Structural Engineering and Mechanics, Vol 4, No.6 (1996) 589-600 589
DOI: http://dx.doi.org/10.12989/sem.1996.4.6.589

On a new fourth order self-adaptive
time integration algorithm

Wanxie Zhongt
Research Institute of Engineering Mechanics, Dalian University of Technology, Dalian, P.R. China
Jianping Zhut

Department of Mathematics and Statistics, Mississippi State University, MS 39762, US.A

Abstract. An explicit 4th order time integration scheme for solving the convection-diffusion equation
is discussed in this paper. A system of ordinary differential equations are derived first by discretizing
the spatial derivatives of the relevant PDE using the finite difference method. The integration of the
ODES is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial
grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of
the ODEs defined at different spatial points, which improves the computational efficiency significantly.
Af ngmeric:;l %xample is also discussed in the paper to demonstrate the implementation and effectiveness
of the method. "

Key words: time integration; differential equations; self-adaptive method; numerical analysis.

1. Introduction

Traditionally, time dependent partial differential equations are solved using finite difference
tim-step integration algorithms (Press, Teukolsky, Vetterling and Flannery 1992). The subdomain
precise time integration method (Zhong 1995) uses semi-analytic method to integrate over the
time dimension precisely to the machine precision (Zhong 1993). This algorithm not only improv-
ed solution accuracy, but also the stability property of the integration algorithms. For example
the single point FTCS and leap-frog type precise time integration algorithms are unconditionally-
stable when applied to the linear heat equation (Zhong and Zhu 1994), while the traditional
finite difference FTCS is only conditionally stable and the finite difference leap-frog scheme
is unconditionally unstable.

In this paper, we derive a 4th order time integration scheme that is based on the single point
sub-domain precise time integration method. The new algorithm is explicit, but only conditionally
stable. When a large time step A or a fine spatial grid.with a small Ax is used, the algorithm
will become unstable. To satisfy the stability criterion, the step size in time dimension may
be too small to be computationally efficient. We propose to use adaptive grid to improve computa-
tional efficiency.

There has been active research in adaptive method for numerical solution of differential equa-
tions, particularly in spatial grid to resolve fast changing solutions in the space (Zienkiewicz

t Professor
1 Associate Professor

590 Wanxie Zhong and Jianping Zhu

and Taylor 1991). For adaptive methods in the temporal dimension, most of the methods proposed
use the same time step Ar for the integration of equations defined at all spatial grid points
(Zienkiewicz and Xie 1991, Zeng, Wiberg and Li 1992, Choi amd Chung 1994, Wang 1994).
For non-uniform spatial grids, this method may be unnecessarily expensive since the tiny step
size determined by the smallest spatial grid spacing is not necessary for most points in the
spatial grid.

With explicit time integration, the equations defined at different spatial grid points are integrated
independently, providing the possibility of using different time steps for the equations defined
at different spatial grid points based on the spatial grid spacing at those points. The use of
this type of self-adaptive time-space integration algorithm makes the precise time integration
algorithm more efficient.

2. Sub-domain precise time integration of linear systems
The precise time integration is based on the semi-analytical method which discretizes the
spatial dimensions of a given time dependent PDE, such as
u=V-(avu) M
to generate
u=Hu+f(t) #))

where u is the vector containing the values of u defined on a discrete spatial grid. To solve
Eq. (2) we know from the theory of ordinary differential equations that it is important to get
the solution of the corresponding homogeneous equation

»=Hpy. 3)

Assume that the coefficient a in Eq. (1) does not depend on time z, then H is a matrix whose
elements are independent of ¢. Therefore, the general solution of Eq. (3) can be written as

. p= eXp(H . t)) (4)

where v is the initial state. Let the length of a time step be Ar and T=exp(H* Ar), then at
the time integration points 7,=0, /,=At¢, ---, L=k Az, we have

