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Abstract. Geomaterials such as soil and rock are composed of discrete elements of mic_rostrpctures
with different grains and microcracks. The studies of these microstructures are of increasing interest
in geophysics and geotechnical engineering relating to un('ierground‘ space development. We first show
experimental results undertaken for direct observation of mlcrocrac_k initiation and propagation by using
a newly developed experimental system, and next a homogenization method for treating a viscoelastic
behavior of a polycrystalline rock.
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1. Introduction

Granitic rock involves microstructures including not only crystal grains but also cracks and
cavities whose evolution and interaction, called the microdamaging process, determine their mac-
roscopic mechanical response. Thus, it is a complex composite with microcstructures which are
caused by different geologic processes and under varying conditions.

Numerous recent studies have shown that the physical properties of rocks are not only affected
by the constituent minerals (Olsson 1974, Wong 1990) and their preferred orientation (Kern
et al. 1985) but also by the microcracks (Bombolakis 1973, Kranz 1979a, b, Yukutake 1989, Ahrens
et al. 1993).

In this study, we first show experimental results undertaken for direct observation of microcrack
initiation and propagation by using a newly developed experimental system. From the experimen-

tal results, it is considered that the true damage process up to the peak stress was found to
involve four stages:

1) pre-existing microcrack closure,
2) dilatancy and the associated microcracking,
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3) clustering microcracks, and

4) microcrack localization.

More detailed observations indicate that microdamage is initiated at contact portion of two
grains. Furthermore damaging process of micro- to macro-scale are clearly observed, and the
shear localization and faulting with microcracking are clarified.

Second a viscoelastic homogenization theory is applied to analyze the micro and macro level
of stress distribution in a crystalline rock which is a composite material of some minerals. It
is assumed that the microstructure is periodic, and each mineral of the rock shows a viscoelastic
property. We call one periodic structure as a unit cell in the homogenization theory.

2. Experiments

The microcrack formation and subsequent damage propagation were examined in a series
of compression test by using coarse-grained granite under nominally dried condition at room
temperature.

2.1. Experimental procedures

Specimens of coarse-grained granite from Geochang, Korea are consisted mainly of 36.5%
quartz, 56.3% feldspar and 7.2% biotite (modal test results). The bulk density and apparent porosity
of the granite are 2.58 g/cm® and 0.83%, respectively. The dimension of specimens is shown
in Fig 1.

The design of the specimen assembly and experimental system, consisting of three subsystems,
ie, a) loading system, b) data-recording system and c) observation system, are illustrated in
Fig. 2. The granite specimen with a strain gauge was placed on a concave-shaped steel block
in a loading vessel, and stress was applied to the specimen by a piston actuated through manually
controlled loading pump (see Fig. 2). Axial stress and strain were recorded in a personal computer.

In order to observe the initiation and growth pattern of microcracks directly, a stereoscopic
microscope (Nikon, SMZ-U) is used. A video monitoring system was used for continuous recor-
ding and a still camera was provided for intermittent recording.

2.2. Microscopic observations

Microcracks which consist of healed cleavages, pre-existing intracrystalline microcracks and
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Fig. 1 (a) Dimensions of specimen; the direction of compression is parallel to X, and (b) the location
of strain gauge.
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Fig. 3 Photomicrograph showing initiation and propagation of microcracks at quartz(Qz)-feldspan(Fs)
contact portion; (a) no loading and (b) 80 MPa. Axial stress direction is horizontal, and the
open triangle marks the same point.

grain boundary microcracks were traced on stereoscopic photomicrographs under gradually inc-
reased stress at the various portions of the specimen.

Before specimens are loaded, many healed pre-existing microcracks (marks CrQ in Fig. 3(b))
are observed in quartz grains, and some longish microcavities (marks CaF in Fig. 3(a)) with
blunt ends are observed in feldspar.

In quartz grains contained in granite specimens, pre-existing itracrystalline microcracks are
well developed in various direction, but microcracks in feldspar and biotite grains were few.
The higher microcrack densities within quartz grains as compared to adjacent feldspar grains
may indicate that the initiation of microcracking is generally related to internal stresses or differe-
nce of volumetric strains at grain scale.

Nur, ef al. (1970) reported that quartz grain in granite underwent a large volume change upon
cooling from 600°C. Therefore. the existence of these pre-existing microcracks is mainly due
to the difference of thermo-mechanical properties of minerals (see Table 1).
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Table 1 Physical properties of quartz and feldspar (Skinner 1966, Birch 1961)

Minerals a(X107°* °ChH K(X10* MPa) B(TPa™ Y
Quartz 5.15 3.82 26.2
Feldspar 1.45 4.29 233

. thermal expansion coefficient, K: bulk modulus, 8: compressibility
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Fig. 4 Photomicrograph showing initiation and propagation of microcracks at biotite(B)-feldspar(F) con-
tact portion; (a) no loading and (b) 45 MPa. Axial stress direction is horizontal.

