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Abstract. A new three-dimensional 8-node solid element with rotational degrees of freedom is presented.
The proposed element is established by adding rotational degrees of freedom to the basic 8-node solid
element. Thus the element has three translations and three rotational degrees of freedom per node.
The corner rotations are introduced by transforming the hierarchical mid-edge displacements which
are parabolic shape along an edge. The derivation of the element is based on the mixed variational
principles in which the rotations are introduced as independent variables. Several types of non-conforming
modes are selectively added to the displacement fields to obtain a series of improved elements. The
resulting elements do not have the spurious:zero energy modes and Poisson’s ratio locking and pass
patch test. Numerical examples show that presented non-conforming solid elements with rotational degrees
of freedom show good performance even in the highly distorted meshes.

Key words: 8-node solid element; hierarchical mid-edge displacement; rotational degrees of freedom:;
corner rotations; mixed variational principles; non-conforming modes.

1. Introduction

The need for solid elements with rotational degrees of freedom has arisen in many practical
engineering problems. Element with rotational degrees of freedom are advantageously used in
many structural analysis problems. When spatial beams and shell elements are connected with
solid elements, six degrees of freedom - three displacements and three rotations are required at
each node and there will be no problems regarding discrepancy in the number of nodal degrees
of freedom if solid elements have rotational degrees of freedom. Thus this solid element with
rotational degrees of freedom will provide versatile tool in the analysis of engineering problems.
As a result, the interest of the engineering community in the element with rotational degrees
of freedom was manifested lately by a series of papers on the subject (Hughes and Brezzi 1989,
Ibrahimbegovic and Wilson 1991, Choi and Lee 1995, Allman 1984, 1988, Yunus er al. 1989
t Professor
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and 1991, Pawlak er al 1991, Cook 1986, 1987, MacNeal and Harder 1988, Choi and Chung
1995).

The main advantages of developing the solid element with rotational degrees of freedom are:
(1) To improve the element performance while avoiding the use of higher order elements which
have mid-edge nodes and have complexity to define element geometry. (2) To simplify the mod-
eling of connection between solid and beams and/or shells, which have rotational degrees of
freedom. (3) To represent an alternative approach to solve thick shell problems using solid ele-
ments with rotational degrees of freedom.

Lots of efforts have been made to define a corner rotation of a solid element. A three-dimension-
al continuum mechanics problem can be formulated with the variational principle which em-
ploys an independent rotation field. In this formulation, first given by Reissner 1965, the symmetry
of the stress tensor is not enforced a priori. The skew-symmetric part of the stress tensor appears
as a Lagrange multiplier for enforcing the equality of the independent rotation field to the skew-
symmetric part of displacement gradient. Hughes and Brezzi (1989) have extended this Reissner’s
formulation by recognizing the instability of discrete approximations and suggested a way in
which the discrete approximation could be stabilized. These developments are in a sharp contrast
with the previous works on elements with drilling degrees of freedom (Allman 1984 and 1988,
Cook 1987, MacNeal and Harder 1988). The finite elements based on the extended Reissner’s
formulation have been presented in a number of recent works by several researchers (Ibrahimbe-
govic and Wilson 1991, Choi and Lee 1995, Allman 1984, Choi and Chung 1995). These elements
are built on a special hierarchical displacement field. In developing 8-node solid element, Ibrahim-
begovic, et al. 191 extended the applications of Hughes and Brezzi's work to combine with
serendipity shape functions for the mid-edge nodes of the 20-node element.

In this paper, these previous works are utilized as bases for developing a new non-conforming
8-node solid element with rotational degrees of freedom. A mixed-type variational formulation
in which the rotational field is interpolated independently was used with the skew-symmetric
part of the stress tensor. The proposed elements are built on a special hierarchical interpolation
of displacement field and possess six degrees of freedom per node. By the use of additional
non-conforming modes in the element, performance of the element is much improved and the
Poisson’s ratio locking phenomena is eliminated. Numerical tests are carried out to evaluate
the validity of new formulation.

