 0.312 × 10−5)

Combinations of Various Sampling Points αδβ αδγ βδγ

Normalized Solutions 0.053 0.989 0.989

Table 4 Results of patch test under in-plane tension (Reference solution : u = TL/EA = 1.0 × 10−6)

Combinations of Various Sampling Points αδβ αδγ βδγ

Normalized Solutions 1.000 0.965 0.992
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Patch test results indicate that various sampling points for assumed natural strain method in Tables

2-4 can represent fields of constant moment, constant in-plane tension, transverse shear forces. The

present shell element can pass the patch test when patterns αδγ and βδγ are used in all cases, and

pass the patch test approximately when pattern αδβ is used in pure transverse shear case. Therefore,

we found that it is very important to apply the best combination of sampling points for 8-node shell

elements. 

6.2 Cantilever beam problem

6.2.1 Straight beam problem

MacNeal and Harder (1985) suggested three separate cantilever beam tests that evaluate

sensitivity to various deformation patterns and distortions of the element geometry, i.e., a) a straight

beam, b) a curved beam and c) a twisted beam. Descriptions of the straight, curved and twisted

beam problems are provided in Figs. 6-8. Normalized tip displacements in direction of load are

presented in Tables 5-20. Reference solutions (MacNeal and Harder 1985) are also given in Tables

5-20. 

The straight cantilever beam is a frequently used test problem which can be modeled as beam,

plate, and solid elements. Its virtues are its simplicity and the fact that all of the principal element

deformation modes described earlier can be evoked by loads applied to the free end, including

extension, in-plane shearing, out-of-plane shearing and twisting. In this study, irregular elements

shapes are added to test the accuracy of shell elements.

a) Rectangular elements 

Fig. 6 Straight beam problem 

Table 5 Results of straight beam (h = 0.1) under extension  (Reference solution : u = 3.0 × 10−5)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.998 0.998 0.998 0.999 0.998

Table 6 Results of straight beam (h = 0.1) under in-plane shear (Reference solution : v = 0.1081)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.986 0.986 0.986 0.987 0.985
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b) Trapezoidal elements

c) Parallelogram elements

Table 7 Results of straight beam (h = 0.1) under out-of-plane shear (Reference solution : w = 0.4321)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.990 0.994 0.994 0.991 0.996

Table 8 Results of straight beam (h = 0.1) under twist shear (Reference solution : θx = 0.03208)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.946 0.945 0.945 0.950 0.944

Table 9 Results of straight beam (h = 0.1) under extension (Reference solution : u = 3.0 × 10−5)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.998 0.969 0.971 0.999 0.998

Table 10 Results of straight beam (h = 0.1) under in-plane shear (Reference solution : v = 0.1081)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.896 0.893 0.890 0.946 0.906

Table 11 Results of straight beam (h = 0.1) under out-of-plane shear (Reference solution : w = 0.4321)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 fail 0.993 0.993 0.998 0.995

Table 12 Results of straight beam (h = 0.1) under twist shear (Reference solution : θx = 0.03208)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 fail 0.941 0.941 0.887* 0.944

*MacNeal and Harder (1992)

Table 13 Results of straight beam (h = 0.1) under extension (Reference solution : u = 3.0 × 10−5)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.998 0.999 1.000 0.999 0.998
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Good performance of the present element is observed in all cases except the case of αδβ under

out-of-plane and twist shear with irregular elements. Thus, the β pattern does not seem to be

suitable for the transverse shear strains because of the locking phenomenon of straight beams under

out-of-plane and twist shear.

6.2.2 Curved beam problem

In the curved cantilever beam, combination of the principal deformation modes is evoked by a

single in-plane or an out-of-plane shear load at the free end. Note also that the element shape is

quite rectangular, which will test the effect of slight irregularity. MacNeal and Harder (1985)

suggested a reference solution of 0.08734 as a theoretical displacement at the loading point. A

different solution of 0.08854 was given by Young (1989).

