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Abstract. The homogenization method is used to develop a beam element in space for thermo-mechani-
cal analysis of unidirectional composites. Local stress and temperature field in the microscale are described
using the function of homogenization. The global (macroscopic) behaviour of the structure is supposed
to be that of a beam. Beam-type kinematical hypotheses (including independent shear rotations) are
hence applied and superposed on the microdescription. A macroscopic stiffness matrix for such a beam
element is then developed which contains the microscale properties of the single cell of periodicity.
The presented model enables us to analyse without too much computational effort complicated composite
structures such as e.g. toroidal coils of a fusion reactor. We need only a FE mesh sufficiently fine
for a correct description of the local geometry of a single cell and a few of the newly developed elements
for the description of the global behaviour. An unsmearing procedure gives the stress and temperature
field in the different materials of a single cell.

Key words: composite materials; beams; homogenization; finite element method; superconducting mag-
nets.

1. Introduction

It is well known that the limitation of the computational power has usually an important
influence on the models used for the description of mechanical behaviour of structures. This
means that the applied theory, the structural model, and the discretisation should be carefully
chosen to reflect correctly this behaviour and to make the numerical task not to heavy. Use
of the double scale asymptotic theory of homogenization for the analysis of strongly heterogeneous
materials has advantages which are important from the point of view of the economy of the
computational process. The algorithm of the analysis naturally is split into three main steps:
microanalysis, macroanalysis and unsmearing. These steps are independent in the sense that
two different FE programs solve in turn two different boundary value problems operating on
much smaller problems than the initial one. The geometrical domain of the microanalysis consists
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of a small representative volume cut out from the composite body. When the structure is very
regular, as in the considered example of application, the cell of periodicity can be taken as
such an elementary representative volume. The periodic boundary conditions are postulated for
the analysis of the single cell of periodicity. The microanalysis defines the effective material
coefficients starting from known geometry and given properties of components. The theory of
homogenization yields the constitutive law valid on the macrolevel, starting from the microdescri-
ption of the problem (without any a-priori hypothesis about the macro-behaviour). This is the
fundamental idea of the micromechanical approach adopted. On the macro-level (second step)
we deal with the homogenized body subjected to the loads and to the boundary conditions
defined for the global problem. At this stage of analysis any commercial FE code can be used.
In this paper, however, we define a special beam type element which is suitable for unidirectional
composites and allows us to reduce the number of elements used for the global analysis of
the homogenized structure. The third step of the homogenization process, the unsmearing, results
in stress and temperature recovery on the micro-level of the composite. The microdescription
of the single cell of periodicity, the functions of homogenization obtained during the first step
as well as the strains and temperature computed for the neighbourhood of the cell of interest
resulting from the macroanalysis are taken into consideration to this end.

The microanalysis and unsmearing processes are briefly outlined in this paper. Attention is
focused on the construction of the beam-like finite element for a layered beam or beam with
parallel fibres compatible with the homogenization approach. The method is then applied to
the full analysis of a particular superconducting coil used in thermonuclear fusion devices.

Such superconducting toroidal coils are made up of a large number of parallel fibres (supercon-
ductors), bonded by insulating material. In the cross-section of this superconducting beam we
may distinguish a two dimensional cell of periodicity with characteristic, repeatable physical
and geometrical properties. The whole material domain is constructed with such cells periodically
repeated. The structure may hence be considered as an unidirectional composite with periodic
structure.

1.1. Homogenization procedure

Let us consider the classical steady state problem of uncoupled thermoelasticity formulated
for the composite body. The following equations define this problem:

0;,; /=0 (D
g;i—r=0 @
0= dyueu— 0,0 G)
q=—K;T; )
u®(x)=0 on d2 and o§()n,=F; on (5)
[u*(x)]=0 [o%5(x)n;J=0 on S, (6)
Qjjii (X) tensor of elasticity
K;(x) tensor of thermal conductivity

a; (x) thermal expansion
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Fig. 1 Beam cross-section and the single cell of periodicity.