WAH=v"=T-y", 5

ok Af)=v®=T-pD, (©)

where % is the solution vector at the time #,=k At. It is clear that the key for the accurate
computation of solution ¥* is to determine a precise matrix 7. Once T is calculated, the solutions
can be obtained by repeated matrix-vector multiplications. An efficient algorithm for computing
matrix exponential function was given in (Zhong and Yang 1991). The method is based on
the relation

exp(H « A= [exp (H . % >]m =[exp(H-7)]")

On a new fourth order self-adaptive time integration algorithm 591

where m can be selected as an integer power of 2, i.e., m=2". If m is large enough, then t=At/m
will be too small to cause any significant truncation error. We can therefore use the truncated
Taylor expansion to approximate exp(H:t) as

exp(H't) ~ I+Ht+(H7)/2 ! +(Hr)’ /3! +(HT)Y/4 ! =I+T, ®

With a small 7, the expansion should give a very good approximation to exp(H- 7). Since the

elements in matrix 7T, is very small as compared to the unity in the identity matrix I, they

should be stored during the computations separately for better numerical accuracy, rather than

added to the identity matrix 1. Otherwise, the accuracy will be lost due to the round-off errors.
With Eq. (8), matrix T can be computed as

T=(+Ty"=1+T)" ' XA+1)" = ©
using only M matrix multiplications. Note that for any matrices 7, and 7,, we have
I+ \I+17)=I+T,+T.+T,XT. (10)

Therefore, the matrix computation expressed by Eq. (9) can be accomplished by the following
algorithm:

Compute 7, from Eq. (8)
do i=1, M

T,=2T,+T,XT, (11)
end do
T=I+T, (12)

Egs. (8), (11) and (12) give the algorithm for computing the exponential matrix 7. For the inhomo-
geneous system (2), assume that the inhomogeneous term f(z) is linear within a time step (z,
t+1), then we have

i¢=Hu+r0+r1 (t“tk), (13)

where r, and r, are known vectors. This equation can be solved using the superposition principle.
Let @(t—1,) be the fundamental solution of the corresponding homogeneous Eq. (3), ie,

d=H®, D0)=I,
then the solution of Eq. (13) can be written as
u=®¢—1) [uP+H '"(rp+H 'r)]—H '[nn+H 'ri+r-—t). (14)

In the numerical solution process, we do not need the analytic form of @&, only the matrix
Dt +1—1,)= D(t)=T is needed to calculate u**" from Eq. (14). Therefore, the precise time integra-
tion formula for the inhomogeneous Eq. (13) can be given as

u("“):T[u(")+H41(r0+Hﬁlr1)]—H_l [rg+H"r1+r1° 'L':l. (15)

While this precise time integration algorithm is accurate to machine precision, it becomes
computationally expensive for large systems due to full matrix multiplication and inversions.
The sub-domain precise time integration method was introduced to improve computational effi-

592 Wanxie Zhong and Jianping Zhu

ciency. For simplicity of discussions for the subdomain precise time integration, we consider
the one-dimensional case of Eq. (1) with ¢=1 and the following boundary conditions:

u(©, =0, uQ, =0, (16)

If the spatial derivative is discretized using the central finite difference scheme, we will have
a set of ODEs

== by, =1, e, N (a7
Ax?

Eq. (17) can be written as a matrix equation
u=Au (18)

where u={u,, u, ***, uy— 1} and 4 is an (N—1)X(N—1) tri-diagonal matrix with —2 in the
main diagonal and 1 in the sub- and super-diagonals. With N=20, Eq. (18) can be solved easily
by the precise time integration method since it is a small problem.

The basic idea of the subdomain precise time integration is to apply the integration process
to only a few rows of the system equations in (18) at a time, instead of the complete system.
For example, the 3-point subdomain integration will treat three equations of (18) simultaneously.
For an interior point i, we will have

Ui-2
l:l,'—] 1 1’_2,1 Ui
B TAR I -2 u, (. i=2, =, N=2 (19)
Uit [=21 Ui+

Ui+

or

Ui =2 1 Uj—y U2

oL _ 1 =0 e N—
{_ui}—Ax,l 2 1 {u,—}+sz{o}, i=2, -, N—2. (20)
Uit 1 -2 Uit Uit+r

This equation system can be considered as a system of three ODEs with an inhomogeneous
term. Assume we have finished calculation at time step », then u”, i=1, ---, N—1, are all
known. To calculate #"*", i=1, -+, N—1, we have to integrate Eq. (20). When the subdomain
precise time integration is applied to Eq. (20), we have to approximate the inhomogeneous term
{ui—s, 0, ui+>}". An explicit approximation would be to use the values #” and u%) from the
previous time step.