Table 14 Results of straight beam (h = 0.1) under in-plane shear (Reference solution : v = 0.1081)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.979 0.988 0.984 0.995 0.965

Table 15 Results of straight beam (h = 0.1) under out-of-plane shear (Reference solution : w = 0.4321)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 fail 0.993 0.993 0.985 0.991

Table 16 Results of straight beam (h = 0.1) under twist shear (Reference solution : θx = 0.03208)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 fail 0.945 0.945 0.965 0.891

Fig. 7 Curved cantilever beam 
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Results presented in Tables 17-18 show the outstanding performance of the proposed element.

6.2.3 Twisted beam problem

The twisted beam problem (shown in Fig. 8), which was introduced by MacNeal and Harder

(1985), was proposed to test the effect of element warping. The performance of elements of

thickness (0.32) was investigated under in-plane and out-of-plane shear loads. The warp of each

element is 15o. Numerical results in Tables 19-20 are listed with displacements of free end

normalized to the reference solution. Reference solutions (MacNeal and Harder 1985) are also given

in Tables 19-20.

Table 17 Results of curved beam (h = 0.1) under in-plane shear (Reference solutiona : v = 0.08854)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8* QUAD8**

6 × 1 0.991 0.991 0.991 0.869 0.942

aFrom (Young 1989)

Table 18 Results of curved beam (h = 0.1) under out-of-plane shear (Reference solutiona : w = 0.5022)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8* QUAD8**

6 × 1 0.970 0.970 0.970 0.958 0.962

aFrom (MacNeal and Harder 1985)

Fig. 8 Twisted cantilever beam

Table 19 Results of twisted beam (h = 0.32) under in-plane shear (Reference solution : v = 5.424 × 10−3)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.988 0.996 0.997 0.998 (12 × 2) 0.998 (12 × 2)
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Results are presented in Tables 19-20, showing more correct results in spite of (6 × 1) mesh.

6.3 Bending of rhombic plate

A simply supported rhombic plate in Fig. 9 is subjected to a uniformly distributed load. This is

rather a challenging test due to the singularity of its solution at the obtuse vertices. The numerical

results for the center deflection are presented in Table 21 with those from several existing elements.

The reference solution was uC = 0.04640 proposed by Andelfinger and Ramm (1993). 

Very good results are obtained with the present element as well as the QUAD8** element.

6.4 Bending of rectangular plate

The simply supported and clamped rectangular plate problem under uniform and central point

loading is applied to test shear locking by changing of aspect ratios. Two aspect ratios of b/a = 1

and 5 were considered, and a quarter was modeled due to symmetry. To test the general

applicability, the plate is analyzed using both a rectangular mesh and a distorted mesh. Reference

solutions (MacNeal and Harder 1985) are given in Tables 22-27.

Table 20 Results of twisted beam (h = 0.32) under out-of-plane shear (Reference solution : u = 1.754 × 10−3)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

6 × 1 0.995 1.000 1.001 0.998 (12 × 2) 0.998 (12 × 2)

Fig. 9 Rhombic plate under uniform pressure

Table 21 Results of rhombic plate (wC = 0.04640)

Element
Size

Normalized Solutions

αδβ αδγ βδγ XSHELL-8-ANS QUAD8**

4 × 4 0.519 0.838 0.838 0.519 0.440

8 × 8 0.745 0.886 0.886 0.745 0.710

16 × 16 0.874 0.947 0.947 0.874 0.873 (12 × 12)
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6.4.1 Rectangular mesh

(a) For the case of b/a = 1.0

The reference vertical deflection at the center of the simply supported plate under uniform load is

4.062 and the clamped plate under concentrated load is 5.60. In Tables 22 and 23, the numerical

results obtained by using different types of existing elements are listed.

(b) For the case of b/a = 5.0

The reference deflection at the center of the simply supported plate under uniform load is 12.97

and the clamped plate under concentrated load is 7.23. In Tables 24 and 25, the numerical results

obtained by using different types of elements are listed.