The grain boundaries of granite used in this study which mostly consist of coarse-grained
quartz, feldspar and biotite are observed to be open. The location of stress-induced microdamage
initiation, growth direction and the relationship between pre-existing microcracks and stress-indu-
ced microcracks were observed in great detail by using the stereoscopic microscope which enables
us to observe continuously during loading.

The primary intracrystalline microcrack, that is, the cleavage microcrack in feldspar grains
is initiated through the defective cleavage (CaF in Fig. 3(a)) at a stress level 30 MPa. At the
same time, microcavities are linked. and intracrystalline microcracks and grain boundary microc-
racks parallel or subparallel to the axial stress direction afe predominantly caused by tensile
stress due to Poisson effect. Furthermore local variations in elastic properties of different minerals
or the presence of microcracks cause the stress to be concentrated and the remote compressive
stresses are converted to locally tensile stresses. Based on these facts, intracrystalline microcracks
nearly parallel to the axial stress direction are initiated from pre-existing grain boundary microcra-
cks between quartz and feldspar grain. Note that the compressibility of feldspar is lower than
that of quartz grain (Table 1). On the other hand. microcracks perpendicular and inclined to
the axial stress direction are closed and sheared, respectively.

Cleavage microcracks which are parallel to {001} are common in biotite. Localized shear
strains of granitic rocks and ductile shear zones are frequently associated with the presence
of biotite. Shear stresses resolved on {001} cleavage planes of most biotite grains were large
and microstructures developed within biotite suggest that frictional sliding on cleavage planes
was important (Fig. 4). In addition, frictional sliding seems to be developed along the interfaces
between biotite and surrounding feldspar grains. Displacement along grain boundary microcracks
increases as the axial strain increases. The end of these microcracks sometimes shows complicated
geometry with many fractions.
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3. Homogenization analysis for viscoelastic material

The homogenization theory (Sanchez-Palencia 1980) allows us to determine a microscopic
stress distribution for a composite material which has a periodic structure in microscale. We
here propose a homogenization theory for viscoelastic material under a Laplace transformation.
The scheme is shown in Fig. 5.

3.1. Viscoelastic problem in Laplace space

Let us suppose a material body with a microscale periodic structure (Fig. 6). If the material
is viscoelastic, the corresponding equations in a Laplace transformation space are given as follows:

(Governing equation)

cf ~ ..
ox, +£:=0 in 2 (H
(Boundary conditions)
uf=14 on I, Q)
ofn=1 on I; 3)

where

ofx p)= j of(x 1) exp(—pr)dt
0

igi Laplace space
Original space Laplace p P
transformation
Equilibrium equation ——f——> Transformed equilibrinm equation
- Laplace - -

Visco-elastic transformation Transformed visco-elastic

constitutive law —— constitutive law
Two scale variable x, y
Asymptotic expansion

Microscale Problem in Laplace Space

Lapl.

Response of homogenized inv;rsian Homogenized viscoelastic constitutive
visco-elastic constitutive [aw | ds———— law in Laplace space
Macroscale Problem in Laplace Space

Laplace ‘

inversion
Response of macro-stress 4_12_ Macro-stress in Laplace space

Laplace ‘
Response of micro-stress J ” fnversion Micro-stress in Laplace space

Fig. 5 Scheme of homogenization analysis for viscoelastic problem.
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Fig. 6 Material body with a periodic microstructure.

is the Laplace transformed stress. Similarly, u;* and}? (x, p) are the Laplace transformed displace-
ment and body force, respectively.

(Initial condition)

Luf(x, t=0)1=u(x) 4

(Strain-displacement relation)

(Constitutive relation)
05 (P)=PQGE+AES 8,8)=pDy 2= My 5 ©)
where
A=K ()-56 (). G(p=-2 +Z k(p=" +Z
p p+(1/r) p p+(1/r,)

Note that 7 and t/ are the shearing and volumetric relaxation times, respectively, and the
Maxwell model corresponding to Eq. (6) in the original space is written as

og(t):?_j G(r~s)—”2—§i ds+3 f /l(t—s)%ds

_ 1 _
&= 3k by €=~ ()

3.2. Microscale and macroscale problems in Laplace space

Let us introduce an asymptotic expansion for #° in terms of e=x/y.
uf@ p)y=ully y, pyteu'® y p)teuits y, p)t- ®)
Here
Ul 3 p=us y+Y p) (@=0, 1,2 ) )

are Y-periodic funtions. Note that the global coordinate x is called a ‘slow’ spacial variable,
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and the local one y a ‘fast’ spacial variable.
Since y=x/e and & approaches to zero, the partial differential operator is transformed as

lJ J 1 7
— 10
ox; = ox; + £ oy (10)

