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Abstract. An analytical method is presented to investigate electromagnetothermoelastic behaviors of a
hollow sphere composed of functionally graded piezoelectric material (FGPM), placed in a uniform magnetic
field, subjected to electric, thermal and mechanical loads. For the case that material properties obey an
identical power law in the radial direction of the FGPM hollow sphere, exact solutions for electric
displacement, stresses, electric potential and perturbation of magnetic field vector in the FGPM hollow
sphere are determined by using the infinitesimal theory of electromagnetothermoelasticity. Some useful
discussion and numerical examples are presented to show the significant influence of material inhomogeneity.
The aim of this research is to understand the effect of composition on electromagnetothermoelastic stresses
and to design optimum FGPM hollow spheres.
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1. Introduction

Functionally graded piezoelectric material (FGPM) is a kind of piezoelectric material with

material composition and properties varying continuously along certain directions. FGPM is the

composite material intentionally designed so that they possess desirable properties for some specific

applications. The advantage of this new kind of material can improve the reliability of life span of

devices. In recent years, the applications for spherical structures have continuously increased in

some engineering areas, including aerospace, offshore and submarine structures, chemical vessel and

civil engineering structures.

This research subject is so new that only a few results can be found in the literatures. Previous

studies on the subject have considered FGM spherical structures including those, Obata and Noda

(1995) used the perturbation technique to derive the thermal stress equations of the thick hollow

spheres made of functionally graded materials under different temperature distributions. Using the

method of Frobenius series, Lutz and Zimmerman (1996) gave the analytical solution for the
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stresses in FGM spheres. Using the infinitesimal theory of elasticity, Naki and Murat (2001)

obtained the closed-form solutions for stresses and displacements in functionally graded spherical

vessels subjected to internal pressure. Jabbari et al. (2002) investigated mechanical and thermal

stresses in a functionally graded hollow sphere due to radially symmetric loads. Wu et al. (2003)

presented an exact solution for functionally graded piezothermoelastic spherical shell as sensors or

actuators. By means of an analytical-numerical method, Han and Liu (2003) studied elastic wave

propagation in a functionally graded piezoelectric sphere. Chen et al. (2004) analyzed 3D free

vibration of a functionally graded piezoelectric hollow sphere filled with compressible fluid. Eslami

et al. (2005) gave the analytical solution for the one-dimensional steady-state thermoelastic stresses

in a hollow sphere made of functionally graded material. Ootao and Tanigawa (2007) studied the

transient piezothermoelastic problem of a functionally graded thermopiezoelectric hollow sphere due

to uniform heat supply. Ganapathi (2007) studied the dynamic stability behavior of a clamped

functionally graded material spherical shell structural element subjected to external pressure loading.

By means of the infinitesimal theory, Dai et al. (2007) investigated electromagneto- elastic

interactions for functionally graded piezoelectric hollow and solid sphere. By means of using the

Legendre polynomials and the system of the functionally graded energy equation to solve the

Navier equations, Poultangari et al. (2008) developed an analytic method to obtain the solution for

the dimensional steady state thermal and mechanical stresses in a hollow thick sphere made of

functionally graded material. Using the Hankel and Laplace transform techniques, Arani et al.

(2009)  developed an analytical method to obtain the response of magnetothermoelastic stress and

perturbation of the magnetic field vector for a thickwalled spherical vessel. However, so far,

investigation on electromagnetothermoelastic interaction for a FGPM hollow sphere placed in a

uniform magnetic field has not been found in the literatures.

In this paper, by means of employing simplifying assumptions, the colsed-form solutions for the

electric displacement, stresses, electric potential and perturbation of magnetic field vector

distributions in the FGPM hollow sphere are obtained. The aim of the work is to understand the

influence of the volumetric ratio of constituents on electric displacement, electromagnetothermoelastic

stresses, electric potential and perturbation of magnetic field vector of the FGPM hollow sphere and

to design the optimum FGPM spherical structures for engineering applications.

2. Basic formulations of the problem

2.1 Derivation of equations

In spherical coordinates , considering a FGPM hollow sphere with internal radius a and

external radius b (as shown in Fig. 1). The FGPM hollow sphere with perfect conductivity placed in

a uniform magnetic field . The components of displacement, stresses, electric

displacement and electric potential are, respectively, expressed as , , Dr and .