Having approximated the inhomogeneous term in Eq. (20), we can write it as
v, =Hv+f", 21
vie (w1, us, iy}, i=2,3, -, N—2

Let T=exp(H- Ar) which can be calculated accurately using the method just discussed, we will
have, based on Eq. (15),

On a new fourth order self-adaptive time integration algorithm 503

v =T (T=DH ", (22)
with
=g 0w

This algorithm is first order accurate in time.

To improve the accuracy in the time dimension, multi-step time integration can be easily
incorporated into the subdomain precise time integration method. For example, if a leap-frog
type algorithm is used in the subdomain precise time integration method, we will have

vi(”+ 1)— TV,'(” - l)+ (T_I) H lﬁn (23)

with T(2Ar)=exp(2HAt) which is very similar to the results given by Eq. (22). Note that for
the first step when #=0, a one step forward integration given by Eq. (22) must be used to
calculate u", i=1, ---, N—1, in order to use the leap-frog method at later time steps.

In the extreme case, we can use only one interior point in each subdomain to simplify the
computation and analysis of the algorithms. For the i-th subdomain, with only one interior
point, we have

l'thA—ljcz(u,r_l—2u;+ui+;)= Az HU; + 2(u1]+u1+]) i=1, ~, N—1 (24)

Assume u™, i=0, 1, .-+, N, are all known, the one-point explicit subdomain precise time integration
of Eq. (24) leads to

u i(f)l +u i(fl)l

U (f)=Ce241ax’ 4 5 BStShn (25)
Using the conditions u;(t,)=u", u;(t,+))=u;{t,+A)=u"*", we have
g
(n) 4 {n) (n)
ui(n+1):(ui(n)_ﬁr_¢2“1_+l>e«zAz/Ax2+ ui” 1‘5” ' (26)

Eq. (26) is similar to the FTCS ﬁmte difference scheme. When At is small, we can use a first
order approximation for e 2474¥ o get

—2A1Ax% _gé.t
e =~ 1 A (27)
Substituting Eqg. (27) back into Eq. (26), we get
At
ur =y M+ A—xz(u,-@] —2uM+ul) (28)

which is exactly the FTCS finite difference scheme. It is well-known that for the FTCS scheme
given in Eq. (28), the stability condition is
At <l

A2 (29)

which could be very restrictive for a fine spatial grid with small Ax.
On the other hand, for the scheme given by Eq. (26), we can use the Von Neumann stability

594 Wanxie Zhong and Jianping Zhu

analysis to get the stability criterion as

A +(1—21)cosBI<L1 (30)

where A =e 24745 and 0<A<1. It is not difficult to verify that the inequality in Eq. (30) is
always satisfied for any A and 6. Therefore, the explicit one-point subdomain precise time integra-
tion given by Eq. (26) is unconditionally stable.

For the leap-frog finite difference scheme

=y n~ N4 2AAx2 (ui@l — 2“1'(") + ui(-nf)l)a (31)

it is also well known that the stability requirement is
— 2
l bt 2b +4]Sl (32)

where b:%% sin? g If sin® —g—q&(), it is obvious that the inequality in Eq. (32) cannot be
satisfied. Therefore, the method is unconditionally unstable.