Substituting this into Eq. (5) yields

2;; ® p)= —i-ggOy +(gx+ gx)!y) + g(g’_jlx + ?s,}y) SRV

ST WL WL T O

v 2\ ady, /) ) ox;  Ox; 4772 dy, Oy
. 1fou}r odul\ ., 1(du? oJu}?
w— —{GHi L OUj ) may  J(OUiP | OU)
K 2( 0x; "o, ) K 2( A N 8y.~) a0

By using the constitutive relation given by Eq. (6) we have
~ 1~ - ~
o ¥, p)=-_ 0/t oyt eot

~Q__ ~ ~ Al ~ ~ 0 A1 ~d_ -~ A~ 1] ~ 2
oy=Muay, o=Mu(as +a), o=Mu(ar +&7) (12)
The governing Eq. (1) is then written as

I R NI -
& c?yj+e[z9x,+ay, + é’)q+8yj tro=—ffx » p) (13)

Each term for e{a=—2, —1, 0, 1, --*) must be zero as ¢—> 0, so we have the following identities:
O(e™?) term;
— =0 (14)

This implies that ol(x, y, p)=0p(x, p), and we will be able to set 6{=0 because the term &'
must be bounded as €— 0. Thus, we have #°(x, y, p)=u’(x, p). Under this condition, the strain
given by Eq. (11) is approximated as

HxEtip (1s)

O(¢™!) term (Microscale equation);
The terms of O(¢7') in Eq. (13) together with the condition =0 are given by

do,
— =0 16
2, (16)
Recalling the constitutive Eq. (6), we have
B0 ) (62 p+ar s 35 p)II=0 an
J

where
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:;kl(y P) Dtjrs(y)"*_pr]l"S(y’ p)

. " Gdp) " dp)
D3 =2Gy6,6;+ Ao ;6 D,},S(p)=2{z————p+l/m\, } 5H5y+{2———p+l/nv 8; 85

i=1 [
Now we define a characteristic function ¥*(y, p) in the unit cell as
" O

u't, y, p)=—xMO, 17)-— +G) (18)

where C;(x) is a constant with respect to x. Substituting this into Eq. (17), we have the following
microscale or unit cell problem:

J . e\
i : e o (19

A weak form of this equation which can be solved by introducing an appropriate approximation

method is then given by
> ox> o |~ Ov .
LMWW *@;dy~fyM,j,s~o.,}7 dy Vvi(v/=0 on the unit cell boundary dY)  (20)

O(¢") term (Macroscale equation);
The terms of O(¢°) in Eq. (13) are now given by

c?o,f do} . _
ox, +— , +ffx y p)=0 21

Let us introduce an averaging operator for the unit cell ¥ by
1
@) =——
(@)= f ody

The second term of Eq. (21) under this averaging operation vanishes because of the periodicity

of o}
<ay,> mf ivj =Tr j“fnfdf‘

Thus we have the macroscale equation such that

95
<6c;c,> +{=0 22)

The boundary condition and constitutive equation are also averaged as
@H=<wy on T, (23)
<0'1/> th & (P)

M . f Mﬁrs [(Srk 8[A‘ - _étgi‘ ] dy (24)
Y Vi

ikl = m‘
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3.3. Inverse Laplace transformation for stresses

Let ¢ of y=x/e be small enough, so the periodic structure is independent from the elapsed
time. Then we can assume that

G =M (p) (3% (p)+ & (9)]

=<[D%u+p D Yu(p)] [ (p)—

’Z‘y"” 2D

i

=D -2 ) ég(p)+<png-k,<ak@,——i§}jl—”)> o @5)

And the inverse transformation gives
{op=<a>+{a/
ox” ! X dex
o =D 88— F [yero. o= (pui-sf s 592 4 g

Here {o}°) represents an instantaneous elastic term, and {6}") a time dependent Maxwell term.
Similarly, the stress in micro level can be given as

v ! axkrs darst)r
ol ZD%kI<6ik@l—_T€;)e’?((t)+ fODbkz(t—s)<&k@1— o >—ds ds 27)

Note on the Schapery's collocation method

The stress under a relaxation test and the strain under a creep test are monotonically
decaying and increasing functions, respectively. These kind of functions can be represented
as a sum of exponential functions (exp(—ax)). Schapery (1961) proposed an inverse Laplace
transformation method which is applicable to this type of functions.

Based on an irreversible thermodynamic theory, Schapery assumed that if a step function
of excitation is input at =0, the response Y such as stress and viscoelastic coefficients
can be represented as

YO=ar—f ()

where a, is a constant determined by the initial condition, and f(r) is a transient part
which is of the form

f(t):wa (@)e "da

Note that F(a) is called a distribution function. This f(®) can be approximated as a Dirichlet
series such that

Jo@®= iS,e"”f (28)
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where >0 are points which are given a priori, and S; are unknown parameters.