2. Variational formulation
2.1. Strong form of the boundary value problem

In the given domain §2 occupied by a body (See Fig. 1), the stress tensor o is treated as
a dependent variable which is assumed as non-symmetric. Additional dependent variables con-
cerned are displacement vector u#, and a skew-symmetric tensor y which represents the rotation
(See Fig. 2). Utilizing the standard indicial notation, the boundary value problem under considera-
tion is expressed as;

G tf=0 (1)
skew g,=0 )
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Fig. 1 Boundary value problem.
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where Eqs. (1) to (4) are, respectively. the equilibrium equations, the symmetric conditions for
stress tensor ¢, the definition of the skew-symmetric rotation tensor y in terms of displacement
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gradient, and the constitutive equations.
For the isotropic elasticity. the constitutive modulus tensor Cj, has the form

Cir= A 8 8ut (S 8+ 81 Sy ©)

where A and u are Lame’s constants and §; is Kronecker delta.
2.2. Variational functional

Reissner’s variational principle for the boundary value problem Egs. (1) to (4) leads to a
formulation which is inappropriate for numerical applications and inconvenient for the interpola-
tion fields. (Hughes and Brezzi 1989, Ibrahimbegovic and Wilson 1991).

Hughes and Brezzi (1989) modified the variational problem of Reissner by adding the
term

- %y‘ | f skew ol df2 ©)
¢

in order to preserve the stability of the discrete problem. For the isotropic elasticity problems
and the Dirichlet boundary value problems, it was suggested that y be taken as the shear modulus
value, i.e. y=u (Hughes and Brezzi 1989, Ibrahimbegovic and Wilson 1991). Various variational
formulations can be developed by eliminating fields through the use of Euler-Lagrange equations.
If the symmetric components of stress are eliminated using the constitutive Eq. (4) for example,
the modified variational formulation is given as a Mixed type formulation.

II) (u, ¥, skew o):l (symm Vu): C-(symm Vu)d{2+f skew o - (skew Vu— y)d§2

2 ne 0t

*Ly" lskew a’|2dﬂ—J' u-fd2 (7
2 ne ne

It is possible to eliminate the skew-symmetric part of stress tensor, denoted as skew o. by substitu-
ting the FEuler-Lagrange equation of skew o

y ! skew a=skew Vu—y (®)
into Eq. (7) to obtain the formulation based entirely on kinematic variables, namely, displacements

and rotations.

I (. ,,):L (symm  Vu)-C+(symm Vu)dﬂ+%y f Iskew Vu— wl2d2—| w-fd2  (9)

2 n¢ ¢ ne

3. Finite element interpolation

The symmetric tensors and skew-symmetric tensors in varational functional can be rewritten
in a standard vector form as

/b
Symmv”h*@lfl U, “A/fx “{fz‘*'“z/f] U2/f3+143/f2 U(iﬁ‘“x’fly (10)
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Fig. 3 Eight-node solid element with rotational degrees of freedom.

e Corner displacement

0 L wm—mme—==———>x (O Hjerarchical mid-edge

displacement

(a) translational displacements for corner (b) translational displacements and
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Fig. 4 Introduction of comer rotations by hierarchical mid-edge displacement.

v'=y" v D" (11)
skew Vil = 3-Culy—udy uli—uly ubi=ul)" (12)

The configuration of the 8-node solid element is defined by (See Fig. 3)
x'= éNI‘J(é n $)xf (13)

where X' represents global coordinates and Ny are the shape functions for corner nodes given
as
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Fig. 5 Hierarchical interpolation of edge displacements.

