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Abstract. Closed form solutions for equilibrium and flexibility matrices of the Mindlin-Reissner theory
based eight-node rectangular plate bending element (MRP8) using Integrated Force Method (IFM) are
presented in this paper. Though these closed form solutions of equilibrium and flexibility matrices are
applicable to plate bending problems with square/rectangular boundaries, they reduce the computational
time significantly and give more exact solutions. Presented closed form solutions are validated by solving
large number of standard square/rectangular plate bending benchmark problems for deflections and
moments and the results are compared with those of similar displacement-based eight-node quadrilateral
plate bending elements available in the literature. The results are also compared with the exact solutions.
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rectangular plate element

1. Introduction

Square/rectangular plate bending elements are used to solve thin or moderately thick plate bending

problems with orthogonal boundaries. Though applications of these elements are limited in practice,

closed form solutions of equilibrium and flexibility matrices of such elements produce, in general,

more accurate results and in considerably less time compare to those obtained using numerical

methods. In this paper closed form solutions for equilibrium and flexibility matrices of 8-node

(MRP8) rectangular plate bending element using Integrated Force Method are presented. The

Mindlin-Reissner plate theory has been employed in the formulation as it accounts the effect of

shear deformation and the same model can be used for the analysis of both thin and moderately
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thick plate bending problems.

The Integrated Force Method (IFM) is a new novel matrix formulation developed by Patnaik

(1973) for the analysis of civil, mechanical and aerospace engineering structures. In this method all

internal forces of the structure are treated as unknown variables and which are computed by

simultaneously imposing equilibrium equations and compatibility conditions. The IFM is

independent of redundant forces and the basic determinate structure. While analyzing the structural

mechanics problems, in general, equilibrium equations and compatibility conditions are to be

satisfied in addition to the constitutive relations which describe the material behavior. The IFM

integrates the system equilibrium equations and the global compatibility conditions in a fashion

paralleling approaches in continuum mechanics (example, the Beltrami - Michel formulation of

elasticity (Love 1944)). The IFM provides a natural way of integrating the equilibrium equations

and the compatibility conditions while performing structural analysis. IFM is based on variational

principle (Patnaik 1986) and its stationary condition of the functional yields the equilibrium

equations, compatibility and natural boundary conditions. The Mindlin-Reissner theory based

bilinear plate bending element using Integrated Force Method is reported by Dhananjaya et al.

(2007).

Extensive research efforts are spent on modeling the behavior of the elements and later deriving

the matrices which represent their characteristic behavior in the finite element method of analysis.

The various matrices are formed with interpolation functions for displacement and sometimes force

distribution within or on the boundary of the element. Later on algebraic manipulations, including

differentiation and integration, are performed on describing the characteristics of the element

stiffness, flexibility and equilibrium matrices. As the number of degrees of freedom of the element

increases, the algebraic manipulations become huge and intractable. Therefore automatic generation

and closed form of these matrices have been attempted by several researchers: Luff et al. (1971),

Gunderson et al. (1971), Cecchi et al. (1977), Noor et al. (1979), Hoa et al. (1980), Chang et al.

(1990), Yew et al. (1995), Eriksson et al. (1999), Nagabhushanam et al. (1992), Closed form of

stiffness matrices for a four node quadrilateral element and commonly used hybrid finite elements

are developed by Griffiths (1994), Lee et al. (1998) and Zhov et al. (2006). Zhou (2002), has

developed the load induced stiffness matrix of a rectangular plate for the finite element method.

Review article on symbolic computations in structural engineering is reported by Pavlovic (2003).

Closed form dynamic stiffness matrix expressions for MITC4 element are reported in the reference:

(Thompson 2003). Rectangular finite element formulation with its applications is given by Oztorun

(2006).