With the one-point precise time integration method, a similar three level formula can be

obtained from Eq. (24) by integrating from #,-, to #,,, and setting A—lxz-(u,-_ﬁ—um) to be

1
sz (ui@l ui(i)l):
(n) (n) (n) (m
_ u™ tu; _ 2 Ul +u
ui(n+l)_—|:ui(n l)___t.lz_lirl_]e 4A/AX +_1_1_2_1i (33)

Again, using a first-order approximation for e *474** will lead to the leap-frog finite difference
scheme of Eq. (31). The Von Neumann stability analysis of Eq. (33) shows that the convergence
criterion

'%[(1—)3) cos@+ \/(1—A2)*cos? 9+4_/1§i|‘51, (34)

where A =e 4474+ ig satisfied unconditionally. Therefore, the one-point subdomain precise time

integration algorithm given by Eq. (33) is also unconditionally stable.

3. The high order single point precise time integration method

For simplicity, we use the following one-dimensional diffusion-convection equation
u,=Du,,—Cu,. (35)

where the diffusion and convection coefficients D and C are constants. A spatial discretization
of Eq. (53) can be derived as follows:

Since Eqg. (35) has two obvious solutions u=constant and u=x—C, which is a wave propagating
at a velocity C, a good spatial discretization scheme must admit these two solutions. Thus we
have ‘

On a new fourth order self-adaptive time integration algorithm 595

1'4,-=c|u,-f1—c2u,-+c3u,-+,, i= 1, ey N—1 (36)

with

cl:<£+cd)/Ax,-,

2

C3:<—%+Cd)/Axi+la

C2:C1+C3,

AXi=Xi—Xi-1, AXiv1=Xi41— X (37)
Since Ax/s, i=1, 2, ---, N, are usually not equal, the coefficients ¢, ¢; and ¢; are different for

different index i. The third constant ¢, can be determined by requiring that the scheme Eq.

(3'6) contain the asymptotic steady state solution of Eq. (35) which is u=e“”, thus obtai-
ning

Pi:CAxf/D7 pi-HZCAxH—l/D’
fi=[1—exp(—p)]/Ax,
g1=Lexp(pis)— 1)/ Axisy,

ci= gt g =) (8)

This spatial discretization is upwinding since c;>c:>0 if C>0.
The single point subdomain precise time integration can be applied to Eq. (36) easily. If
we re-write Eqg. (36) as

l:ti+02u[:C1Ui’1—1+C3uir~lH (39)

where we have assumed that the right hand side terms are assigned the values from the previous
time step, then Eq. (39) can be integrated explicitly using the initial condition u=u"""att=t,-.
The single point leap-frog type algorithm will lead to

() ()))

_n cuftou?| - culfh+eu”

ui(n+l)__——[ui(n 1 3U; 1c 1Ui—1| 20041 3 ,+12 LUi—1 (40)
2

This algorithm is explicit and has second order of accuracy in time. Using the similar Von
Neumann analysis as we did for the one-dimensional heat equation, we can also prove that
scheme Eq. (40) is unconditionally stable.

To further improve the accuracy in time, we use a higher order approximation for the right
hand side terms of Eq. (36). Using the second order Taylor expansion for u,-; and ., In
Eq. (36), we obtain

utcu=c, uteuly +(c i) tesul M=)+ il te uii])(t-tny/z' @D

The first and second order derivatives in the right hand side of Eq. (41) can be approximated
by

596 Wanxie Zhong and Jianping Zhu

w'=cu —outouf, j=i—1, i+, 42)
and
w=2lu—w—u' " A)/Ar, =il i+ (43)
Integrating Eq. (41) from ¢, to #,+,, we obtain the following algorithm:

u! '=Lul T = (ul Tt aul e A (et e uli)e

sl o

;N 2 n . _l___i l_ 2 L_L L 2
+I_—_(C|u,'_1+C3a,+|)/C2] [5 f+§2 A (2 §+fz)i](At) (44)
where ¢=c,Ar, A’=exp(—2&). This is an explicit algorithm. Note that Ar always appears in
the algorithm in the form of {=c, At which is a non-dimensional parameter. Although in Eq.
(44) Ar appears as a separate parameter, it actually still can be put in the form of &=c, At
if we substitute Eqgs. (42) and (43) for &" and u". When ¢ is small, we have

(rrlird)=de e

and

1 1,1 of 1,1 TN 1, 1,
Erg)r(ar g s i
Substituting these expansions back into Eq. (44), we can show that the last two terms are of
the orders of & and &*. Therefore, the leap-frog type algorithm Eq. (40) is second order accurate.
To prove that algorithm Eq. (44) is 4th order accurate, we need to take more terms in both
Eq. (41) and the expansion of & in Eq. (44). It can be shown that the truncation error in Eq.
(44) is of the order of & and higher. Therefore, it has 4th order of accuracy. The detailed proof
is lengthy, though straightforward, so we omit the proof here.

