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Exact calculation of natural frequencies of
repetitive structures

FW. Wiliamst, D. Kennedyt, Gaofeng Wuit and Jianging Zhou

Division of Structural Engineering, School of Engineering, University of Wales Cardiff,
Cardiff CF2 1XH, UK

Abstract. Finite element stiffness matrix methods are presented for finding natural frequencies (or
buckling loads) and modes of repetitive structures. The usual approximate finite element formulations
are included, but more relevantly they also permit the use of ‘exact finite elements’, which account
for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue
problem results, for which all the natural frequencics are found with certainty. The calculations are
performed for a single repeating portion of a rotationally or linearly (in one, two or three directions)
repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include:
any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members
along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed
of computation; two types of rotationally periodic substructures can be used in a multi-level manner;
mulii-level non-periodic substructuring is permitted within the repeating portions of parent rotationally
periodic structures or substructures and; all the substructuring is exact, i.c., the same answers are obtained
whether or not substructuring is used. Numerical results are given for a rotationally periodic structure
by using exact finite elements and two levels of rotationally periodic substructures. The solution time
is about 500 times faster than if none of the rotational periodicity had been used. The solution time
would have been about ten times faster still if the software used had included all the substructuring
features presented.
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1. Introduction

Theory and results are given principally for finding natural frequencies and modes of vibration
of rotationally periodic structures, e.g. see Fig. 1, with comments on structures that are linearly
repetitive in one, two or three Cartesian directions. The methods can be used with traditional
approximate finite elements, but more importantly they can also be used with the ‘exact finite
elements’ obtained by solving differential equations which include the member mass, to obtain
element (or member) stiffnesses that are transcendental functions of the circular frequency @
(Howson er al. 1983, Williams and Wittrick 1983, Capron and Williams 1988, Lundén and Akesson
1983). The vibration methods presented become buckling ones if a load factor replaces @ as
the eigenparameter and permit exact multi-level substructuring, e.g., slave displacement approxi-
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Fig. 2 Plane cross-section, with R=6: circles are nodes; lines are members; and the repeating portion
is shown bold.

mations are absent.

Earlier derivations for rotationally periodic structures (Williams 1986a) and substructures (Wil-
liams 1986b) are unified, by using a single notation, simplified, and have been coded. Illustrative
numerical results are given for a structure with rotationally periodic substructures.

Fig. 1 shows three rotationally periodic structures, with R(>2) identical repeating portions,
each of which is rotated about the axis by 277/R relative to its neighbours. Lines in the areas
of detail of Figs. 1(ab) can be boundaries of triangular finite elements, representing a solid
or thin-walled structure, or may be beam-column members represented exactly, so that a single
element per member gives exact results. For space frames the nodes and members need not
all lie on the surface, e.g., see Fig. I(c) and Fig. 2, which shows a cross-section which illustrates
that members can connect each repeating portion to any other.

Classes 4 and B (Williams 1986b) rotationally periodic substructures are covered. with the
simpler class B considered first. A class B substructure can be connected end to end. at any
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number of nodes, to any parent structure or substructure which shares its rotational periodicity,
ie, its value of R and axis. Multi-level substructuring is allowed. Hence the length / on Figs.
1 (a,b) can form a substructure, with the degrees of freedom of the internal ring of nodes eliminated
by substructuring. For Fig. 1 (b), using two such substructures forms a substructure of length
21. Multi-level use of such doubling up can generate various lengths L of the structure shown.

A class 4 substructure is connected to its parent structure, which need not be rotationally
periodic, only at one node at each end of its axis, ie. at G and H on Fig. 1. For Fig. 1(b),
G and H are at the centres of the shaded areas, which are eg., rigid end caps, or frames or
finite element models which share the rotational periodicity of the substructure. Fig. 1(c) is a
‘stayed column’ with core GH, three equally spaced central spokes, and the 24 stays and three
battens (shown dashed) which the spokes pretension.