0;(x), u;(x) stress tensor and displacement vector

T'(x), q:(x) temperature and heat flux respectively

nx), fi(x) thermal sources and mass force respectively.
[f] represents the jump of a function f.

Of course all the differentiations (above and throughout the paper) are to be understood in
the weak sense and will be replaced by equivalent variational formulations for detailed analysis.
We assume also that all usual requirements for the correctness of formulation (1)<(6) hold.

The separation of scales between macro and micro phenomena assumed above is formally
expressed by the following relation between two systems of coordinates x and y (see Fig. 1):

Ya=¢& 'x, and y;=x; @)

We have placed the y; and x; axes in the direction parallel to the central line of the single
conductor which forms the two dimensional cell of periodicity in space. Here and in the sequel
the greek subscripts take values 1 or 2. We assume that ¢ can play in our problem the role
of the small parameter, required by the homogenization theory.

We suppose further that the periodicity of material characteristics imposes an analogous perio-
dical perturbation on the studied quantities describing the mechanical and thermal behaviour
of the body. We will use hence the following representation for displacements, stresses, temperature
and heat flux:

u@)=u'()teu'(x y)+eiui(y y)++etutx y) (8)
o’x, y)=0"x, y)teo'x y)+eio’(y )t +ekotx y) ©)
T*@=T"(x)+eT'(x, y)+&' T (x5, p)t+-+eThx, y) (10)
q°(x, Y)=4°(c y)+eq'(x ») e x y+-- gt y) (11)

where ¥, o*, T* ¢* for k>0 are Y-periodic ie. take the same values on the opposite sides
of the cell of periodicity. We describe now briefly the procedure of homogenization, which results
from the assumed idealization.

By the simple application of the chain rule of differential calculus, we can see that the main
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terms of o and ¢ (zero order terms) depend not only on u’, T° but also on u', T" respectively.
These terms may be written as follows:

0% ¥)= @i (PNt i) (12)
Qko(x’ )= Kkl(y)(Tal(x)+ T,z(y)) (13)
We use here and in the sequel a shorthand explained below:
1
f (axl € ay ).f fl(x)+ fl(y) (14)

By introducing into the principle of virtual work associated with the problem (1)-(6), Egs. (8),
(9) restricted up to the first term and taking a suitable form for the trial function we arrive
at the following variational formulation:

find y”"€Vy such that: Vv, EVy

J a1 (YN8 8, — X" ,(y)(.V)) Viig) (») d2=0 (15)

where Vy is the subset of ¥ containing functions with equal traces on the opposite sides of
the cell of periodicity. In the above formula the six functions y”(y) depending only on the
geometry of the cell of periodicity and on the values of jumps of a;;; across the interfaces between

materials, are called functions of homogenization (detailed theory can be found in (Sanchez-
Palencia E. 1980).

For a beam with parallel fibres this local problem is decoupled into the classical plane strain
problem of linear elasticity and the antiplane problem. This decomposition is described in (Lefik
and Schrefler 1992). It can be shown that u', the solution of problems Eq. (15), is of the form:

U3 (6 P)=1/2( a3 () + 1 5. ()3* () + Clx) (16)

U, (5 ¥)=1/2 oa0 )+t 2 ) 1,7 () F 1t S50 @) 1,7 () +C, (x) (17)
The variational formulation for the first order term of the temperature in Eq. (10) is the folowing:

find 7E€V; such that V o€V,

nya NSyt 876, (¥) 0.1 (¥) d2=0 (18)

The above three scalar functions #7 depend only on the geometry of the cell of periodicity
and on the values of the jumps of material coefficients across S;.

Egs. (15) and (18) define the first subproblem of the analysis, namely microbehaviour. Introdu-
cing the Egs. (12), (13), into Egs. (3), (4) and integrating over Y we get the effective material
coefficients:

DI:JPQ'_IY| f A (PNSy &y — X I\I(y)(y))dY (19
Y

| k=1Y1" 'f kX8 + (¥ dY (20)
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al= lYI"f,a,-j(v)a’Y 1)

In this way the parameters for the macrodescription are found.