Although the high precision of the algorithm given by Eq. (44) is attractive, it is no longer
unconditionally stable because of the use of the expansions in the right hand side of Eq. (41).
When &> 1.5, the algorithm is unstable. In:a non-uniform spatial grid, the straightforward applica-
tion of this algorithm is not efficient since the step size is dictated by the smallest spatial grid
size. Therefore, adaptive time-space integration algorithm becomes necessary.

4. Self-adaptive time-space integration

When solving partial differential equations, the spatial grid is usually non-uniform in order
to resolve the fast changing spatial variables efficiently. For explicit schemes that are conditionally
stable, the step size of the time integration is dictated by the smallest spatial grid spacing (stability
criterion), causing unnecessary small steps for the regions where the spatial grid spacing is large.
As a result, the algorithm with uniform time step sizes for all spatial grid points is not computatio-
nally efficient.

On a new fourth order self-adaptive time integration algorithm 597

A better idea would be to use different time step Az at different spatial grid points. As long
as &=c, Ar <1, stability will be maintained. We can then apply the fourth-order precise time
integration scheme efficiently to problems with non-uniform spatial grids.

Assume Delr is the standard time step size selected for the next step of time integration. It
should maintain stability in most of the grid points in the spatial domain. For those spatial
grid points where the stability criterion is violated, the step Delt can be sub-divided into At=Delt/2?”
(p=1, 2, ---). After the spatial grid is determined based on the resolution requirement, we can
calculate coefficients ¢, ¢, and ¢; for each spatial grid point j. If {=c¢,-Delt<1 is not satisfied
at point j, then the step Delt should be halved repeatedly until the criterion is satisfied, ie.
until ¢,-Delt/2%<1 is satisfied. The information 2% should be stored in an array for later use:

Astp [j1=27. (45)

In order to compute u"*' based on Egs. (42)-(44), the following values from the previous
two steps are needed:

ul, j—2<i<j+2,
ut !, J—1<i<j+1, (46)

These values from the neighboring points may not be defined at the sub-divided time steps
for point j (note that Delt is sub-divided into 2% smaller steps to satisfy the stability criterion
at point j), or vice verse. Therefore, we need another array to record the finest subdivision
of the neighboring points of j:

Bsipl j 1=2%, q/=max(p;—» pj-1, Pj» Pi+1> Pj+2)- 47)

Obviously we have ¢;2 p,. Let dta; and dtb; represent the step sizes of time integration at
point j and that of the neighboring points, respectively. Since Eq. (41) is integrated analytically,
the solution value at any point within the step dfa; can be calculated easily. Assume that the
integration process has reached 7,=nx* dta; at point j, and that the values in Eq. (46) are available.
To advance the time integration to f,.,=(n+1)* dra;, we need to calculate the solution values
at the increment of drb; since these values will be needed for the integration of the neighboring
points. Therefore, there are totally

Bstp(j 1/Astpj 1=2%"r)
substeps in each step dfa;. For the kth substep, the integration formula is
dt=kx* dtb;, kce=cy* (dta;j+dr), s=2/c,,
e=exp(—kc), dd=(c\x u™+e* uft))es,
ui(t,+d)=(" '—dd)x etdd+((csx i +cy i/l)/c)x

((cx dt—1)+(cyx dtai+1* e)fer+(csx afii e uy)/
(2% c)* (dix (dt—s)+s/c,—(dtax (dta,+s)+s/cg)* e). | 48)
where & and # can be calculated based on Egs.-(42) and (43) using the data given in Eq. (46).