Numerous papers cover either static or dynamic analysis of rotationally periodic three dimen-
sional structures by various methods (e.g, Thomas 1979, MacNeal et al. 1973, Wildheim 1981,
Henry and Ferraris 1983, Leung 1980, McDaniel and Chang 1980, Anderson 1982 and Balasubra-
manian et al. 1991). However, except for those based on Williams (1986 ab), they omit some
or most of the following advantages of the present paper:

(1) the stiffness matrix method is used:

(2) exact finite elements are permitted;

(3) all natural frequencies are found with certainty:;

(4) the repeating portion need not have a reflective plane of symmetry;

(5) inter-connections are permitted between any repeating portions, e.g., not just at the interface

between adjacent portions;

(6) nodes can liec on, and members along the axis;

(7) complex arithmetic is used for concise presentation and fast computation;

(8) multi-level substructuring is permitted within the repeating portion of a rotationally periodic

structure or substructure and

(9) multi-level use of class 4 and class B rotationally periodic substructures is allowed.

Because it is crucial to (2). (3), (8) and (9) above. the next section presents the algorithm
used to find all natural frequencies of non-repetitive structures with certainty. The following
two sections then extend the theory and algorithm to cover first rotationally periodic structures
and then substructures which have axis nodes or members.

An available computer program, BUNVIS-RG (Anderson and Williams 1987), with many of
the above features has been applied (Anderson and Williams 1986, Capron er al. 1987). However,
the only rotationally periodic substructures permitted are stayed columns with no battens. The
results given below use a newer version of BUNVIS-RG which permits multi-level class 4 substru-
cturing and show that such substructuring can reduce solution times by two orders of magnitude.

2. Algorithm for finding natural frequencies with certainty

This paper uses the following general algorithm (Williams and Wittrick 1983, Wittrick and
Williams 1971) for finding with certainty the eigenvalues. i.e., natural frequencies or critical load
factors, of any non-repetitive structure. Jr, the number of eigenvalues lying between zero and
a trial w (or load factor, Wittrick and Williams 1973a) is given by Eq. (1).
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JT:ZJ_\.“_ZJV,,“'_S{KT} (1)

K:D=Pr(=0) (2)

Here: subscript T denotes the total parent structure, with summations over, respectively, all the
substructures and all the elements or members (excluding those within substructures) of the
total structure; J; (J,,) is the number of natural frequencies of the substructure (element) that
would be exceeded if it were clamped at its points of attachment to the parent structure; K
is the dynamic overall stiffness matrix assembled from the substructure and element stiffness
matrices and so is a transcendental function of @ when exact finite elements are used, and
s{K7} is the sign count of Ky which equals the number of negative elements on the leading
diagonal of K7, the upper triangular matrix obtained from K; by the form of Gauss elimination
in which multiples of the pivotal row are subtracted from unscaled succeeding rows.

K7 relates the amplitudes, D7, of the sinusoidally varying displacements Dy sin wr to the corres-
ponding force amplitudes Pr via Eq. (2), where the alternative null right-hand side is the condition
for free vibration.
~ Many problems do not involve substructures, so that Dy contains all the degrees of freedom
of the nodes of the structure and the first summation of Eq. (1) is omitted. Otherwise, Dr contains
a subset of the degrees of freedom of the total structure chosen such that clamping them reduces
the structure to a set of independent substructures and elements which are clamped at their
attachments to the parent structure. Then the first summation of Eq. (1) and the assembly of
K; require prior knowledge of J; and the stiffness matrix, k,, for each substructure, which are
readily found as follows.

The displacement (force) amplitude vector of the substructure is ordered so that internal ampli-
tudes, D;(P;), precede the connection amplitudes, D(P.). The overall substructure stiffness matrix
is assembled as if it were Kx so that partitioning it gives Eq. (3) in which T=transpose.

K; K. D| P[] O

[Kf K] [D(]—[R]_[R.] €)
K K:1[D] [0
[0 k][uj_[a] *)

Arresting Gauss elimination after the last row in K; has been pivotal gives Eq. (4) in which
k, is the required stiffness matrix because k, D, =P, for all P.. Applying Eq. (1) to the substructure
gives

L= 0+ I, sl (5)

where the first summation covers substructures contained by the substructure, the second summa-
tion covers elements other than those within the contained substructures, and s{K;} appears
because K; 1s its stiffness matrix when the substructure is clamped at its points of attachment
to its parent, ie., D.=0.