These effective coefficients are valid for a 3D problem of uncoupled thermoelasticity. In the
following part of the paper we will specialise the outlined procedure to the case of beam-like
behaviour of the considered body. The simple integration over Y will then not be enough to
define the effective behaviour in that case.

2. Definition of the equivalent homogeneous model of the beam
2.1. Assumptions

We show here briefly the macromechanical approach to derive an equivalent, homogeneous
model of a beam (Lefik and Schrefler 1994). Since we assume that the global behaviour of
the structure (macroscopically) is that of a beam we impose the beam-type kinematical constraints
on the global displacements u and superpose it with the local perturbation obtained above.
We further assume that the cell dimensions are small with respect to the cross-section diameter.

On the other hand, however, their number allows still to identify each particular cell with
the coordinates of its centre without numerical troubles, ie. the geometric description of the
whole cross-section cell by cell-wise is possible.

We presume that displacements of the single fibre are constrained nearly everywhere inside
of the beam cross-section. Y-periodicity conditions defined in preceding paragraphs are hence
valid for most of the strands. Finally we assume that the local stresses and strains can be described
using the above derived functions of homogenization with the exception, at most, for the boundary
layer (for boundary layer see (Lefik and Schrefler 1996)).

2.2. Construction of the equivalent beam finite element for the composite structure

Let us suppose, that the 3D beam domain 2 is described by the definition of its main line
L={0, LYCR' (central axis of the beam) and the plane geometry of the cross-section SCR?
in each point of the axis.

We consider the field of displacements in the form of Eq. (8) up to the term of first order:

U (X Y =ul(x)+eu (xi, yo) (22)

This first order approximation will allow us to define correctly the zero order term in the asympto-
tic expansion of stress. The global displacements »° in Eq. (22) may further be represented by
a set of unknown functions defined along the axis of the beam:

w,(x3) the transversal displacement of the centroid of the beam,

ws(x3) the axial displacement of the centroid of the beam

6,(x;) the independent component of the slope of the transversal displacement of the centroid
of the beam (Timoshenko rotations)

6,(x;) the twist angle '

b;(x;) three additional unknown functions defining the influence of w on the variation of
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Fig. 2 Definition of the positive values of the unknowns.

w, across the cross-section of the beam.
This representation is given by the following formulae:

U (Xar X3)= — € 452505 (X3) W, (X3) +fia(Xe) bi(x3) (23)
Uy’ (Koo X3)= € X p0a(X3) —XaWa3 (3) W3 (x3) + 633 (x3) B (x) 24

where:
eEp=l E3=—1 ;=0 €,=0 (25)

In Eq. (23) ¢ (x,) describes warping of the cross-section of the beam. The warping function
is supposed to be depending only on the beam cross-section, thus can be calculated separately
and is treated now as given. The reader is referred to (Lefik and Schrefler 1994) for an example
of such a computation.

The set of functions f;, will be chosen to make oy, and o, minimal. This is commented
in the sequel. Fig. 2 shows positive values of all the functions introduced above.

We define the three dimensional strain field as a full first order term in the asymptotic expan-
sion analogous to Eq. (9), using the above derived homogenization functions:

€56 y)=(8y 8= X" (ya) U Gy () (26)

First order of accuracy for stress and strain requires only the zero order temperature field to
be prescribed for uncoupled thermoelasticity.

Since we assume steady state, it is enough to consider a temperature field constant over the
cross-section or flux vector with components depending on x; only as a given thermal load.
The three dimensional stress field is defined for each cell of periodicity as follows:

o 2 G y)=au(ya)e ulx, yo)— o (ya) T'(x;) 27

The components of e’ are easy to obtain having y the solution of local problem, Eq. (15). Both
o and e defined above depend only on w, 6, b. These functions are chosen to satisfy the stationary
point of the full, three dimensional potential energy functional:
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I(w, 6, b)=0.5[ ag(y)ejw, 6, byel,w, 6, b)dS2—R (w, 6, b) (28)
n
where
R(w, 6, b)= f fulw, 6, b)d+ f Faul(w, 6 b)ds+f g T'x)elw, 6, Byd?  (29)
n S n

The assumed field of displacements # is continuous over the whole beam cross-section by the
Y-periodicity of .