Similar to the development of closed form solutions or automatic generation of stiffness matrices

in the displacement-based finite element method as cited above, the IFM is also in need of

development of closed form solutions of element equilibrium and flexibility matrices, and

compatibility conditions for analyzing civil, mechanical and aerospace engineering structures. In this

direction, Nagabhushanam et al. (1990), developed a general purpose program to generate

compatibility matrix for the Integrated Force Method . Automatic generation of sparse and banded

compatibility matrix using the Integrated Force Method is presented by Nagabhushanam et al.

(1991). Generation of compatibility conditions for elasticity and discrete models have been reported

by Patnaik et al. (2000). Dhananjaya et al. (2008) developed a software for automatic generation of

element equilibrium and flexibility matrices using Integrated Force Method. In the present paper,

IFM has been used to obtain closed form solutions for equilibrium and flexibility matrices of the

Mindlin-Reissner theory based 8-node rectangular plate bending element for the analysis of thin
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(t/L ≤ 0.01, where t = thickness of plate and L = span of plate) and moderately thick (0.01 < t/L ≤
0.2) square/rectangular plate bending problems.

In this paper, closed form solutions for equilibrium and flexibility matrices of 8-node rectangular

plate bending element (MRP8) to analyze the thin/moderately thick plate bending problems using

IFM are presented. The Mindlin-Reissner plate theory has been employed in the formulation which

accounts the effect of shear deformation. Three degrees of freedom namely a transverse

displacement w and two rotations θx , θy are considered at each node of 8-node element as shown

in the Fig. 1. The shear correction factor as suggested by Reissner (1944) has been considered in

the formulation. Suitable displacement and stress-resultants fields are chosen over the element and

the corresponding element equilibrium and flexibility matrices in closed form are obtained by

carrying out exact integration over the square or rectangular plate domain. Large number of

standard square/rectangular plate bending benchmark problems are analyzed for deflections and

moments to study the accuracy and convergence of 8-node element MRP8 using its closed form

solutions of element equilibrium and flexibility matrices. The results obtained by the closed form

solutions are compared with those obtained using displacement-based 8- node quadrilateral plate

bending elements available in the literature (Spilker (1982), commercial software (ANSYS

(version 5.6), NISA (version 9.3)). Results are also compared with the exact solutions. The closed

form solutions presented in this paper, produce excellent results, in general, for both thin and

moderately thick square/rectangular plate bending problems with simply supported/clamped

boundary conditions. 

2. Formulation of element equilibrium and flexibility matrices 

Basic theory of the Integrated Force Method has been given in the appendix A. In this section

brief formulation on the development of equilibrium and flexibility matrices of plate bending

element in closed form is described. The Mindlin-Reissner theory has been employed in the

formulation. In the Mindlin-Reissner theory, a line that is straight and normal to mid-surface of the

Fig. 1 A typical 8 node rectangular plate bending element of dimensions: a × b × t and degrees of freedom
(w, θx, θy) at each node
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un-deformed plate remain straight but not necessarily normal to the mid-surface of the deformed

plate. This leads to the following definition of the displacement components u, v, w in the x, y, z

Cartesian coordinates system

; (1)

where

x, y are coordinates in the reference mid-surface

z is the coordinate through the thickness of the plate t with −t/2 ≤ z ≤ t/2

w is the transverse (lateral) displacement

θx, θy represent the rotations of the normal in x-z and y-z planes (Fig. 1) respectively

Engineering strains for the Mindlin-Reissner plate theory can be written as

(2)

The stress-strain relations for an isotropic two-dimensional plate material is given by

(3)

where  = vector of stress components 
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The stress-resultants for plates can be written as

(4)

Eqs. (2), (3) and (4) yield the moment-curvature relations as

  (5)

Where {M} = vector of stress-resultants

                   

         [C1] = matrix relating stress-resultants to curvatures

         {k} = vector of curvatures

                   

 

From the Eq. (5), the curvature-moment relations can be written as

   (6)

where 

            = matrix relating curvatures to stress-resultants 

The matrix [H] for the Mindlin-Reissner plate with Reissner's shear correction factor (Reissner