The first summation in Eq. (5) clearly permits a recursive procedure, i.e., multi-level substructur-
ing is possible.

Before proceeding note that when approximate finite elements are used the above relates closely
to Sturm sequence methods. Thus traditional finite elements cannot vibrate when their boundaries
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are clamped, so that when substructuring is not used both summations of Eq. (1) disappear,
ie. J;/=s{K7}. This is essentially the Sturm sequence property, because Kr then equals the static
stiffness matrix minus @’ times the mass matrix. However even then the above exact multi-level
substructuring procedure can be much more computationally efficient than the Sturm sequence
methods usually employed with traditional finite elements, and so gives exactly the same answer
but more quickly.

Note too that a short and attractive (Wittrick and Williams 1973b) proof of Eq. (1) starts
by hypothetically applying the Sturm sequence property to Eq. (4), with an infinite number
of finite elements imagined. Hence D. contains the finite number of connection degrees of freedom
of the exact finite elements and D; represents the infinite number of internal element freedoms
which exact finite element formulations retain.

3. Rotationally periodic structures without axis nodes or members

This section relates closely to work by Thomas (1979), except that the algorithm of Eq. (1)
is adapted for it, enabling exact finite elements to be used. Nodes are not permitted on the
axis, so nor can members lie along the axis. Fig. 3(a) illustrates such a structure which can
be thought of as solid, with each repeating portion assembled from numerous finite elements.
The only connections between such solid portions are at their common interfaces. Such applica-
tions are included below, but so are more general situations in which any node in a portion
can be connected to any node of any other portion, e.g., as can happen for space frames. Therefore
Fig. 3(a) will be interpreted as a space frame, with its members and associated joints lying
within the volume that was previously considered to be solid. There will probably be numerous
members and joints, but if only those few which lie in the plane of Fig. 3(b) are shown a
Fig. similar to Fig. 2 results.

Figs. 2 and 3 have R repeating portions, which are identical except for rotation by an integer
multiple of y=27/R. The displacement coordinate systems are assumed to rotate with the portions
and to be conformable, i.e., to coincide at connections between portions, as automatically happens
when using cylindrical coordinates. The portions are numbered j=0, 1, --, Q(=R—1) on Fig.
2, on which the nodes and members assigned to portion 5 are bold.

Because of the rotational periodicity, appropriate partitioning of the stiffness matrix K enables
Eq. (2) to be re-written as Eq. (6), in which D; and P; are the displacement and force amplitude

(a) (b)
Fig. 3 (a) Tapered structure with polygonal hole, (b) Typical cross-section.
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vectors for the j-th portion, and the symmetry of K; has been used.

K, K, K, KQ D, P,

Ky K, K Ky D, Py Q=R-1

Ko Ky Ko K, ., D, | = | P | (=0) Ky =K' (6)
S s : : Dy =D,

K, K K; I(() DQ PQ

P; contains RXN force amplitudes, where N is the number of degrees of freedom of a repeating
portion. Therefore it can be unambiguously represented by summing R independent force vectors
which each contain only N independent force amplitudes. see Eq. (7). Eq. (7) also satisfies P, x=P,
so that either of its real or imaginary parts (i :\/—_1) represents Pr acceptably.

Q
P=) Py Ehzf’tw@"(_ﬂmm)i e/'=expjhy) y=2n/R; (j=0, 1, =, Q) 0
h=0

Because of the Principle of Superposition, Eq. (6) can be solved by using each of the R harmo-
nics Py, (h=0, I, ---, Q) in turn and then summing. Fortunately the solution for each harmonic
has the simple form

D;,=Dy,e} (=0, L Qi h=0.1, -, Q) ®)

which may be intuitively obvious, but is now proved.
Substituting Eqs. (7) and (8) in the m-th row of Eq. (6) gives

Q
( z K/€'/?IV+,I' )DWV - I)Oh emhﬂ i.e.., I((lh D()/l - Rih ( - 0) (h = 0» 1» ttry Q) (9)

j=0

0
with Ky,= D Ke/ (10)
j=0
Since Eq. (9) is independent of m, it satisfies all the rows of Eq. (6). Therefore instead of solving
Eq. (6), Eq. (9) can be solved separately for each A. This is preferable because the order of
Ky, equals the number of degrees of freedom in only one repeating portion.
Therefore the form of K, is now considered in more detail, and it is shown that computation
need not be performed for all the /4 given by Eq. (9). Let

h'=int{R/2}; ¢'=int {(R—1)/2} (11)