2.3 The form of the additional term b

For the composite body the term eg (x, y) which enters into the full 3D functional of poten-
tial energy is not zero. It is composed of two constituents: the first one, due to the global displace-
ment, is zero by assumption. The second one, an additive term resulting from the local perturba-
tion on the cell of periodicity is not zero. Its value is:

esp® Y)=xap() uls(x) (30)

In this situation the work of the stress o, (perpendicular to the axis of the beam) which results
from e;; via a3, is not zero. Additional degrees of freedom have been chosen here to handle
this extra term in the expression for the work of internal forces. The proposed method has
some advantages (the obvious disadvantage is that we have two unknown functions more). Using
these functions we have the possibility to introduce into the description of the problem in a
natural way the effective orthotropy of the beam, which may be significant. Another advantage
is that we can easily impose lateral constraints: e.g, by putting b,, b, equal to zero we deal
with zero values of strains in the direction perpendicular to the central axis.

To derive a suitable form for b we tse here only the global material coefficients and neglect
the local dependence on y hence:

Oup=alpsepstanme’s (31)
Hence, to have o,,=0 we must write:
— Ah h h — h e (A
6’2;3*14 apys A r833 6’%3 Agﬁy& ays33 =F ap Agﬁyé_ (a ) aéya (32)

With these notations, one may easily verify that a suitable form for f,(x,) is the following:

fi=—Ehxix fo=EW2E ~ELZ fu=Ehx 33
fo=Ebhxix;  fa=Ehx, (34
For zero transversal stresses, ic., og—0, b takes the following values:
b1x3)=wy33(x3)— G5 (x3) (3%
by (x3)= — 63 0c3) — w133 (x3) (36)
b3 (x3)=ws3(x3) @37

Other values of b allow to simulate a variety of intermediate states (Lefik and Schrefler 1994).
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2.4. Numerical formulation of the proposed beam model

The code developed for the beam type element enables us to define an individual type of
interpolation for each of the unknown functions. For w, (x3) we use the Hermitian interpolations
over a one dimensional finite element parametrized with —1< &1. For ws(x3), 6(x3) linear shape
functions are used, but it is also possible to apply in this case the interpolation with higher
order of continuity. To mark the different orders of approximations for different components
of w;(x;), 6:(x3) or b;(x3) we label the corresponding shape function with superscripts, for example:
N¥(€), N#($). The nodal degrees of freedom are:

= {wict 6} ) {0} twi) {6} bt} (38)

where the superscript e is used for the vector of the nodal values of unknowns in nodes of
the element.
Vectors w*, b°, ¢ are of the form:

{Wie}:{Wfl Wi.lf Wiz Wl‘,z(fL {gie}:{gil 9,'2}7 {bf}:{bil biz} (39)

where superscript 1 or 2 is used for the degrees of freedom in node | or 2 respectively. If needed
the higher order derivatives in nodes are included in the same way. The interpolation via shape
functions is defined over the element as follows:(there is no summation over repeated indices
in the following)

wi(©)=N(E)we BE)=NE) 07 b($)=N"(&) bf (40)

Derivatives are expressed by derivatives of shape functions which are all defined until the needed
level of approximation:

Nz*(§) Nz(&) NX(&) NI @1

2.5. Description of strains

We write Egs. (23), (24) now for a single cell indicated with number s. The local set of coordina-
tes y is placed in the plane of the cross-section of this cell of periodicity. Coordinates of the
origin of y are x° for this cell. For the single cell we have:

X, =XstEY, 42)

We approximate also the warping function (and f;, in the same way) on each conductor
cross-section by a truncated series expansion:

B (o Y= BKa) T ey, 8 ,(7) 43)
The assumed form of the global displacements (11), (12) permits us to make the following decom-
position:
"= (1+LX(y)x1 (x3) Bi (¢3) + e 1 (Vor X)) B (x3)) ¥ (44)
Matrices L, X, x, r, B,, B, are given in the appendix.