The constitutive relations for the FGPM hollow sphere subjected to a rapid change in temperature

 are expressed as (Dai and Fu 2006)

(1a)

r θ ψ, ,( )
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u r( ) σi i r θ,=( ) ϕ r( )
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(1b)

(1c)

where , , g11 and p11 are elastic constants, thermal expansion,

respectively, and

, (2)

It is now considered that all material coefficients and piezoelectric constants have the same

power-law function along the radial direction, i.e.

, ,

, , (3)

Here, superscript zero denotes corresponding value at the outer surface (r = b) of the FGPM

hollow sphere, and β is the inhomogeneous constant determined empirically. However, these values

for β do not necessarily represent a certain material, various β values are used to demonstrate the

effect of inhomogeneity on the electric displacement, stresses, electric potential and perturbation of

magnetic field vector distributions.

The mechanical and electric boundary conditions are expressed as

, , , (4)
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Fig. 1 The geometry of a FGPM hollow sphere placed in a uniform magnetic field
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Omitting displacement electric currents, the governing electrodynamic Maxwell equations (Kraus

1984, Dai and Wang 2004) for a perfectly conducting, elastic body are given by

, , , ,  (5)

Applying an initial magnetic field vector  in the spherical coordinate  system

to Eq. (5), yields

, ,

, (6)

The equilibrium equation of the FGPM sphere, in absence of body forces, is expressed as

(7)

where fψ is defined as Lorentz’s force (Arani et al. 2009, Kraus 1984, Paul and Nasar 1987), which

may be written as

(8)

In absence of free charge density, the charge equation of electrostatics (Heyliger 1996) is

expressed as

, (9)

Solving Eq. (9), yields

(10)

Thus, Eq. (1c) may be rewritten as

(11)

Substituting Eq. (11) into Eqs. (1a,b) and utilizing Eq. (3), yields

(12a)

(12b)
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 (13)

Substituting Eqs. (12), (8) into Eq. (7), the equilibrium equation is expressed as

(14)

where

,

,

,  (15)

2.2 Heat conduction problem

The heat conduction equation in the steady-state condition for the one-dimension problem in polar

coordinates and the thermal boundary conditions for the FGPM hollow sphere is given (Eslami et

al. 2005), respectively, as

, (16a)

(16b)

(16c)

where  is the thermal conduction coefficient of the FGPM hollow sphere in the r direction,

h is the ratio of the convective heat-transfer coefficient of the FGPM hollow sphere and the

surrounding medium.

It is assumed that the nonhomogeneous thermal conduction coefficient  is power function of

r as

(17)

where k0 is the thermal conduction coefficient at the external surface ( ). Utilizing Eq. (17), the

heat conduction Eq. (16a) becomes 
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Integrating the Eq. (18) twice, yields

(19)

Using the boundary conditions (16b,c) to determine the constants W7 and W8, yields

,  (20)

3. Solution of the problem

Substituting Eq. (19) into Eq. (14), yields

(21)

where

, , (22)

Assume that the complete solution of the Eq. (21) may be expressed in the following form

(23)
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Where Q is an arbitrary constant, substituting Eq. (24) into Eq. (21), one obtains
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Substituting Eq. (28) into Eq. (21), yields

(29)

According to the coefficients of the identical powers, from Eq. (29), one obtains

, , ,  (30)

Thus, the complete solution for  is expressed as

(31)

Substituting Eq. (31) into Eq. (11), yields

(32)

Integrating Eq. (32), one have

 (33)

where A1 and A2 are unknown constants, and determined by the given boundary conditions.

Substituting Eq. (31) into Eq. (12a), Eq. (12b), Eq. (12c), and the final item of Eq. (6), the radial

stress, circumferential stress and perturbation of magnetic field vector of the FGPM hollow sphere

are obtained as
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(34a)

(34b)

(34c)

To determine the unknown constants  and B2, utilizing the mechanical and electric

boundary conditions (4), yields

(35a)

(35b)
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(35d)

Where  are shown in appendix A.