Thus A’ and ¢’ are the highest integers that do not exceed R/2 and (R—1)/2, respectively, and
(h'—¢"y=01) for R odd(even). In addition, e’,’e,,_/:c;" and Eq. (6) gives KR,,,:K/.T, so that
K, jen =(Ke". where H denotes Hermitian transpose. Hence Eq. (10) gives
o
Ky =Kyt (W' —q") Kycosthm)+ D (Kie/ +Kp—eli-)
i1
¢!
=K, +(h'—q') Kycosthm)+ 2 {Ke!+(Ke/)') (12)
j=1
Here K, and K,cos(hm) are both clearly real and symmetric. So is the summation if #=0, or
if R is even and A=R/2, but otherwise it is complex and Hermitian. Hence
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real and symmetric (#=0, and A=R if R/2 even) }

Ko 15 { Hermitian (A=1, 2, - ¢')

(13)
and Ky, =Ky, where the overbar denotes complex conjugate. Thus, with Py, chosen appro-
priately, Egs. (9) and (10) give

P(),(R—h):ﬁoh; 1(0,(12"/1):_12()/1; D().(Rdz):Boh (h=1, 2, -, q’) (14)

Hence Eq. (9) need only be performed for h=0. 1, ---, A"
Pr=0 for free vibrations. Hence Eq. (7) gives P,,=0 and so all natural frequencies and modes
of the total structure can be found much more efficiently by solving Eq. (15).

Ky, Dy, =0 (15)

Jh:ZJsJJ+ZJv+ZJ171+‘SV {K(]h} (h:O. 1, R h,) (16)

Because Egs. (2) and (15) are analogous, it might seem obvious that the algorithm of Eq.
(1) extends to Eq. (15) to give Eq. (16), as was proved by Willtams (1986 ab). In Eq. (16): the
summations cover a single repeating portion for all class B substructures, all other substructures,
and clements not within substructures; J; and J,, still have the meanings given beneath Eq.
(1), the subscript # of J,, indicates that the 4 of the substructure is the same as for its parent
structure (ie., of J,) when calculating how many of its natural frequencies would be exceeded
if its connection freedoms D, were to be clamped; and s{Ky!} is the sign count of K. calculated
precisely as described beneath Eq. (1), noting that for any Hermitian matrix, e.g., K, the leading
diagonal of its upper triangular form, e.g. of Kj,. is real and so its negative elements can still
be counted.

Eq. (5) and related text give J, and k, for substructures, with the latter being assembled into
K,, by the usual finite element procedure. J, and k, can be found similarly, except that K,
is the matrix partitioned by Eq. (3).

Note that whenever Eq. (13) shows that K, is Hermitian (ie, A=1, 2, -+, ¢'). the natural
frequencies form coincident pairs and J, is the number of such pairs exceeded by the trial
frequency. Hence the total number of natural frequencies exceeded, J,*, is given by

=1 (h=0, or h=R/2 if R even) }

Jh*:ah*}h; af}{ :2 (h:1 2 .. ql)

a7

Ways of seeing why the natural frequencies which appear in pairs do so include the following.
Firstly, Eq. (14) showed that solutions of Eq. (15) for which A=1, 2, ---, ¢’ represent two solutions,
for h and R—h. Secondly, the modes given by the real and imaginary parts of the Dy, obtained
by solving Eq. (15) differ unless Ky, is real. Thirdly, writing Eq. (15) in real arithmetic replaces
Ky, by a matrix of twice the order and for which the diagonal elements of K;, are readily
seen to appear in identical pairs. Finally, Fig 4 illustrates an important physical reason, as
follows. Eq. (8) gives the mode. Because of the periodicity, an alternative mode obviously results
from rotating this mode round the structure by an angle y. When observed from a fixed view-
point, these two modes are identical when #=0, or when #=R/2 and R is even, their amplitudes
being equal in the former case and equal and opposite for the latter case. For all other A
(ie. 1, 2, ---, ¢') the two modes differ, but combining them in suitable proportions gives the
apparently different modes obtained by rotating the first mode by my (m=2, 3, ---, Q). which
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S

(a) Unrotated mode,

h=0 =4R=3 h=1 h=2

(b) Mode rotated by 7/3.