NiE Q=+ @I+ X1+ &) 1=1.2, .8 (14)

The non-conventional interpolation for the displacements field of 8-node solid element is
derived from the translational displacements of the eight nodal displacements and twelve hier-
archical mid-edge displacements. (see Fig. 4 and 5)

u}h I=1 k=9

u" 8 20
( u:h > :u/: — Z NI(’(SE- n {) ulv_*_ z Nkulga\ (é n. é‘) AuKudgc\' (15)

where Aug* are the hierarchical displacements added to the conventional nodal displacements
and N are the hierarchical shape functions given as

Ne#(E . == O+ m1+ &) K=9. 1113, 15 (16)
Ny (@ =g+ &N =X+ &) K=10.12, 14, 16 (1
Ne#=(& . =g +ENI+mI =) K=17. 18, 19,20 (18)

These hierarchical shape functions are parabolic along the edge joining the adjacent two nodes
(See Fig. 5). The mid-edge hierarchical displacement components perpendicular to element edges
can be replaced by nodal drilling rotations w;. Edge-normal displacement component can be
expressed by corner nodal rotations g and ;. This transformation is carried out by the projection
of displacement Au* onto xy, yz and zx-plane, respectively (See Fig. 6). Thus

— ‘/7./L' + ,V/U

edgesedge-normal 1 ,U .‘, ¢ ¢

(A N “ ,\115)111111! M= g{ X7 —X| } (V - V./:) ( ]9)
0
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Fig. 6 Hierarchical edge-normal displacements represented by corner rotation which can be obtained
from projection onto plane.

0
CAgesNedge-norma l q & 14 ¢
(A Ug ig ,l":ls)lunc '= g{ _Z.I( +ZI‘ } (V[\' I 4 .l\) (20)
Yi—yr
edgesyedge-normal __ 1 S ¢ ¢
(A Uy ):.\'yrlunv — § 0 ( Vin—¥in ) (2 1)
— XJP + x]v

It is not possible to properly express the edge-tangential displacement by the nodal drilling
rotations. This edge-tangential displacement was neglected in the previous studies (Ibrahimbegovic
1991, Yunus, er al. 1989, 1991). In this paper. however, the edge-tangential displacement component
is treated as the amplitude of non-conforming modes and included in the element formulation
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(Choi and Chung 1995), i.e., (ATx“*)uneeniat fOT the typical edge I-J shown in Fig. 5, the displace-
ment at the mid-edge point K, which is not a physical node, can be written as

Aug ™ = T (wi — v) H 15 (AT angona (22)
, l 0 ZJU*Z[U _yf‘f‘ylu
Ty= 8| zftzf 0 X/ —=xf : (23)
=yl —xStxf 0
cages 1 ¢ ¢ ¢ ¢ ¢ NT
l s - Im‘g('.\ <x,/ — Xy ,VJ —‘yl Zy—2Zy > ! (24)
14

where Ii% is the length of the element edge between nodes I and J, and I;#" is direction
cosine of the edge. Here the first term in the right hand side of the Eq. (22) means the conforming
displacement of mid-edge point K expressed by corner rotations of nodes / and J in the edge-
normal direction (Yunus ef al. 1989), while the second term means the amplitude of the tangential
non-conforming modes of mid-edge K in the edge-tantgential direction (Choi and Chung 1995).

Substituting the transformation given in Eq. (22) into Eq. (15) to yield the non-conventional
interpolation for the displacement field. -

20

u'= ZN; & n Ouf+ ZNM% n ) To(wi—wr)

20

+ ZN adges (éf n {) I“/é“ (Au & \)/ungunml (25)

Here, the number of the edge-tangential non-conforming-displacements depends on the number
of element edges. The non-conforming modes are applied only to the edge directions and there
are 12 edge-tangential displacements in the 8-node solid element. Thus, the final non-conventional
interpolation of displacement field in this study is arranged as follows

8
u/l — z [N;‘ 1 W [\_1»(/},’(‘.\‘ T‘l[‘]]{ Uu;
K VI

. 20
ey § odge ~ ey
¢ } + Z NK“g( ' l[f][ “e (A ul\“g(\)langvnlml (26)
=1 K79

It is noted that instead of (¥~ ;) in Eq. (25). the corner rotation y; is used in Eq. (26).
This transformation can be done by summing up all the transformations with respect to the
corner rotation y, which meet at node 1.