1945) of 5/6 can be written as

 (7)

where 

The strain energy Up of the elastic plate in bending and shear is written as 

 (8)
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The vectors {M} and {k} for a discrete plate bending element can be expressed in matrix

notations in terms of assumed stress-resultants and displacement fields respectively as

  (9)

(10)

 where

[ψ] = matrix of polynomial terms for stress-resultant fields

{Fe} = vector of force components of the discrete element

[φ1] = matrix of polynomial terms for displacement fields

                             [φ] = [φ1][A]−1

 [A] = matrix formed by substituting the coordinates of the element nodes into the polynomial of

displacement fields

{α} = coefficients of the displacement field polynomial

{Xe} = vector of displacements of the discrete element

[Dop] = differential operator matrix = 

Substituting Eqs. (9) and (10) into the Eq. (8), the strain energy for the discrete element can be

expressed as

(11)

where [Be] represents the element equilibrium matrix and is given by

(12)

The complementary strain energy for the elastic plate in bending and shear is expressed as

 

 

Using the Eq. (7), the complementary strain energy for the discrete element is written as

(13)
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  (14)

The Eqs. (12) and (14) are used to obtain closed form solutions of equilibrium matrix [Be] and

flexibility matrices [Ge] respectively. Exact integration scheme is used with limits of integration

–a/2 to +a/2 and –b/2 to +b/2, where ‘a’ and ‘b’ are the dimensions of the rectangular plate. These

element equilibrium matrix [Be] and element flexibility matrix [Ge] of all elements are assembled to

obtain the global equilibrium matrix [B] and global flexibility matrix [G] of the structure and they

are used to setup the IFM governing equation to analyze the structure by IFM. 

2.1 Displacement and stress-resultant fields 

In this plate bending element (MRP8), the displacement fields for w, θx and θy are assumed in

terms of generalized coordinates α1, α2 …… α24 and they are given in the Eq. (15)

  (15)

Using independent generalized force parameters F1, F2 ……… F21, stress-resultant fields in

polynomial terms are written as given in the Eq. (16)

(16)

Eqs. (7), (12), (14), (15) and (16) are used to obtain closed form solutions of element equilibrium

and flexibility matrices of eight-node rectangular plate bending element MRP8. These are given in

the Tables 1 and 2 respectively. 

3. Numerical tests and discussions
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solutions are studied with respect to accuracy and convergence. The results are compared with those

of few 8-node displacement-based quadrilateral plate bending elements available in the literature

(Spilker 1982) and in the commercial software (ANSYS (version 5.6), NISA (version 9.3)). The

results of the element MRP8 are also compared with the exact solutions (Timoshenko et al. 1959,

Jane et al. 2000) for thin and moderately thick plates respectively. The example problems

considered here are:
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Table 1 Closed form element equilibrium matrix for 8-node rectangular plate bending element 
(non-zero elements are shown) 
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Table 1 Continuted

 



130 H.R. Dhananjaya, P.C. Pandey, J. Nagabhushanam and Ismail Othamon

Table 1 Continuted
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Table 2 Closed form element flexibility matrix for 8-node rectangular plate bending element (non-zero
elements are shown)
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Table 2 Continued
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Table 2 Continued
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1. A simply supported/clamped square thin plate subjected to uniform load. The parameters of the

problem are : size of the plate = 100 × 100, t = 1, E = 107, ν = 0.3, q = 10 (Spilker 1982)

2. A simply supported rectangular thin plate with the aspect ratio 3 subjected to uniform load. The

parameters of the problem are : L = 300, B = 100, t = 1, E = 107, ν = 0.3, q = 10 (Spilker

1982)

3. A long cantilever plate (Fig. 2. strip plate) subjected to point load at tip or uniform load over

the entire plate. The parameters of the problem are: L = 1000, B = 30, t = 5, E = 2 × 105, ν =

0.0, P = 25, q = 0.01. Here the Poisson’s ratio (ν) is considered to be zero to compare the

results with the beam solution.