Fig. 4 Radial displacements of modes, =real part of d,=dye for hexagon (R=6). d, is real and the
arrow lengths indicate the displacements (==*d, or +dy/2). The tangential displacements are
not shown. Node zero. at the top of the hexagon, is the viewpoint.

-4,

is why @,=2, not o,=R.

As an indication that Eq. (17) is correct, consider any rotationally periodic substructure with
no substructures and with all its nodes clamped, ie., D;=0. This can be achieved by removing
from K all those rows and columns corresponding to the clamps. Hence, K; disappears, so
that s{K;}=0 and Eq. (1) gives

Jr=>J, (18)
T

Alternatively, Jr can be found as the sum of the values of J,* for the subproblems of Eq. (15).
Because s{Ky}=0 for the same reason that s{K;}=0, Egs. (16) and (17) give

JT: 72 a"‘]/’:(z-]m)< 2 ah):(z«]m) <1 + i 2>:R ijm (R Odd)

h=0 h=0
q'
—(ZJ,W)<1+ Zz+1>:RZJ,,, (R even)
h=1

Since Z J. 1s for one repeating portion and z I (:RZJ,,,) is for the total structure, the
T

(19)

required indication is that Eqgs. (18) and (19) both give J; the same value.

4. Inclusion of axis nodes and members

The theory is now extended to include nodes on the axis and members (or class 4 substructu-
res) lying along it, ie., axis nodes and axis members.

Let every axis node be replaced by R split axis nodes, equally spaced round an infinitesimally
small circle and belonging to each of the R repeating portions, see Fig. 5. Split axis members
connect such nodes and have the length of the real axis members but (1/R)-th of their other
properties, e.g.. of EA. EI mass per unit length, axial force, etc. Thus fusing the axis nodes
and members of the R portions together gives the original structure.
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Fig. 5 Split axis nodes, for R=16 and j=2.

Denote the displacements of all split axis nodes of the j-th portion, see Fig. 5, by d};; d},
and dj, where d; (w=r, t or z) contains the translations along, and rotations about, the w axis.

Using p;, to denote the corresponding forces, and ordering and partitioning Eq. (15) gives

Khuu Khm‘ Khuf K/IU: Dq);; })0;:
k; ' k;/ k/r ’ doi, Poh
' k 1 k ; z d I3 = 14 (20)
h h 0h Do
Hermitian k; dy, Poi

where D, contains the displacements of all nodes not on the axis.

Eq. (8) gives d;,=d;,e/", d;,=d,,e/, and d;=d; e/, and resolving displacements on Fig. 5
shows that the compatibility needed for the split axis nodes to be fused together, after deflection,
to form the original structure requires that #=1 for d; and d; and that #=0 for d},. Hence,
there is one complete sine wave round the circumference (4= 1) or the mode is either an ‘axial’

or ‘breathing’ one (h=0). Therefore, for #>1 Eq. (20) reduces to Eq. (21).

K, Dy, = Py, (h>1) 20

Ly & L2 L] wem oo =

in which any members with one end on the axis contribute to K, but have that end clamp-
ed. Similarly Eq. (22) applies for #=0 where d*=d,(p’) is the total displacement (force)
along the z axis because the other values of / contribute no axial displacements or forces to
axis nodes. Finally, the case #=1 which follows is more complicated because dj, and d;, are
related.