Fig. 10 Simply supported and clamped rectangular plate 

(1) Simply supported plate – Uniform load

(2) Clamped plate – Concentrated load

Table 22 Results of rectangular plate (b/a = 1.0; Reference solution : wC = 4.062)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

4 × 4 Locking 1.009 1.009 1.000 1.016

Table 23 Results of rectangular plate (b/a = 1.0; Reference solution : wC = 5.60)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

4 × 4 0.123 1.057 1.057 0.997 1.090
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Locking problems occurred when the β pattern is applied to transverse shear strain in thin plates.

This particular example shows the limit of 8-node shell element for the application of β pattern.

Because other cases still have the errors, a specifically designed application must be developed in

order to remove these errors in the present shell element.

6.4.2 Distorted mesh

(a) For the case of b/a = 1.0

To test the general applicability of the present formulation for bending, a thin square plate, L/h =

20000 is analyzed using both a rectangular mesh and a distorted mesh. A clamped boundary

condition is chosen because it is considered to be more severe compared to simple supports. Two

types of loading are considered, concentrated load and distributed load. Geometry and material

(1) Simply supported plate – Uniform load

(2) Clamped plate – Concentrated load

Table 24 Results of rectangular plate (b/a = 5.0; Reference solution : wC = 12.97)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

4 × 4 Locking 1.009 1.009 1.000 1.010

Table 25 Results of rectangular plate (b/a = 5.0; Reference solution : wC = 7.23)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

4 × 4 0.129 0.845 0.845 0.975 0.867

8 × 4 Locking 1.029 1.029 - -

Fig. 11 Distorted mesh of simply supported and clamped rectangular plate
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properties are provided in Fig. 11. A four by four mesh is used on one quarter of the plate. The

results are compared in Tables 26 and 27 with those provided by Timoshenko and Woinowsky-

Krieger (1959). The accuracy of the results obtained in both cases is maintained and compared with

Choi et al. (1999) and Kim et al. (2003).

The reference vertical deflection at the center of the plate is the simply supported plate under

uniform load is 4.062 and the clamped plate under concentrated load is 5.60. In Tables 26 and 27,

the numerical results obtained by using different types of existing elements are listed.

The case of βδγ is compared for the test of distorted mesh. It is also found that the locking

phenomenon does not happen and the solutions with rectangular mesh are of similar accuracy. 

6.5 Pinched hemispherical shell

The problem consists of a hemispherical shell with two inward and two outward forces that are

90o apart. There are two issues that are crucial for an element to yield good results in this problem.

Firstly, an inextensional-bending mode must be allowed; and secondly, rigid-body motion must be

well expressed. Two versions of this problem were considered: hemispherical shell with 18o hole

and full hemispherical shell.

(1) Simply supported plate – Uniform and Concentrated load at center

(2) Clamped plate – Uniform and Concentrated load at center

Table 26 Results of Simply supported Plate with Rectangular and Distorted meshes (Reference solutions :
wC = 4.062 and 11.60)

Mesh types Element
Uniform Load
(wC = 4.062)

Concentrated Load
(wC = 11.60)

Rectangular mesh βδγ 1.009 1.022

Distorted mesh βδγ 1.010 1.016

Table 27 Results of Clamped Plate with Rectangular and Distorted meshes (Reference solutions : wC = 1.2637
and 5.60)

Mesh types Elements
Uniform Load
(wC = 1.2637)

Concentrated Load
(wC = 5.60)

Rectangular mesh

Choi et al. (1999)* 0.965 0.990

XSHELL41 0.997 0.992

βδγ 1.052 1.057

Distorted mesh

Choi et al. (1999)* 0.976 1.011

XSHELL41 1.023 0.995

βδγ 1.049 1.039

*Results of Choi et al. (1999) and XSHELL41 are referenced from Kim et al. (2003).
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For this problem, the reference deflection at point A in the x-direction is 0.093 (Simo et al. 1989).

The geometry and material properties are shown in Fig. 12. The numerical results are given in

Table 28.