Solving Eq. (35), yields
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4. Numerical results and discussions

Electomagnetothermoelastic interactions in a FGPM hollow sphere subjected to electric, thermal

and mechanical loads are considered. In numerical calculations,material constants for the FGPM

hollow sphere are taken as (Jabbari et al. 2002, Dunn and Taya 1994) 

Example 1. In this example, considering that the FGPM hollow sphere of internal radius

a = 0.1 m and external radius b = 0.2 m, the temperature of internal boundary T0 is taken as 0K, and

the corresponding boundary conditions are expressed as

, , (37)

The non-dimensional  and  are introduced

in numerical results. 

Fig. 2 and Fig. 3 depict the temperature and electric displacement distributions along the radial

direction of the FGPM hollow sphere with different β, respectively. It is seen easily from Fig. 2 that

the temperature at the internal boundary equals one, which satisfies the prescribed thermal boundary

condition, and the temperature decreases as the power law index β increasing. In Fig. 3, when β is

taken as a negative value, it is seen easily from the curves that the electric displacement decreases

from the internal wall to external wall, while a positive β gives a contrary result. It is also seen
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Fig. 2 Temperature distributions in the FGPM hollow
sphere with different β, where a = 0.1 m, b =
0.2 m and T0 = 0 K

Fig. 3 Electric displacement distributions in the
FGPM hollow sphere with different β, where
a = 0.1 m, b = 0.2 m and T0 = 0 K
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from the curves that the electric displacement at the same radial point decreases as index β

increasing.

Fig. 4 and Fig. 5 show the radial stress and circumferential stress distributions in the FGPM

hollow sphere with different β, respectively. From the curve of Fig. 4, one knows, the radial stress

satisfies fully the mechanical boundary conditions, and the increased trend of the radial stress

becomes slowly as the power index β increasing. Comparing Fig. 5 and with Fig. 4, the change

trend of circumferential stresses are different with the change trend of radial stresses as the power

index β increasing. To our knowledge, it can be also seen from the curves of the Fig. 5 that the

circumferential stress is influenced greatly by the coupling of mechanical and electric loads. 

Fig. 6 and Fig. 7 depict the electric potential and perturbation of magnetic field vector

distributions in the FGPM hollow sphere, respectively. From the curves of Fig. 6, one knows, the

Fig. 4 Radial stress distributions in the FGPM hollow
sphere with different β, where a = 0.1 m, b =
0.2 m and T0 = 0 K

Fig. 5 Circumferential stress distributions in the
FGPM hollow sphere with different β, where
a = 0.1 m, b = 0.2 m and T0 = 0 K

Fig. 6 Electric potential distributions in the FGPM
hollow sphere with different β, where a = 0.1 m,
b = 0.2 m and T0 = 0 K

Fig. 7 The perturbation of magnetic field vector
distributions in the FGPM hollow sphere with
different β, where a = 0.1 m, b = 0.2 m and
T0 = 0 K
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electric potential satisfies fully the electric boundary conditions, and the electric potential decreases

as the power law index β increasing. In Fig. 7, it is seen from the curve that the similar distribution

happens to the perturbation of the magnetic field vector as the circumferential stress.

Example 2. In this example, considering that electric displacement, electomagnetothermo- elastic

stresses, electric potential and perturbation of magnetic field vector of the FGPM hollow sphere at

different thermal boundary T0, all other conditions as example1. Figs. 8-12 show the electric

displacement, radial stress, circumferential stress, electric potential and perturbation of magnetic

field vector distributions in the FGPM hollow sphere with T0 = 0 K, 20 K, 100 K, 200 K and 500 K,

respectively. From the Fig. 8, it is seen easily that electric displacement increases from inner wall to

out wall, and the electric displacement at the same radial point decreases as the temperature T0

increasing. In Fig. 9, it is seen that radius stresses satisfy fully the given mechanical boundary

Fig. 8 Electric displacement distributions in the
FGPM hollow sphere with different T0, where
a = 0.1 m, b = 0.2 m and β = 1

Fig. 9 Radial stress distributions in the FGPM
hollow sphere with different T0, where a =
0.1 m, b = 0.2 m and β = 1

Fig. 10 Circumferential stress distributions in the
FGPM hollow sphere with different T0,
where a = 0.1 m, b = 0.2 m and β = 1

Fig. 11 Electric potential distributions in the FGPM
hollow sphere with different T0, where a =
0.1 m, b = 0.2 m and β = 1
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conditions and its values increases as the temperature T0 increasing. It is seen from curves of the

Fig. 10 that the values of the circumferential stresses at the same radial point increases as the

temperature T0 increasing, and it shows nearly linear decreases from the inner wall to outer wall of

the FGPM hollow sphere. In Fig. 11, one knows, the electric potential satisfies fully the electric

boundary condition, and its change trend is similar that of Fig. 9. In Fig. 12, one knows, the

distribution of the perturbation of the magnetic field vector is similar that of Fig. 8.