The proposed edge-tangential non-conforming modes was found to be the useful remedy for
the Poisson’s ratio locking caused by directionally varying displacement field within an element,
since the edge-tangential parabolic non-conforming modes (Choi and Chung 1995) included
in the displacement field (Eq. (26)) has the similar effect as natural space non-conforming tangen-
tial modes used by Yunus (Eq. (27)) to remedy the Poisson’s ratio locking

ug=(1—&)ur
“(l —n)u
ud =(1— )y 27)

Where /. u,". u/ are interpolated non-conforming displacement in the natural & 5, ¢ coordinate
directions, respectively. and u\‘. U, uy are scale factors, and the global strain tensors can be
obtained from natural strain tensors by covariant tensor transformation
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- d¢ 9¢
£y= &x,- ‘&—xfé‘aﬁ (28)

Since conventional non-conforming modes are not adequate for this type of element because
of existence of hierarchical shape functions which express nodal rotations, some other non-con-
forming modes as given as below are introduced to improve the general behavior of the brick
type element (Choi and Chung 1995).

N=(1-&X1—n%)

No=(1=n)1-¢%) ‘ (29)
Ny=(1-&X1-¢)
Ni=(1=E 1 =n*)1-{) (30)

These are the form of the bubble functions in the two-dimensional and three-dimensional prob-
lems.

While displacement field is interpolated in a non-conventional fashion, the independent rotation
field is interpolated in an isoparametric fashion.

U4h l//]h " '
us’ :< v )ZV/’I NiG n Qv (31)
h h IE3]
W

The skew-symmetric stress field for the mixed type variational formulation is interpolated
independently over each element. The interpolation of the skew-symmetric stress can be assumed

as a linear polynomials given in the global coordinates. If skew-symmetric stress interpolation
is defined with six parameters, ¢, at the element level, then

skew o"=S8°pB¢ (32)

1<
S“:[ 17 ] (33)
1 ¢

To suppress spurious zero energy mode, adequate number of skew-symmetric interpolation
parameters should be used for the element. With these six interpolation parameters, as defined
above, the spurious zero energy mode can be suppressed successfully.

where

4. Element stiffness matrix
The infinitesimal strains can be defined from displacement field given in Eq. (26) as
symm Vu''= i(B,"u,"JrG,“ v+ iRK" Auy (34)
I=1 A=1
where uf. yf. and Auy® are. respectively, the nodal displacement. the nodal rotation, and the

non-conforming displacement parameters in an element. Although several types of non-con-
forming modes or their combinations can be accommodated in this formulation, only the edge-
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tangential non-conforming modes will be described here for simplicity. The strain-displacement
and the strain-rotation matrix at node / are given follow:

r l[\ N l[l N ;: )
B = WNL 1= s (39)
Ni. Ni, Ni.
Gi= Y BT o
edge

where, By** is the symmetric gradient of hierarchical shape functions Ny** in the form of
Eq. (35). and Ty is the transformation matrix as given in Eq. (23). The symmetric gradient from
the edge-tangential non-conforming displacement gives

- e N edges -
Ax N

Ay Ny
ro_ | Az Nt Kl 2 e D
e | AxpNGE Ay N “had (37)
AyyN, k;"glgm +AzyN Kf}:vlm
Axy Nk + Az N

where /% in the length of element edge joining nodes / and J, Axj, Ayj and Azj are
x, y and z components of the edge vector, respectively. which join nodes / and J in the global
coordinate system, and Ni%“ is the edge-tangential non-conforming modes applied only to edge
direction, which have the same shape functions as given in Egs. (16), (17) and (18).