We see that the results obtained by our elements are more accurate than the solution by the

QUAD8** element. Note that the error of 8 × 8 mesh for the QUAD8 element is > 10%.

(b) Full hemispherical shell

Meshes for full hemispherical shell are highly skewed if few elements are used. In the present

study, a quarter of the shell was divided into three equal parts, each of which was then modeled

with the same element layout. The geometry and the material properties are shown in Fig. 13, while

the numerical results are presented in Table 29. The reference deflection at point A in the x-

direction is 0.0924 (Simo et al. 1989).

Fig. 12 Definition of loading points and initial configuration of hemispherical shell 

Table 28 Results of hemispherical shell with 18× hole (uA = 0.093)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8 QUAD8**

4 × 4 0.450 0.535 0.542 0.832 0.387

6 × 6 0.872 0.914 0.915 1.003 0.773

8 × 8 0.967 0.984 0.984 C* 0.950

*The grade C means that the QUAD8 gives accuracy 20% > error > 10%. 
(MacNeal and Harder 1985) 
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We see that our elements are more accurate than the reference element XSHELL-8-ANS. It was

also found that the solutions with QUAD8* are of similar accuracy.

6.6 Scordelis-Lo roof problem

Both membrane and bending deformations are important for the solution of the Scordelis-Lo roof

problem shown in Fig. 14. This problem can be used to determine the capability of the element in

modeling membrane states in curved shells. This type of the problem was proposed by MacNeal

and Harder (1985), who suggested a reference solution 0.3024 for the displacement at the point A.

A different ‘deep shell solution’ of 0.3008 was given by Saleeb et al. (1987). Because of symmetry,

only one quarter of the problem is modeled.

For this problem, the present element is clearly superior to the others in the comparison.

Fig. 13 Pinched full hemispherical shell

Table 29 Results of Full Hemispherical Shell (uA = 0.0924)

Nodes per Side
Normalized Solutions

αδβ αδγ βδγ XSHELL-8-ANS QUAD8*

9 0.370 0.462 0.464 0.373 0.519

17 0.934 0.963 0.963 0.934 0.938
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7. Conclusions

The main focus of this paper is to investigate on the performance of different patterns of sampling

points for interpolating different components of shell strains. The 8-node ANS shell element using

the sampling points earlier proposed (Bathe 1986, Lakshminarayana 1989, Bathe 1993, Kim 2003)

is clearly a powerful element and has shown good convergence behavior in many problem

solutions. However, previous works done in the area of ANS shell element neither showed the

optimum combination of sampling points with an excellent accuracy nor removed the locking

phenomenon. 

It was found that the application of β pattern in transverse shear strain is the reason of the locking

phenomenon in the analysis of straight beam using irregular mesh and thin plate. Thus, the

limitation of application of the β pattern for the 8-node shell element is clearly revealed.

In order to improve the 8-node ANS shell element, based on a refined first-order shear

deformation theory, a new combination of patterns of sampling points is adopted to analysis of

plates and shells. The total strains are split into several components, and the suitable sampling point

patterns are found for each component. A new combination of sampling point patterns (βδγ) for the

in-plane normal, in-plane shear and transverse shear strain components can produce significantly

better results while completely remove both membrane and shear locking even when full integration

is used in the formulation. Optimality in the convergence behavior is retained and all strain

components are predicted with reasonable accuracy. 

Fig. 14 Scodelis-Lo roof problem

Table 30 Results of Scordelis-Lo roof (wA = 0.3008)

Element
Size

Normalized Solutions

αδβ αδγ βδγ QUAD8* QUAD8**

2 × 2 0.744 0.873 0.873 - 0.879

4 × 4 0.995 1.001 1.001 0.915 (5 × 5) 0.981

8 × 8 1.000 1.001 1.001 1.000 (9 × 9) 0.984 (6 × 6)
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The present combination of patterns of sampling points (βδγ) could be easily implemented into

finite element code and used for the practical purpose. Future work will be useful to extend this

work to dynamic analysis of isotropic and laminated composite shell structures.
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