Schapery (1961) states that the square error between f(f) and fp(f) becomes minimum
if f(p) coincides with fp(p) at the designated points p=1/7;(i=1, 2, ---, n). This is understood
as follows: Let us define a square error by

=3[ tro-pora e

Substituting Eq. (31) into the above and minimizing the error for the unknown parameters
S;i=1, 2, -, n) yields

Foh J fO~fo@le di=0 (=1, 2 . n) 0

This implies that

A L)=h(L) =12 m | &)

T

Substituting Eqgs. (31) and (28) into Eq. (30), we can determine S;(j=1, 2, n) by solving

Z( j we-f/ae-f/wdt>g=}<%) (=1, 2, -, n) 32)

J=1 0

For the stress relaxation problem in the homogenization analysis, the followings must be
calculated by using the Schapery’s method mentioned above:

(Homogenized viscoelastic coefficients)

M O=Dy+ S DY exp(—it) (33)

i=1

{Dy). {Dy; Unknown coefficients

(Homogenized stress)

Lop(t)) =<0y (0)) + i (S exp(—7:1) (34)

{S»: Unknown coefficients
{oy(c0): Averaged stress at 1= oo calculated by using G () and K(c).

(Micro-stress)

op(t)= oy (o) + i S;exp(— yit) (35)

i=1
S Unknown coefficients
01(o0): Micro-stress at t= oo calculated by using G (o) and K(0).

It can be proved that in the Schapery’s method applied for the stress relaxation problem,

the most efficient way is to set as
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Fig. 7 (a) Model for the verification problem. (b) Finite element mesh for the conventional analysis
and the global problem in homogenization analysis (the same mesh is used). (c) Mesh for the
unit cell problem in homogenization analysis.

.:_.:L
n=rE

where 7 is the relaxation times. Note that we here assumed =7, but this is not essential.
3.4. Numerical examples
34.1. Verification problem

We first verify the proposed method by comparing with the conventional method for a simple
two dimensional stress relaxation problem under plane strain condition (Fig. 7(a)). Note that
in the conventional analysis a fine mesh of finite elements are used (Fig. 7(b)), while in the
homogenization analysis, we can use a coase mesh but here the fine mesh same as the conventio-
nal analysis is employed. The finite element mesh for solving the unit cell problem is shown
in Fig. 7(c). The material properties used are as follows:

(Material 1)

K({H)=598+6.11 exp(—#/10.8)+2.09 exp(—1/32.9)
G()=506+5.17 exp(—1/10.8)+ 1.77 exp(—1/32.9)
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*  Conventional analysis (Material 1)
®=  Conventional analysis (Material 2)
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=R Microstress (Material 2)
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0 5 10 15
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Fig. 8 Time history of stresses calculated by the conventional and homogenization analyses.
N
= <J Forced displacement:
0.5% strain (4.5mm)
3 Unit Cell

a—— 4

X2 | I~ | D : Material 1

: Material 2

—> X;

Fig. 9 Model for the mosaic problem.

(Material 2)
K(#)=12.0+4.0 exp(—1/0.0735)+ 2.0 exp(—#/0.1685)
G(t)=90+4.0 exp(—1/0.0735)+ 2.0 exp(—1/0.1685)
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— Vertical direction (x7)

N
{

------- Horizontal direction (x1)

Macrostress (X 10° kgf/cm?)
[\®)

0
Elapsed time (day)

Fig. 10 Time history of macrostresses for the mosaic problem.

SN~ aoma T,

i T=00

Elapsed time (day)

‘—,—‘) O, (Maximum principal stress)

Fig. 11 Change of microstresses for the mosaic problem.

Fig. 8 shows the stress histories at the mid-point of the model (see Fig. 7(a)). We can find
a good correspondence of the results of both analyses, and the homogenized stress shown by
a solid line is in-between for the stresses developed in two materials.

3.4.1.. Mosaic problem: Crystalline rock model

We next show results for a model of crystalline rock (Fig. 9). The unit cell is made by two
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materials assuming feldspar and quartz. The material properties used are as follows:
(Material 1: feldspar)

K(H=6.0+6.0 exp(—1/10)+ 2.0 exp(—1/30)
G(t)=5.0+ 5.0 exp(—1/10)+ 2.0 exp(—1/30)

(Material 2: quartz)

K(#)=120+20 exp(—¢/0.05)+ 10 exp(—1/0.15)
G(t)=90+ 15 exp(—1/0.05)+ 8 exp(—1/0.15)

Fig. 10 shows the time histories of homogenized stresses at the mid-point of the model. The
shear stress is not appeared in these homogenized stresses, while the micro-stresses are not
uniformly distributed (Fig. 11). We should note that the homogenized stress may be useful to

estimate the global distribution of stresses, but the micro-stress is quite fluctuating,
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