For the evaluation of Eq. (28) we introduce the stiffness matrix K by taking into account
the form of strains Eq. (44) and performing the integration over Y:
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K= f Ko+ £ Ky) (45)
L

where:

S
Ko=B\"(x3) ('Y' lere(xas)thle(xas)) B, (x3) (46)

s=1

Ky, = By (x3) ( 2 | rh, x)AHX() L) DOYA+LX(p)) 1 (9, X4) dY) B, (x3) (47)

s=1JY

Integrals in Egs. (46), (47) are calculated as the sum of integrals over the single cells, and have
the meaning of linear energy density. The total number of strands is S, s is the index for the
single strand, and the area of the cross-section is S|Y|. The work of internal forces is hence:

QW =y"Kv @9)

In deriving the above equations we have chosen the origin of the global set of coordinates
in such a way that the sums with only x or y vanish. For the symmetrical cell of periodicity
(geometry and mechanical properties) vanish also the integrals over Y which contain either x
or y. The matrix D* of Eq. (46) contains the effective material coefficients which have been
previously defined by homogenization procedure. We emphasize here that in the derivation of
the beam element it was not assumed previously that the global behaviour is governed by the
effective material coefficients calculated above.

The term depending on the temperature distribution in R in Eq. (28) can be expressed as
follow:

f a(yN1— LX(ya))dYZ(f“+qxs) f (1 (xg) B (x3)) v+

tels fy(qa Vo) a(yX1—LX(y,)) dY f #e(Var X5) B2 (x3)p (49)

where #° is the given global (mean) temperature, constant over the cross-section of the beam,
q is the given constant vector of heat flux perpendicular to the beam axis. Integrals over Y
in Eq. (49) are computed once by the subprogram that solves local problems (homogenization).

2.6. Computation of stress and temperature in an arbitrary point of
the beam cross-section

The presented model permits us to analyse some local effects of the distribution of stress
and temperature. Having beam type finite element solution, thus e’(x, y,) via Eq. (44) we go
back to Eq. (27) for ¢° to obtain the local approximation of stress on the given cell. We can
repeat this procedure for each cell of periodicity.

The local stress field Eq. (27) fulfils the equations of equilibrium everywhere in Y. It should
be understood that this stress field is associated with uniform state of strains over the cell of
periodicity Y given by the value of e®(x’, y,). The local approximation of heat flux for this
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cell is the following;

7’ ) =ki(WXGpt 8% () T (50)

When computed cell by cell over the array of cells, the graphs of stress or heat flux can exhibit
some discontinuities due to discrete values of global strains and global gradient of temperature.
To avoid this, when necessary, we replace in the above formulae the global strains and global
gradient of temperature with the extrapolated values listed below:

ém(X) (y) Vi Ckpq (epq(x)) + C‘pq (e pq(x)) (5 1)
8=y Ex(T*)+ E(T") (52)
By ($) =y D (To)+ D (TS (53)

In the above the coefficients C. D and E (depending on the values of e, and ) respectively)
are computed to minimise the square error between extrapolated value £ restricted to the particular
cell in the neighbourhood of cells and its value f on this cell resulting from the global solution.
The procedure described in this section will be called in the sequel unsmearing.

3. Examples of application
3.1. Substantial reduction of the problem size

The presented model enables us to analyse rather complex structures on a small computer.
A realistic example of a superconducting beam shows the potential of our procedure. A compari-
son is made with a general pupose program.

For the homogenisation the section of a single superconductor (shown in Fig. 1) is subdivided
into 120 brick elements with 24 degrees of freedom per element. This discretization is sufficiently
fine for the calculation of the effective material coefficients which result from our code for homo-
genization. These effective material coefficients are used as the input data for global computation.
For the description of the full cross-section of the beam the number of repetition of the cell
of periodicity in rows and in columns is needed. For the higher order term in Eq. (45) we
need the values of the functions of homogenization in the nodes of the local mesh (see Eq.
(47)).