598 Wanxie Zhong and Jianping Zhu

5. Numerical experiment

We consider Eq. (35) with D=1 and C=14 in an interval [0, 2]. The boundary conditions
are

and the initial condition is u(0, =0, u@. H=20,

u(x, 0)=10x.
We divide the spatial interval into 20 subintervals with non-uniform lengthes:

o, -+, x200=10.00, 0.50, 0.10, 0.15, 0.20, 0.30, 0.40,
0.50, 0.60, 0.80, 1.00, 1.20, 140, 1.50,
1.60, 1.70, 1.80, 1.85, 1.90, 195, 2.00}

The discretization is based on Egs. (36)-(38). The result from the precise time integration, listed
as “precise” in Table 1, is taken as the accurate solution with machine precision. For the single
point high order integration based on Eqs. (42)-(44), take Delt=0.001, the largest value of {=c,+Delt
is 0.8324. The result of integration is given as “highp” in Table 1. When the time step size
increases to Delt=0.002, the scheme based on Egs. (42)(44) becomes unstable.

With self-adaptive time integration, the step size Delt is divided into different number of sub-
steps based on the local spatial grid sizes. The two arrays that record the subdivisions are as
follows:

Astp[0.20]: 44442.1,1,1,1,1,1,
1,1,1,1,124,4.44

Bstp[0.20]: 44444421111,
1112444444,

Note that the integration step size in the middle of the interval is four times that in the two
ends since the grid spacing is large in the middle. The results of this adaptive integration is
listed as “adap-hp” in Table 1.

Since a high order integration formula is used in the calculation, the numerical results are
very close to the accurate solution. The difference is invisible from curves in a plot. For the
self-adaptive formula, although the amount of computation has been reduced significantly, the
accuracy was not affected very much, and the algorithm remained stable in the computation.
The line of “leapfrg” in Table 1 gives the numerical results corresponding to leap-frog algorithm.
The results are not as good as the self-adaptive 4th order scheme.

The computational grid (time and space) of the self-adaptive high order integration scheme
for this example is given in Fig. 1, where the points represented by O are the integration steps
(recorded in the array Astp), and the points represented by = are the auxiliary points for the
transition between points in which different spatial grid spacing requires different subdivision
of time step Delt (recorded in the array Bstp). The solution values at these auxiliary points should
also be calculated during the integration from iz, to 7,.;. It is clear from Fig. 1 that the self-
adaptive integration algorithm skipped many points in the subdivision which would otherwise
be processed if a uniform small time step were used, thus improving the computational efficiency
significantly. The results obtained by using a unified small time step for all grid points are
represented in Table 1 as “highp”.

On a new fourth order self-adaptive time integration algorithm 599

Table 1 Time history of discretized convective-diffusion equation with D=10 and C=14
x=01 x=02 x=04 x=06 x=14 x=16 x=18 x=19

when r=0.004

precise 05707 14556 34402 54400 134400 154400 174408 184722
highp 0.5696 14540 34401 54400 134400 154400 174407 184719
adap-hp 05695 14540 34400 54400 134400 154400 174407 184719
Leapfrg 06098 1.5061 34528 54466 134425 154503 174747 18.5509
when =0.008

precise 03560 1.0209 28888 4.8803 12.8800 14.8800 16.8875 179971
highp 03554 10198 2.8883 4.8802 12.8800 14.8800 16.8875 17.9970
adap-hp 03554 1.0202 28847 48800 12.8800 14.8800 16.8875 17.9970
Leapfrg 03992 1.0913 29193 48951 12.8849 14.8985 169479 18.1159
when r=0.016 ’

precise 0.1608 05122 19141 3.7782 11.7600 13.7605 15.8020 17.1035
highp 01607 0.5119 19135 37779 117600 13.7605 15.8020 17.1035
adap-hp 0.1607 0.5121 1.9105 37749 117600 137605 15.8020 17.1035
Leapfrg 0.1920 0.5760 0.1937 38150 11.7693 13.7913 158980 17.2654
when t=0.024