Dividing Eg. (8) by e,” gives the first of the two expressions for dj, and d,;, of Egs. (23),
whereas resolution and compatibility on Fig. 5 gives the second expressions.

r

dg,=dj cos jy—id; sinjy=d} cosjy—d; sinjy

diy=d) cos jy—id} sinjy=d; cosju+d; sinjw} (=019 )

Since Egs. (23) hold for all j, their solution is
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dj=id;, (j=0. 1.0 (24)
If p» and p,, (h=0, 1, -, Q) are total forces at the axis nodes after the split nodes are fused
together, resolving on Fig. 5 and using Eq. (7) gives

Q Q .
P,= 2 (P cosjy—plsinjy)= D (pi,e/ cosjy—pi,e/sinjy)

jU /'()

25)
Z(P,h31111W+P,;.LOS/V/ Z (P()/;e,hblnllI/eroh" cosj)
Ji—0 j=0
Substituting the mathematical results
Ze,"cosjl// Ze/”smju/ 0 (h+1), Ze, cosjy=R/2, Ze 5111]W4!R/7 (h=1) (26)

j=0 =0 J=0 j=0

into Eq. (25) shows the expected result that p., and p,,, are zero when h+#1, ie., the only unbalanc-
ed axis forces perpendicular to the axis occur when £=1, ie. external loading p. or p, applied
at the axis and perpendicular to it causes only the A=1 displacement pattern of Eq. (8), so
that p,=p,, and p,=p,.. Also, when h=1 Egs. (25) and (26) give

P.=p.=R/2)(ps—ipy): p.=p,. =P, 27)

Since d;, and d;, are zero except when h=1, d;, and d, are the total deflections, denoted by
d, and d, below. Hence Eq. (24) gives d,=id, and so Eq. (20) becomes

K K‘l”'f'fK'{l Dy | _| P . . _

[He’rmitian Rk !+ ik — ik ;’)H}] [ d }"[ . ] @d.=id. p=ip) (28)

The effect of the axis nodes and members is clearly to replace the Dy, of Eq. (15) and the
Ky, of Egs. (15) and (16) by the displacement vectors and stiffness matrices of Eqgs. (22), (28)
and (21) for, respectively, =0, h=1 and A>1. However, when. computing J, from Eq. (16) (or
J,. see between Eqs. (16) and (17)) the value of J,, used for axis members (or class A substructures
lying along the axis) needs care, as follows. For members with no torsional-flexural coupling,
J,, is the sum of J,,,, the number of clamped ended axial and twisting natural frequencies exceed-
ed, and J,,,. the number of clamped ended flexural natural frequencies exceeded. The flexural
modes occur in coincident pairs, because the rotational periodicity requires equality of the princi-
pal second moments of area for axis members, and J,, includes only one of each pair. Such
flexural displacements are compatible only with 2=1, so that the @, of Eq. (17) accounts for

the modes being paired, and the axial and torsional modes are only compatible with 2=0.
Therefore, in Eq. (16),

Jr'n :Jm()(or '].\0) (h ;O)~ Jm :Jml (Ol‘ J\l) (h - 1)* JW - 0 (h > 1) (29)

with terms in brackets following analogously for a class 4 substructure lying along the axis
and J, defined between Egs. (16) and (17).
The J, and k, for a class 4 substructure are now simply given by

I
_ . — k\'() 0
‘].\ - ,IZ;) ah‘l\/l' k\ |: 0 k\ | ] (30)
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Here: Eq. (17) gives a;; ko and k,, are the k; (h=0,1) obtained by re-ordering Egs. (22) and
(28) such that those elements of, respectively, d° and d, relating to the axis nodes at the ends
of the substructure come last and making them the D, of Eq. (3); and J,, is calculated during
this process for /=0 and 1, and otherwise from Eq. (5) with J; and K; replaced by J, and
K", see Eq. (21).

The k&, of Eq. (30) is not in a convenient form for assembling the stiffness matrix of the
parent structure, because it is Hermitian and such that Eq. (31) holds

kv\l d\ * :p,\'*ﬂ (3 l )
d_y* - id.\'*ﬂ p_r* = lhv* (32)

where d.*(p.*) is the complex subset of d,(p,) obtained by excluding all axis nodes except G
and H. see Fig. 1. Hence Eq. (28) gives Eq. (32). In contrast, since either the real or imaginary
parts of d.*, d* p* and p* are the required displacement and force amplitudes needed when
assembling the stiffness matrix of the parent structure, the stiffness matrix required is that corres-
ponding either to {(d.**)", (@.**)"}" or to {(d.*')", (d,*')"} where R and I denote real and imaginary
parts. Separating the real and imaginary parts of Eq. (31), substituting from Eq. (32), and noting
that k) =(—k)" because k, is Hermitian, shows that these two stiffness matrices are identical,

such that _
k", k!, d° |_{ p°
[Symmem'c kﬁﬂ] [d H P 9

in which all terms are real and d.°, d,°, p,° and p,° denote either the real parts of d.* d*
p.* and p* or their imaginary parts.