4. A simply supported/clamped moderately thick square plate (t/L = 0.1) with uniform load. The

parameters of the problem are : L = 100, B = 100, t = 10, E = 2 × 105, ν = 0.3, q = 10, P = 400.

Fig. 2 Cantilever plate (strip plate) : L = 1000, B = 30, t = 5, E = 2 × 105, ν = 0.0, P = 25, q = 0.01 

Fig. 3 A typical mesh (2 × 2) in one quadrant of the rectangular plate
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Due to symmetry of the plate with respect to geometry, loading and boundary conditions in the

above example problems 1, 2 and 4, one quadrant of the plate is considered for the analysis. The

typical mesh (2 × 2) considered in one quadrant is shown in the Fig. 3. 

Central deflections and moments for the above example problems for various mesh sizes are

obtained using closed form solutions of eight-node rectangular plate bending element MRP8. The

central deflections and moments for a simply supported square plate subjected to uniform load for

various mesh sizes are given in the Tables 3 and 4 respectively. And corresponding converging

Table 3 Normalized central deflection for a simply supported square thin plate with uniform load (Example
problem 1)

Elements  QH1  QH2 QH3 QH4 MRP8

1 × 1 0.956  0.890 0.900 0.835 0.959

2 × 2 1.000  0.985 0.990 0.980 1.005

3 × 3 1.000  0.990 0.990 0.990 1.003

4 × 4 1.000  0.990 0.990 0.990 1.001

Table 4 Normalized central moment for a simply supported square thin plate with uniform load (Example
problem 1)

 Elements QH1  QH2 QH3 QH4 MRP8

1 × 1 0.580  0.560 0.640 0.700  0.361

2 × 2 0.980  1.015 0.965 1.010  0.991

3 × 3 0.990 1.030 0.985 1.006 0.982

4 × 4 0.990 1.020 0.990 1.006 0.992

Fig. 4 Normalized central deflection for a simply supported square thin plate with uniform load
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Fig. 5 Normalized central moment for a simply supported square thin plate with uniform load

  
Table 5 Normalized central deflection for a clamped square thin plate with uniform load (Example problem 1)

 Elements QH1  QH2  QH3 QH4 MRP8

 1 × 1 1.170  0.900 0.990 0.440 1.153

 2 × 2 0.990  0.955 0.940 0.830 0.994

 3 × 3 1.000 0.980 0.985 0.935 1.003

 4 × 4  1.000  0.990 0.990 0.970 1.003

Fig. 6 Normalized central deflection for a clamped square thin plate with uniform load
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trends are depicted in the Figs. 4 and 5 respectively. The Table 5 shows central deflections for a

clamped square plate subjected to uniform load, and Fig. 6 depicts the corresponding converging

trends. The central deflections for a simply supported rectangular plate with aspect ratio 3 subjected

to uniform load are given in the Table 6 and corresponding converging trends are shown in the

Fig. 7. The results are compared with those obtained from displacement-based 8-node quadrilateral

plate bending elements available literature (Spilker 1982). The results are also compared with the

exact solutions (Timoshenko et al. 1959). Tables 3-6 and Figs. 4-7 indicate that closed form

solutions of element equilibrium and flexibility matrices of the eight-node element MRP8 have

produced, in general, better results compare to those of similar displacement based 8-node

quadrilateral plate bending elements considered here. 

Tip deflections, and bending moments at the clamped edge of long cantilever plate (strip plate,

example problem 3) for various grid sizes are summarized in Tables 7-10 and the corresponding

convergence trends are shown in the Figs. 8-11. The results are compared with those obtained from

similar 8-node quadrilateral plate bending elements (ANSYS8 and NISA8) from commercial

software (ANSYS (version 5.6), NISA (version 9.3). The results are also compared with exact

solutions. It is interesting to observe from the Tables 7-10 and Figs. 8-11 that the closed form

Table 6 Normalized central deflection for a simply supported rectangular thin plate with uniform load (L/B =
3, Example problem 2)