precise 0.0805 = 02708 1.2097 27721 106402 12.6420 147333 16.2380
highp 0.0805 0.2707 1.2093 2.7717 106402 126420 147333 16.2380
adap-hp 00805 02709 12095 27688 106401 12.6420 147333 16.2380
Leapfrg 0.0999 03151 1.2750 2.8291 10.6541 12.6816 14.8509 164232
when r=0.032

precise 00429 01492 07506 19462 9.5225 11.5246 13.6726 153835
highp 00428 0.1492 07504 19458 95225 11.5246 13.6726 153835
adap-hp 00429 0.1494 07515 19449 95220 11.5245 13.6726 153835
Leapfrg 00545 01779 08071 20120 95418 11.5713 13.8043 15.5831
when 1=0.040

precise 00238 00848 04633 1.3247 84134 104100 126163 14.5342
highp 00238 00848 04632 13244 84133 104098 12.6163 14.5342
adap-hp 0.0238 0.0850 04645 1.3250 94123 104094 12.6162 14.5341
Leapfrg 00308 0.1029 05070 13881 84393 104630 127578 14.7435
when r=0400, all the same as precise

precise 00000 00000 00000 00000 00045 00740 12163 49320

0.5 1
— b—d- $ P $— t_+Delt
—
P —G—— P -t

Fig. 1 A non-uniform time-space grid. Time integration points are represented by the open circles, and
the auxiliary points are represented by the stars.

600 Wanxie Zhong and Jianping Zhu

The self-adaptive algorithm discussed here can be extended to two- and three-dimensional
cases in a straightforward manner. The array Astp can still be used to record the number of
subdivisions of Delt needed to satisfy the stability criterion at each point, and the array Bstp
is determined by the subdivisions of the neighboring points.

6. Conclusions

A fourth order explicit time integration scheme is presented in this paper. The combination
of this algorithm with self-adaptive time steps can improve computational efficiency significantly
by using different subdivisions at different spatial points. Application of this algorithm to more
complicated practical problems is underway.

References

Choi, CK. and Chung, HJ. (1994), “An adaptive procedure in finite element analysis of elastodynamic
problems”, Proceedings of International Conferenceon Computational Methods in Structural and Geotechni-
cal Engineering, Hong Kong, December.

Press, W.H., Teukolsky, S.A,, Vetterling, W.T. and Flannery, B.P. (1992), Numerical Recipes, 2nd ed. Cambri-
dge University Press, New York.

Wang, H.Z. (1994), “A posteriori error estimator of energy and adaptive coordination of spatial-temporal
discretization for FEM and direct integration in transient dynamic analysis”, Proceedings of Internatio- -
nal Conference on Computational Methods in Structural and Geotechnical Engineering, Hong Kong, Dece-
mber.

Zeng, LF., Wiberg, N.E. and Li, X.D. (1992), “A posteriori local error estimation and adaptive time-
stepping for Newark integration in dynamic analysis”, Earthquake Engineering and Structural Dynamics,
21, 555-571.

Zhong, W. (1995), “Subdomain -precise time integration and numerical solution of partial differential
equations”, Computational Structural Mechanics and Its Applications, to appear (in Chinese).

Zhong, W X. (1993), Computational Mechanics and Optimal Control, Dalian University Press, Dalian, China.

Zhong, WX. and Zhu, J.P., (1994), “Rethinking to finite difference time-step integrations”, Proceedings
of International Conference on Computational Methods in Structural and Geotechnical Engineering, Hong
Kong, December.

Zienkiewicz, O.C. and Taylor, R.L. (1991), The Finite Element Method, 4th ed., McGraw-Hill, New York.

Zienkiewicz, O.C. and Xie, Y.M. (1991), “A simple error estimator and adaptive time stepping procedure
for dynamic analysis”, Earthquake Engineering and Structural Dynamics, 20, 871-887.

Zhong, W.X. and Yang, Z.S. (1991), “An algorithm for computing the main eigenpairs in time continuous
LQ control.” Applied Mathematics and Mechanics, 12, 45-50.