When the shaded areas of Fig. 1(b) are rigid discs, exactly correct results can be obtained
by using standard transformations, e.g., those of BUNVIS-RG, for offsets between member ends
and the nodes to which they are connected. Thus, every member which is connected to the
disc in the example below is modeled as connected to a node at the centre of the disc, with
an offset equal to its radius.

5. Numerical example

The example of Figs. 6 and 7 is a structure in space, with extremely small springs added

Fig. 6 Sketch of example structure, with R=R;(=6) and all detail of substructures omitted. Thin lines
are pretensioned stays and thick lines are compressed substructures.
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3 3 \axis

Fig. 7 Detail of the structure analysed. L denotes length and the end views are not to scale. Substructures
are represented by their axis when assembling their parent substructure or structure. Nodes are
indicated by circles. so that it can be seen where members are assumed to cross without touching.
The end views show all nodes, but the other views show only those nodes needed when modelling
a repeating portion for BUNVIS-RG. in which case nodes indicated by crosses belong to another
repeating portion. The dashed lines are in their correct positions on the end views, but not on
the pictures of the repeating portions. Note that the members shown dashed for S, connect a
node to its counterpart in the next but two repeating portion. Because the S, form the sides
of a polygon their axes are not collinear, but the small resulting geometric incompatibility where

the discs are connected together is ignored as being typical of joint details usually omitted in
structural analysis.

Table | Properties of the members. G/=08FE] and the masses and polar inertias per unit lcngt‘h of
the members, in kg/m and kgm are. respectively 2X10 * E4 and 4X107" EI. with E4 in N
and EI in Nm’

Member Length EA El Tension Member Length EA El Tension
(m) (MN)  (Nm’) (N) (m) (MN)  (Nm’) (N)
1 0.15 10 100 (—148) 11 (2.24) 0.14 0 5
2 (0.212) 10 100 0 12 (1.41) 0.14 0 S
3 0.15 10 100 0 13 1 32 10 (—25.8)
4 (0.362) 10 100 0 14 (1.73) 0.14 0 5
5 1 7 100 (—55.8) 15 (2.83) 0.14 0 5
6 1 - 7 100 (—70.1) 16 (8.25) 0.14 0 5
7 1 7 100 (—839) 17 2 32 10 (—9.50)
8 1 7 100 (—94.1) 18 (21.9) 0.14 0 5
9 4.12) 0.14 0 S 19 (15) 0.14 0 5
10 (3.16) 0.14 0 S

to replace its rigid body modes by tiny natural frequencies. which are then ignored. The principal
structural elements are a regular polygonal ring with R, (=6) sides. and a mast which is symmetric
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Fig. 8 Modal densities for the example of Table 1, using Eq. (17).

about the ring. Each side of the ring is a substructure, S, similar to that of Fig. 1(b) and with
R=R, (=8) repeating portions. The mast consists of two identical compound stayed column
substructures, S;, with R=R; (=4) and which each contain two identical stayed columns, S,
of the type shown in Fig. 1(c) with R=R, (=3). Every corner of the ring is connected by three
pretensioned stays to the centre and ends of the mast.

Fig. 7 illustrates how the structure was represented when using BUNVIS-RG. The three substru-
ctures S;—S; were modelled as class A4 substructures with S, within S5, i.c., two level substructuring
was used. Note that because class A4 substructures were used it was not necessary that Ry=R..
For the repeating portions of rotationally periodic substructures (or of the final structure, F)
shown on Fig. 7 the solid lines represent co-planar members and dashed lines are out-of-plane
members. The members are numbered on the Fig. and their properties are given in Table 1,
in which zero in the EI column denotes a stay; lengths in brackets are only approximate, but
were calculated exactly from the geometry of the structure and the other lengths when preparing
the BUNVIS-RG data; and similarly the tensions in brackets are only approximate, but BUNVIS-
RG used the exact values calculated from the other tensions by statics, see below. (Those properties
of Table 1 relating to the compound stayed column are modifications of a design presented
previously by Jemah and Williams 1990).