Elements  QH1  QH2 QH3 QH4 MRP8

1 × 1 1.020  0.865 0.920 0.890 1.001

2 × 2 1.006  1.075 1.028 0.980 1.005

3 × 3 1.000  1.006 1.008 0.985 1.000

4 × 4 1.000  1.000 1.000 0.990 1.000

Fig. 7 Normalized central deflection for a simply supported rectangular thin plate with uniform load
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Table 7 Tip deflection for a cantilever strip plate with point load at the tip (t/L = 0.005, Example problem 3)

Elements NISA8 ANSYS8  MRP8

2 × 1 133.33  129.72 133.34

4 × 1 133.33  131.25 133.34

8 × 1  133.33  132.20 133.34

16 × 1  133.33  132.73 133.34

32 × 1  133.33  133.00 133.34

64 × 1 133.33  133.33 133.34

Exact = 133.33

Table 8 Moment at the clamped edge for a cantilever strip plate with point load at the tip (t/L = 0.005,
Example problem 3)

Elements NISA8 ANSYS8 MRP8

2 × 1  833.33  833.33 833.33

4 × 1  833.33  833.33 833.33

8 × 1  833.33  833.33 833.33

16 × 1  833.33 833.33 833.33

32 × 1  833.33  833.33 833.33

64 × 1  833.33  833.33 833.33

Exact = 833.33

Table 9 Tip deflection for a cantilever strip plate with uniform load (t/L = 0.005, Example problem 3)

Elements NISA8 ANSYS8 MRP8

2 × 1 600.01  579.23 600.01

4 × 1 600.01  587.61 600.01

8 × 1 600.01  593.23 600.01

16 × 1 600.01  596.40 600.01

32 × 1  600.01  598.01 600.01

Exact = 600.00

Table 10 Moment at the clamped edge for a cantilever strip plate with uniform load (t/L = 0.005, Example
problem 3)

Elements NISA8 ANSYS8 MRP8

2 × 1 4791.67  4791.67 5000.00

4 × 1 4947.90  4947.92 5000.00

8 × 1  4986.96  4987.10 5000.00

16 × 1  4996.75  4996.67 5000.00

32 × 1  4999.17  4999.17 5000.00

Exact = 5000.00
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solutions of element equilibrium and flexibility matrices of MRP8 estimates exact value for both tip

deflections and the moments at the clamped edge for all mesh sizes including least mesh size

(1 × 1) unlike displacement based 8-node quadrilateral plate bending elements considered here

which are converging, in general, to exact values at large number of elements. 

Fig. 8 Tip deflection for a cantilever strip plate with the point load at tip

Fig. 9 Moment at the clamped edge for a cantilever strip plate with the point load at tip
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Tables 11 and 12 summarize the central deflections and moments respectively of a simply

supported moderately thick square plate (t/L = 0.1, example problem 4) for various grid sizes and

the Figs. 12 and 13 show corresponding convergence trends. Similarly Tables 13 and 14 summarize

the central deflections and moments respectively of a clamped moderately thick square plate (t/L =

Fig. 10 Tip deflection for a cantilever strip plate with uniform load

Fig. 11 Moment at clamped edge for a cantilever strip plate with uniform load
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0.1, example problem 4) for various grid sizes and the Figs. 14 and 15 show corresponding

convergence trends. These Tables 11-14 and Figs. 12-15 show that the closed form solutions of

element equilibrium and flexibility matrices of MRP8 estimates central deflections and moments

 

Table 11 Central deflection for a simply supported square moderately thick plate with uniform load Wc (t/L =
0.1, Example problem 4)

Elements NISA8  ANSYS8  MRP8

1 × 1 0.2218 0.2218 0.2262

2 × 2 0.2345 0.2345 0.2357

3 × 3 0.2340 0.2340 0.2351

4 × 4 0.2337 0.2337 0.2345

Exact = 0.2331

Table 12 Central moment for a simply supported moderately thick square plate with uniform load Mc (t/L =
0.1, Example problem 4)

Elements  NISA8  ANSYS8  MRP8

1 × 1  6683 6683 2180

2 × 2  5158 5158 4699

3 × 3  4959 4959 4740

4 × 4  4881 4881 4763

Exact = 4790

Fig. 12 Central deflection for a simply supported moderately square thick plate with uniform load
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better, in general, compared to similar 8-node quadrilateral plate bending elements ANSYS8,

NISA8 considered here from commercial software (ANSYS (version 5.6), NISA (version 9.3). The

results are also compared with the exact solutions (Jane et al. 2000).