The discrete operator Gf and Ri* need to be modified to avoid element locking. The modifica-
tion fits into the framework of well-known B-bar methods (Wilson, er al. 1990, 1991, Choi and

Lee 1995) and reduces to changing strain-displacement matrices into

o — e __ l d
G=G"—— L(’G dn (38)
= e | .
R=R'——; LUR dn (39)

Furthermore, the infinitesimal rotation can be denoted similarly as

8 12 8
skew Vu'—y"= D (Afui+Ff wi)+ 2 Ox Aw— 2 Nfwi
K=1 =1

=1

8 12
> Aiuf+F v+ YO A (40)
=1 K=1
where
Ar=5| Ni 0 —Ni | I=12 8 (41)
- (Il ;\ 0
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Fi=F/—NfI (42)
[ AN Ay
Ok'= | AxyN— Az NG @3)
v Ay NSE— AxyN, Kff-jm
and F;/ can be obtained by systematic transformation performed over all the edges which meet
at node 7

E ¢ — Z A[\'"dgﬂ\ TLk/ ( 44)

edge

Substituting Egs. (34), (40) and (32) in Eq. (7). and minimizing the variational functional IT,
for a single element, the equations can be written as

FRAIFR GRS

Au¢
where

K(J:J' [B« G¢ R('] TC[Bu G¢ Rc] an . (46)
¢

H'= f §'[4¢ F Q1d0 47)
n¢

ye=y~! f $78dN (48)

n¢

Since the skew-symmetric stress is interpolated independently in each element, the correspon-
ding skew-symmetric parameters, g°. of the Eq. (45) may be eliminated at the element level
through the static condensation. The non-conforming displacement, A%’, can also be eliminated
in a similar manner, so that the remaining element global degrees of freedom are nodal displace-
ments # and nodal rotations y*.

5. Numerical tests for validation of the elements

Several numerical tests were carried out to evaluate the validity and performance of the 8-
node solid elements. A series of solid elements can be established by the selective use of different
non-conforming modes. The elements with rotational degrees of freedom presented in this paper
are denoted as

CHR : the element has no non-conforming modes.

. NCH-1: the element has four bubble-like non-conforming modes.

. NCH-Y: the element have three natural space modes.

. NCH-2: the element include parabolic edge-tangential non-conforming modes.

. NCH-3: the element has both four bubble-like non-conforming modes and edge-tangential

AW N
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Fig. 7 Example for eigenvalue analysis.

Table 1 Number of zero eigenvalues for single unconstrained 8-node clement for
all presented element types :

Element type Number of Number of zero  Number of spurious

eigenvalues eigenvalues zero-energy modes
CHR 48 6 0
NCH-1 48 6 0
NCH-Y 48 6 0
NCH-2 48 6 0
NCH-3 48 6 0
NCH-4 48 6 0

non-conforming modes.
6. NCH-4: the element has both three natural space modes and bubble-like non-conforming
modes.

where characters CH and NCH indicate the conforming hexahedron and non-conforming hexa-
hedron, respectively. The elements used for comparison with the new elements in this study
are NC-VI1, C-VI (Choi and Lee 1993) which are the non-conforming and conforming variable-
node transition elements, respectively, and do not have any rotational degrees of freedom. In
the numerical tests, the value of parameter y is taken as the same value of shear modulus.

b.1. Eigenvalue analysis

To identify the possible spurious mechanicsms, eigenvalue analysis of the element matrix
was carried out for the 8-node solid elements with rotational degrees of freedom. When mixed
type formulation was used the number of skew symmetric stress parameters seems to be very
important factor to stabilize the elements. If six skew-symmetric stress parameters are used, there
are only six zero eigenvalues associated with rigid-body modes for the 8-node element shown
Fig. 7. and no spurious mechanisms were expected to develop in any of the elements presented
in this numerical test (See Table 1). If the number of stress parameters is not adequate, there
may be the cases that the spurious zero energy modes can occur.
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-
Fig. 8 Patch test model for 3D solid.