Example 3. In this example, consider a FGM hollow sphere of internal radius a = 0.1 m and

external radius b = 0.5 m, and all other conditions are the same as example 2.

Figs. 13-17 show the electric displacement, radial stress, circumferential stress, electric potential

and perturbation of magnetic field vector distributions along the radial direction of the FGPM

Fig. 12 The perturbation of magnetic field vector
distributions in the FGPM hollow sphere
with different T0, where a = 0.1 m, b = 0.2 m
and β = 1

Fig. 13 Electric displacement distributions in the
FGPM hollow sphere with different T0,
where a = 0.1 m, b = 0.5 m and β = 1

Fig. 14 Radial stress distributions in the FGPM
hollow sphere with different T0, where a =
0.1 m, b = 0.5 m and β = 1

Fig. 15 Circumferential stress distributions in the
FGPM hollow sphere with different T0,
where a = 0.1 m, b = 0.5 m and β = 1
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hollow sphere, respectively. Comparing example 3 and example 2, the trend of all curves is similar

as example 2, and its values is become larger as the wall thickness increasing. Thereby, it can be

concluded that it is possible to control the distributions of physical parameters by selecting suitable

wall thickness.

4. Conclusions

1. By means of the infinitesimal theory of electromagnetothermoelasticity, the paper presents an

exact solution for a FGPM hollow sphere, placed in a uniform magnetic field, subjected to

electric, thermal and mechanical loads. All material parameters are assumed to have the same

exponent-law along the radial direction of the FGPM hollow sphere. The obtained solution is

valid for arbitrary electric, thermal and mechanical loads applied on the FGPM hollow sphere.

2. The work enriches the solution method for electromagnetothermoelastic problem for FGPM

hollow spherical structures, which is very useful for carrying out active control of hollow

spherical structures using functionally graded piezoelectric materials.

3. Numerical results show that the gradient index β has a great effect on the electric displacement,

stresses, electric potential and perturbation of magnetic field vector of the FGPM hollow sphere,

and the distributions of all physical parameters are concerned with applying electric, thermal and

mechanical loads and selecting the size of hollow spherical structures. Thus by selecting a proper

value of β, structural size and suitable loads, it is possible for engineers to design the FGPM

hollow sphere that can meet some special requirements.
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Notations

: displacement vector and radial displacement [m]

r : radial variable [m]

a, b : inner and outer radii of the FGPM hollow sphere [m]

: components of stresses [N/m2]

T(r) : temperature distribution [K]

φ(r) : electric potential [W/A]

Dr : radial electric displacement [C/m2]

: elastic constant [N/m2]

: piezoelectric constant [C/m2]

g11 : dielectric constant [C2/Nm2]

p11 : pyroelectric coefficient [C/m2K]

αjλj : thermal constants [1/K] and thermal modulus [N/m2K]

: electric current density vector

: perturbation of magnetic field vector

µ0 : magnetic permeability [H/m]

: perturbation of electric field vector

: magnetic intensity vector

fψ : Lorentz’s force [kg/m2s2]

κ : thermal conduction coefficient [W/mK]

h : ratio of the convective heat-transfer coefficient [W/K]

T0 : temperature [K]

Non-dimensional quantities

, , , , 

U u,

σi i r θ,=( )

cij i 1 2; j 1 2 3, ,=,=( )
e1i i 1 2,=( )

j 1 2,=( )
J

h h2,

e

H HZ,

R r a–( )/ b a–( )= T* T r( )/T0= σi

*
σi/Pa i r θ,=( )= hψ

*
hψ/Hψ= φ

*
φ/φa=