Fig. 13 Central moment for a simply supported moderately thick square plate with uniform load

Table 13 Central deflection for a clamped moderately thick square plate with uniform load Wc (t/L = 0.1,
Example problem 4)

Elements NISA8 ANSYS8  MRP8

1 × 1  0.0956  0.0956  0.0908

2 × 2  0.0820  0.0820  0.0819

3 × 3  0.0822  0.0822  0.0822

4 × 4  0.0822  0.0822  0.0822

Exact = 0.0819

Table 14 Central moment for a clamped moderately thick square plate with uniform load Mc (t/L = 0.1,
Example problem 4)

Elements NISA8 ANSYS8 MRP8

1 × 1 4875 4875 1903

2 × 2 2735 2735 2111

3 × 3 2485 2485 2272

4 × 4 2409 2409 2289

Exact = 2310
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In all example problems 1-4, Tables 3-14 and Figs. 4-15 indicate that closed form solutions of

element equilibrium and flexibility matrices of the eight-node rectangular plate bending element

MRP8 have, in general, produced excellent results. 

Fig. 14 Central deflection for a clamped moderately thick square plate with uniform load

Fig. 15 Central moment for a clamped moderately thick square plate with uniform load
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4. Conclusions

Closed form solutions for equilibrium and flexibility matrices of eight-node rectangular plate

bending element (MRP8) using Integrated Force Method are presented. The Mindlin-Reissner

theory has been employed in the formulation which accounts the effect of shear deformation. 

These closed form solutions are validated by analyzing large number of standard thin and

moderately thick plate bending benchmark problems to obtain deflections and moments. The results

are compared with those obtained from similar displacement-based eight node quadrilateral plate

bending elements available in the literature. The results are also compared with the exact solutions.

Closed form solutions for equilibrium and flexibility matrices of eight-node rectangular plate

bending element (MRP8) have produced, in general, excellent results in all example problems

considered here. Therefore these closed form solutions can be used in the analysis of square or

rectangular thin and moderately thick plate bending situations without any shear locking problem. 
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Appendix A: Basic theory of IFM

In the Integrated Force Method of analysis , a structure idealized by finite elements is designated as “struc-
ture(n, m)”. Where (n, m) are force and displacement degrees of freedom of the discrete model, respectively.
The structure (n, m) has m equilibrium Equations and r = (n − m) compatibility conditions. Equilibrium
equations (EE) represent the vectorial summation of the internal forces {F} to the external loads {P} at the
nodes of the finite element descritization. It can be written in symbolized matrix notation as

Equilibrium Equations[EE] :  (A.1)

Where [B] = global equilibrium matrix
         {F} = Vector of internal forces of the structure
         {P} = vector of external loads on the structure

The Compatibility Conditions (CC) are constraints on strains, and for finite element models they are also
constraints on member deformations.

In IFM, St. Venant’s approach has been extended for discrete mechanics to develop the compatibility condi-
tions. Development of CC is briefly explained below:

The Deformation-Displacement Relationship (DDR) for discrete mechanics is equivalent to the strain-dis-
placement relationship in elasticity. The DDR for discrete analysis was obtained during the development of
the variational energy formulation for the IFM [12]

According to work energy conservation theorem, the internal energy stored in the body in the structure is
equal to the work done by the external load, that is,

 (A.2)

where {X} represents nodal displacements. Eq. (A.2) can be rewritten by eliminating the load {P} in favor of
forces {F}, by using the Eq. (A.1) to obtain the following relation

(A.3)

Eq. (A.3) can be simplified as

(A.4)

Since {F} is not a null vector, its coefficient must be equal to zero, which yields the DDR as

 (A.5)

Where {β} are member deformations.
This equation represents the Deformation Displacement Relations (DDR) for the discrete structure. The

elimination of m displacements from n deformations displacement relations given by the above equation
yields r = (n − m) compatibility conditions and the associated matrix [C]. 