Table 2 Boundary condition and’ theoretical results

Boundary conditions Theoretical solutions

U= ]0_§(2x+}‘+2)/2 =T ET VT T YT ]0—3
v=10"x+2y+2)/2 6.=0,= 0= 2000
w=10"x+y+22)/2 Ty = T = T =400

5.2. Patch test

In order to check whether the proposed 8-node solid elements with rotational degrees of freedom
are capable of representing constant strain states, the patch test was carried out. The typical
test model is shown in Fig. 8 which contains distorted elements (Choi and Lee 1993, MacNeal
and Harder 1985, Choi and Chung 1995). Problem was solved with the prescribed displacement
boundary conditions and the obtained results are identical with the theoretical solutions for
this problem (See Table 2).

5.3. Poisson’s ratio locking test

To test for the Poisson’s ratio locking, a single element under pure bending in plane strain
boundary condition as shown in Fig. 9 is analyzed. The results for plane strain condifions
are shown in Table 3. To check what type of non-conforming modes can prevent the Poisson’s
ratio locking, this test was carried out for an 8-node solid element with rotational degrees of
freedom. It is evident from this test results that the tangential non-conforming modes are very
effective for removal of the Poisson’s ratio locking.

5.4. Cantilever beam under shear forces

To evaluate the general performance of the proposed element, a cantilever beam under shear
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E=100
S V=0.0, 0.3 or 0.499
ymmetry
Boundary a=1.0
.. M=1.0
Conditions

Fig. 9 Poisson’s ratio locking test.

Table 3 Plane strain moment loading: relative accuracy
of tip displacement

Element type v=0 v=0.3 v=0499
CHR 1.00 0.82 0.80
NCH-1 1.00 0.98 091
NCH-Y 1.00 1.00 1.00
NCH-2 1.00 1.00 1.00
NCH-3 1.00 1.00 1.00
NCH-4 1.00 1.00 1.00

forces at tip was tested. For this cantilever beams, the rotational boundary conditios for fastening
end are symmetric on y-z plane, i.€. only the rotation about x axis is free to move. These rotational
boundary conditions are consistent with those used for theoretical solutions. The test meshes
which are composed of 8-node solid elements are shown in Fig. 10 (E=1500, v=0.25) along
with the equivalent loads. But in this test, only translational forces are acted and uniformly
distributed shear tractions are used. This may be the reason why resulting displacements are
over the value of theoretical solutions.

The vertical displacements at A and the normal stress at B are presented in Tables 4 along
with the theoretical results and the results obtained by ditferent elements for the comparison.
Here, it is shown that the proposed 8-node solid elements with rotational degrees of freedom
give good result. In cases of highly distorted meshes. which are often occur in mesh gradation.
the accuracy of results obtained by using eclements with non-conforming modes are superior
over those by conforming elements. In this numerical test, stress results are obtained from stress
recovery method for non-conforming modes. The presented elements show improved results by
the addition of non-conforming modes, among the elements, the elements designated as NCH-
3 and NCH+4 showed the best results in performance.

5.5. Cantilever beam under pure bending

To evaluate the performance of the proposed element a cantilever beam uner a pure bending
was tested. The rotational boundary conditions for fastening end are symmetric on y-z plane.
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Fig. 10 Cantilever Beam under end tip shear force.

The test meshes are shown in Fig. 11 (E=1500, v=0.25) which are identical to the previous
example. The equivalent nodal forces due to pure bending moment are shown in Fig. 11 for
the 8-node solid element with rotational degrees of freedom.