In this way, once more the detailed microdescription is sufficient to compute the stiffness
of the whole cross-section. The geometry of the D shaped structure is shown in Fig. 3. We
use 20 beam elements to approximate the central line of this coil. The total number of degrees
of freedom is 400. An alternative for global computation is a 3D Finite Element mesh with
2874 nodes made of 1744 brick elements. The total number of variables (including any Lagrange
multipliers needed to construct the model) is 7848.

The difference in the deflection of the central line for these two models never exceeds 5%.
It is possible to obtain the local stress from ABAQUS or beam model (which gives only the
mean stress, meaningless for engineering purposes) only via our unsmearing procedure which
1s a simple inversion of that used to construct the beam element.
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QO forces perpendicular to the picture
@ support perpendicular to the picture

Fig. 3 Scheme of the superconducting coil, the support conditions and applied forces and the alternative
FE mesh for ABAQUS.

/ stress in steel

stress in epoxy

MFW

zero level

Fig. 4 (a) Normal stress on four conductors
(b) Normal stress on four conductors-section of the graph shown in Fig. 4a.
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Fig. 5 Shear stress on one conductor.

Fig. 6 Deformed configurations of the finite element mesh for both cases of thermal load.

3.2. Global stresses image obtained via cell by cell local unsmearing process

The normal stress diagram for several cells, each one obtained via an independent numerical
procedure, proves that the unsmearing routine results in a quite realistic global graph. Fig. 4
shows such a collection of independently calculated distributions of normal stresses for a few
neighbouring cells. The stresses are smoothed material by material. The shear stresses o,; diagrams
obtained via unsmearing procedure and smoothed material by material are shown in Fig. S.
These graphs are continuous in the x, direction.

3.3. Examples of thermoelastic computation for the superconducting coils

As an example of thermoelastic computation we have analysed, under different loading condi-
tions, the coils mentioned in the introduction.

The whole D shaped frame is immersed in liquid helium to assure the temperature needed
for superconductivity. We have considered two simple idealisations of possible cases of thermal
condition:

(1) The situation when the coil is fully immersed in the liquid medium of a temperature
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® stress in epoxy

Fig. 7 (a) Graphs of stress o3 in the cross-section perpendicular to fibres for uniform cooling
(b) Graphs of stress o3; in the cross-section perpendicular to fibres for nonuniform cooling.

of 4 K and mechanically fixed. In this case the supports are designed to eliminate only
the rigid motion of the structure.

(2) The situation when the coil is partially immersed in the liquid medium of a temperature

of 4 K, mechanically fixed as in the above example.

In all cases a time independent problem is considered.

The homogenization procedure is carried out with our program. The program for homogeniza-
tion is run twice. First effective elastic coefficients and six vectors of homogenization functions
for unsmearing are computed (graphs of these functions are avalaible in [5]). Then the thermal
effective characteristics are calculated: effective conductivity and effective thermal expansion. The
coefficients needed for the beam model are also computed.

For macroanalysis the beam element is used and then the global problems is solved using
ABAQUS Finite Element code for cases a) and b). In Fig. 6. deformed configurations of the
finite element mesh are shown for both cases. For these analyses homogenized material is used
with the characteristics previously computed. For the uncoupled problem ABAQUS needs to
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Fig. 8 Finite element mesh and boundary conditions for the boundary correction of the global solution.

be run twice. First-to find the temperature field, then the corresponding displacements and forces.
We need the gradients of temperature and strains in the regions of interest of the coils as input
data for unsmearing. Strains are directly obtained from standard postprocessing, gradients of
temperature can be replaced by their local aproximation with finite differences. For the two
considered cases the unsmearing procedure has been applied to recover the stress field in the
cross-section of the single conductor, using again the apropriate option of our code for homogeni-
zation. In Fig. 7. the graphs of stress in the cross-section perpendicular to fibres are shown.
The elevations of faces over the cell of periodicity are proportional to oy. Case a) is easy to
verify by simple hand calculations. Case b) shows the full complex state of stress in the neighbou-
rhood of a single conductor.