Here while obtaining the matrix [C], no reference is made to redundant forces. Thus the concept of redun-
dant force selection is eliminated in IFM.

It can be symbolized in matrix notations as

(A.6)

Substituting Eq. (5) into the Eq. (A.6), we obtain

B[ ] F{ } P{ }=

1

2
--- F{ }T

β{ } 1

2
--- P{ }T

X{ }=

1

2
--- F{ }T

B[ ]T X{ } 1

2
--- F{ }T

β{ }=

1

2
--- F{ }T

B[ ]T X{ } β{ }–[ ] 0=

β{ } B[ ]T X{ }=

C[ ] β{ } 0=

C[ ] β{ } C[ ] B[ ]T X{ } 0= =
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Since the displacement vector {X} is not a null vector, we have

(A.7)

where [C] is the (r × n) compatibility matrix. It is a kinematics relationship, and it is independent of design
parameters, material properties and external loads. This matrix is rectangular and banded. The deformation
{β} in the compatibility conditions (CC) given by the Eq. (6) represents the total deformation consisting of an
elastic component {βe} and the initial component {βo} as

(A.8)

The CC in terms of elastic deformation can be written as

(A.9)

 
Where (A.10)

Using the flexibility characteristics, Eq. (A.6) with initial deformations can be rewritten as

(A.11)

Combining Eqs. (A.1) and (A.11), we lead to the IFM governing equation as

(A.12)

X{ }T

B[ ] C[ ]T( ) 0{ }=

B[ ] C[ ]T 0=

β{ } βe{ } β0{ }+=

C[ ] β{ } C[ ] βe{ } C[ ] β0{ }+ 0= =

C[ ] βe{ } δR{ }=

δR{ } C[ ] β0{ }–=

C[ ] G[ ] F{ } δR{ }=

B[ ]

C[ ] G[ ]( )
F{ }

P

δR⎩ ⎭
⎨ ⎬
⎧ ⎫

=

S[ ] F{ } P
*{ }=
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Notations

[A] : matrix relating nodal degrees of freedom and coefficients of the polynomial
[B] : global equilibrium matrix (m × n)
[Be] : element equilibrium matrix (me × ne)
[C] : compatibility matrix (r × n)
[Dop] : differential operator matrix
E : Young’s modulus
{F} : vector of internal forces of the structure (n × 1)
{Fe} : vector of internal forces of the discrete element (ne × 1)
[G] : global flexibility matrix (n × n)
[Ge] : element flexibility matrix (ne × ne)
[H] : matrix relating the curvatures to stress resultants
[J] : deformation coefficient matrix (m × n)
L, B : Length and breadth of the plate
Mc : central moment of the plate
{M} : vector of stress resultants
P : point load at the center or tip of the plate
{P} : vector of external loads (m × 1)
q : uniform load over the plate
[S] : IFM governing matrix (n × n)
Wc : Central deflection of the plate
{X} : vector of displacements of the structure (m × 1)
{Xe} : vector of displacements of the discrete element (me × 1)
{k} : vector of curvatures
n, m : force and displacement degrees of freedom of the structures respectively
ne, me : element force and displacement degrees of freedom respectively
t : thickness of the plate
{α} : generalized coordinates of the polynomial in the displacement field 
{β} : vector of elastic deformations
{βo} : vector of initial deformations
ν : Poisson’s ratio
[φ1] : matrix of polynomial terms for displacement fields
[ψ] : matrix of polynomial terms for stress-resultants fields