The vertical displacements at 4 are presented in Tables 5 along with the theoretical results
and those obtained by other elements for the comparison. Here, it is shown that the proposed
8-node solid elements with rotational degrees of freedom give good result. In cases of highly
distorted meshes, the accuracy of results obtained by using elements with non-conforming modes
are superior over those by conforming elements. The presented elements show improved results
by the addition of non-conforming modes, among the elements, the elements designated as
NCH-3 and NCH-4 showed the best in performance.
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Table 4 Test results for cantilever beam under under tip shear force

Mesh Regular meshes Distorted meshes
es
Point A Point B Point 4 Point B
Element Vertical Rotation o Vertical Rotation .
. . stress Oy . . stress Ou
displacement  about y axis displacement  about y axis
C-Vl1 68.45 - —29720 4933 - —24150
(Choi et al. 1995)
NC-V1 101.40 — —4050.0 89.89 -~ —3097.0
(Choi et al. 1995)

CHR 96.72 —14.30 —4091.0 83.62 —1241 —3480.0
NCH-1 102.82 —1529 —41450 91.85 —13.23 —3853.0
NCH-Y 103.02 —1524 —4092.5 85.53 —12.88 —3991.0
NCH-2 103.04 —1524 —4093.0 8542 —12.63 —3949.5
NCH-3 103.11 —1539 —4098.5 100.76 —15.62 —31585
NCH-+4 103.10 —15.38 —4098.0 9324 —14.37 —3840.5
Theory 102.625 —15.00 —4050.0 102.625 —15.00 —4050.0

1
i
z 2 : M=4000
y *B >
i —
b A
4—‘ 10
t {
(a) Cantilever beam under pure bending
Bending Moment fM
o
= s
_ | _
3 P p=1000.0
3000 M=unknow
-M
(b) Equivalent nodal forces including couples
. e e R
B 2
— Py
(¢) Regular meshes (d) Distorted meshes

Fig. 11 Cantilever Beam under pure bending
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Table 5 Test results for cantilever beam under pure bending

Mesh Regular meshes Distorted meshes
es
Point A Point B Point A4 Point B
Element Vertical Rotation stress Vertical Rotation "
displacement  about y axis ress On displacement  about y axis SITEss O
C-Vl1 66.67 - —2200.0 4438 - —1736.0
(Chot et al. 1995)
NC-V1 100.00 — —3000.0 8745 — —22620
(Choi et al. 1995)

CHR 93.75 —18.75 —3000.0 81.01 -16.80 —24320
NCH-1 99.70 —19.83 —3032.5 88.86 —-17.15 —28240
NCH-Y 100.00 —20.00 —3000.0 84.24 —-17.66 —2968.0
NCH-2 100.00 —20.00 —3000.0 82.64 —17.13 —2944.0
NCH-3 100.00 —20.00 —3000.0 9733 —18.62 —2270.0
NCH-4 100.00 —20.00 —3000.0 91.75 —18.16 —2814.5
Theory 100.00 —20.00 —3000.0 100.00 —20.00 —3000.0

6. Conclusions

In this paper, 8-node solid elements with rotational degrees of freedom have been presented.
The element is derived from the mixed variational principles which employs the independent
rotational fields and employs skew-symmetric stress. The corner rotations are formulated by
transforming the hierarchical mid-edge displacement that are a parabolic shape along an edge.
A series of improved elements are obtained by selectively adding the non-conforming modes
to the displacement fields.

It was found that addition of the tangential non-conforming modes to the non-conventional
displacement fields eliminated the Poisson’s locking phenomena which may appear under some
plane strain boundary conditions.

[t was verified that the proposed elements passed patch tests and caused no spurious zero
energy mechanisms from the numerical tests. In 8-node solid element with rotational degrees
of freedom, six skew-symmetric stress parameters were found to be sufficient for stability of
the element. The presented new elements with non-conforming modes gave much improved
results for the problems tested. Among the established elements, the elements designated as
NCH-3 and NCH-4 produced the best performances.

The 3D element with rotational degrees of freedom can be effectively applied to the practical
structural problems due to its simplicity in modeling and improved performance. The more
intensive study on the application of this element will follow in the future studies.
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