34. Local behaviour near the end of the stress-free edge-correction of
the global solution

The presented solution obtained for the heterogeneous body, being a relatively good approxima-
tion in the interior of the beam is generally not acceptable near the boundary. The main reason
is that only the global solutions can verify the boundary conditions (the local one is still of
the same form and proportional to the global deformation in each local cell of the structure,
including those on the border). The most dangerous case occurs when the limiting surface cuts
across the fibres. We consider here this situation. The global solution is computed for a simply
supported composite beam in a uniform steady field of temperature 7 which exceeds the tempera-
ture of the neutral state of the composite structure, the difference being AT. The beam is supposed
to be made of an array of superconductors shown in Fig. 1. Global axial force vanishes, global
strains are constant and different from zero. We have the non vanishing fluctuation of normal
stress on the free surface on each cell of periodicity; this forms the residual:

o5 (% )= —anu(y) X% (¥) e &) 4

We can define a boundary corrector near this surface. This corrector should have the following
properties:
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Fig. 9 Deformed mesh configuration on the cell of periodicity at the free edge of the beam.

oz y)=—o’f(y) for ;=0 (35)

Gz y)=0 (56)

043" (2 y) Y-periodic with respect to y. (57
0" (z, y) decreases exponentially for z;—>c (58)

In the above Egs. (55), (56), (57) and Eq. (58) z denotes an another position vector in the
local coordinate system with its origin at the free surface and one axis perpendicular to it:

— X3

Z3— & (59
For detailed study of similar problems the reader is referred to (Ladeveze 1985). The problem
Egs. (55)-(58) can be solved using a commercial FE code once the effective material coefficients,
functions of homogenizations and the global solution are known. In this example the program
ABAQUS is used. To compute values of the above prescribed boundary conditions we take
the value of global strains from our beam model, we use our own FE program which calculates
the set of homogenization functions and determine then unsmeared stress oi5'(y) on the cell
of periodicity. A graph of this stress is similar to that in Fig. 7a. We assure identical definition
of the FE meshes in our local model and that for ABAQUS models.

In the definition of the model 3D brick elements are used. This choice is determined by
the model used in our homogenization. The periodicity of the solution is assured by imposing
kinematical constraints between nodes on the opposite faces of the cell of periodicity (ABAQUS
command *EQUATION). Condition (58) is accounted for by use of infinite elements (see for
details (Lefik, Schrefler (1996)). Only one cell of periodicity is modelled by finite elements with
the heterogeneous material properties. The rest of the semi-infinite region is discretised by infinite
elements as shown in Fig. 8. For these infinite elements effective material coefficients are used
which were computed previously by our homogenization program. In Fig. 9 we show the real,
corrected displacements on one cell of periodicity at the free edge of the beam.

4. Conclusions

We have developed via the homogenization procedure a beam element for unidirectional com-
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posites. This model allows for a substantial reduction in size of the problem and is hence easily
applicable to large engineering structures such as superconducting coils. Unsmearing procedures
yield realistic stress diagrams with local features needed for engineering design. Some residual
thermal stresses, present even in the case of statically determinated supports, are recovered with
unsmearing. These stresses do not appear in the global homogenized model.

Since the computational process splits into several numerically disjoint steps and resulting
graphs are constructed piecewise, the algorithm is numerically not very costly.
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Appendix

In this appendix we give some matrices which are used in the text of the paper.
We introduce a matrix of homogenization functions:

X'(y)= L (y)}{xfz(y)}{x,-”(y)}{)(f”(y)}{)(,-B (}’)HX:'” (M} sxe
Problem Egq. (15) can be rewritten in matrix form:

find x7* € V, such that: VvEVy

f e(v(») D(yX1—LX(y)) e (") dY=0

where L is the strain matrix operator and D contains the material coefficients a;,. Using a finite element
discretization of the cell of periodicity, X is interpolated as:
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X(& M= N(& mX