Although the vibration analysis assumes all joints to be rigid, the static analysis assumed
pinned joints and, for convenience, the relatively small axial force calculated for S, was shared
equally between its longitudinal members, with the diagonal and ring members assumed to
be unstressed. The tensions were all calculated to very high accuracy because otherwise the
small out-of-balance forces at the joints imply the presence of small external loads at the joints,
which can cause failure (Anderson and Williams 1987) of the BUNVIS-RG run if, loosely speak-
ing, they are compressive across the structure, and large enough compared to the very small
springs that suppress rigid body vibration modes for ‘rigid body buckling’ to occur.

The natural frequencies are numerous and many of the modes are almost exclusively dominat-
ed by the stays and so two actions were taken. Firstly, results were obtained ignoring stay masses,
as well as accounting for them by exact taut wire theory. Secondly, most of the results are
presented as modal densities, see Fig. 8, ie. as the number of natural frequencies lying in a
frequency interval, divided by the width of that interval. Because the frequency interval used
is 1 Hz, the ordinate of Fig. 8 also gives the number of natural frequencies lying in each band.
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Table 2 First nineteen natural frequencies. with stay masses omitted

No. Hz h No. Hz h
| 0.5425 0 10 3.008 3
23 1.469 2 11 3.009 3
4.5 1.636 2 12 3.013 3
6 2.251 0 13 3.297 0
7 2.388 0 14,15 5.039 2
8 2.585 0 16,17 5.127 2
9 2.751 3 18.19 5971 1

The theory presented is ideal for such calculations, by calculating J at each band boundary
and subtracting.

It is obvious that the modes associated with most of the natural frequencies are dominated
by the stays, since they are absent from Fig. §(b). which excludes them. This method of seeing
that the stays dominated the modes was preferred to using BUNVIS-RG to calculate the modes,
to avoid the volume of results becoming excessive.

Table 2 gives the first nineteen natural frequencies for the massless stays case of Fig. 8(b).
The six obvious ‘rigid body’ frequencies are excluded, as is a seventh zero frequency mode
which occurs because the stays of Fig. 6 cannot prevent relative rotation of the mast and the
ring. (This seventh zero frequency mode was accepted to keep the example reasonably simple,
but would be eliminated in practice, eg. by including ‘hubs’ at the top and bottom of the
mast and replacing the stays of Fig. 6 by ones arranged like the spokes ol a bicycle wheel).

It took about 25CPU mins on a MicroVAX 3900 computer to find Fig. §a) and about 4
CPU mins to find a single individual natural frequency. Therefore it would have been prohibitive
to demonstrate the computational efticiency of the multi-level rotationally periodic substructuring
by performing runs that did not use it. However, use of an appropriate formula for predicting
BUNVIS-RG computation times (Anderson and Williams 1987) indicates that the solution would
have taken about 500 times longer if neither the rotationally periodic nature of the parent structure
nor of its substructures had been used, so that the whole structure would have been modelled
without substructuring. If class B substructuring had been implemented in BUNVIS-RG, its use
with the multi-level doubling up of substructures described in the Introduction in connection
with Fig. 1(b), ie., substructure S;, would have reduced the solution time by a factor of about
ten, ie. Fig. 8(a) would have required about 3 VAX CPU mins.

6. Other forms of repetition

Based on earlier work (Anderson 1981). theory within BUNVIS-RG covers frames that are
repetitive in one, two or three Cartesian directions. Exact finite elements are again permitted,
by including an Eq. analogous to Eq. (19). The size of the problem analysed is that of the
repeating portion of the frame. Briefly, the method requires that the response mode is repetitive
over N;, N, and N; bays in the three coordinate directions, such that

D;=D, expl2im(n i /N +najs /N> +nyj3 N (34)
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where D; is the (complex) displacement amplitude vector of the j-th repeating portion, which
is separated from the datum repeating portion by j,. /> and j; bays in the three coordinate directions.

7. Conclusions

The Abstract may be read as a summary of the principal conclusions.
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