Other shape functions used in the paper are described by Eq. (40)
The vector of the global displacements u is fixed as follows (the superscript will be dropped in the
sequel):

w'={u® ud u

The assumed form of the global displacements Eq. (23), (24) permits us to make the following decomposi-
tion:

u(xXa x3)=(N,0c3)+x,0ca) N (x3) 1 (x0) N (c3)) v
In the above we have introduced the following matrices:

[N‘”OOOOO

N/=| 0 0 N* 0 0 0 [oj.m]
0 0 0 0 N 0
x x> 0 0 0 0O
x,,.s-:[ 0 0 x x» 0 0 ] as)
0O 0 0 0 x x
0o 0 0 0 0 0 0 0 EN”
©o 0 0 0 0 -N"0 0 0
»_ 0 0 0 0 0 N93 0 0 0
Nu 0 0 0 0 0 0 0 0 E22Nb3 (46)
~N$'-N? 0 0 0 0 0 0 0
0 0 —NY N 0 0 0 0 0
—Euxix; Elllflz_xl __E22x22X7 0
X
el By B Exxix; 0 1)
’ 0 (0

0 N 0
N, = [ﬁjaxs 0 0 N? ][0]3><1]
N 0 0

We write equations for # now for a single cell (conductor) indicated with superscript s. The
local set of coordinates y is placed in the plane of the cross-section of this cell of periodicity.
Coordinates of the origin of y are x° for this cell.

u(xaas Vo )C}) = (Nul(x3) +xu(xas) Nu”(xB) + r, (xas) Num(x3)) v+
+ 8(xu (ya) Nu”(XS) +ya ru,a(xa:) Num(x3)) v

Strains
The ordering of the strains vectors is the following:
&'=led e e e ed'l

The symbol € is used to distinguish the part of the zero order strains which is given by derivative
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of the global displacement vector.

Using the interpolation functions and the vector of nodal unknowns v, e may be written
as:

€ (xo X3)= (B'(x3) +x. (xo) B'(x3) Fr.(x0) B”(x3)) v

where:
0 0 O.SEHXZ —0.5E11x1 0.5E11X1 O.SE]]XZ
0 0 0.5E22X2 —0.5E22x1 0.5E22X1 0.5E22X2
o x1 ox 0 0 0 0
=1 0 0 0 0 0 0
0 0 O.le 0.5E22X2 0.5E22X2 - 0.5X|
0 0 _O.SXQ O.SEH)Q O.5E11X 0.5X2
[01x2 [01:x4
(X(x) 0 0 0
r.(x,)= 0 0 0 0
l: [0]ax> 0 2000 fu(xe)  falxd)
0 10xa)  fulead)  flxd)
0 0 0 0 0 000 E,NB
0 0 0 0 0 000 E,N®
g_| 0 0 0 0 Nioo0 0
0 0 0 0 0 000 0
0 0 00SN? 0 000 0
0 —05N%20 o0 0 000 0
—N¥ —N$ 0 0 0 0 0 0 0
0 0 —N¥ N 0 0 0 0 0
y_ 0 0 0 0 0 05N%  —N' 0 0
B=l "o o o o 0o o 0 —N2 O5NG
0 0 0 0 0 0 0 N®*  0.5N9
0 0 0 0 0 —05N$ —N 0 0
[0]axs [0]2x4
N% 0 0 0
B” 05N% 0 0 0
[0lixs 0 OSNS 0 0
0 0 05N 0

In local coordinates y for the single cell s, following the approximation Eq. (43) for # and similar
for f,, we have:

& (xd, y, x3)=(B'(x3) Hx.(x5) B (x3) Tre(xs) Blx)) v +
+ & (e (ya) B"0e3) T yarea (xa) B"(x3)) v
which in a more compact form becomes:

" (xd, ¥, X)) =1 (x3) Bi(x) e (Vo Xa') Ba(x3)) v
where
x1.(x)= 1, x(xa), re(x)], ne(Va X)= (X (Va), Y1¥er(x5), yare2(xa)]
B (x5)=[B'(xs). B"(x3), B"(x:))]", B>(x3)=[B"(x3), B"(x3), B"(x3)]"

The correctness of the above Egs. can be verified by consecutive substitutions.





