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Discussion by P.AA. Laurat

Department of Engineering, Institute of Applied Mechanics (CONICET), Universidad Nacional del Sur,
8000-Bahi a Blanca, Argentina

The authors are to be congratulated for their interesting and practical paper (Takabatake
and Mizuki 1995).

It is also the purpose of this discussion to mention the possibility of using an alternate approxi-
mating function instead of the cantilever beam function employed by the authors, Eq. (39) in
the paper under discussion

(DN :Ch[kn (XB“-X)] - COS[k,, (XB _X)] —aQ, {Sh [:kn (XB —X)] - Sin[kn (XB_X)] } (] )

It has been shown by Laura and Gutierrez (1986) that a very convenient approximation for
the fundamental mode of vibration of the structural systems depicted in Fig. 1 is the polynomial
expression

W) =Clax"+ e’ + e’ +ax+ 1) x=x/L Q)

where the a's are obtained substituting Eq. (2) in the essential boundary conditions
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Fig. 1 Mechanical systems executing transverse vibrations (Laura and Gutierrez 1986).
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W/ 0)=0; W, (0)=0. W,(1)=0;. W,/(1)=—¢ W,”(1)
(3a, b, ¢ and d)

where ¢ =FI(1) ¢/L and ¢: flexibility coefficient defined by Eq. 3(d), see Fig. I.

The exponential parameter y contained in Eq. (2) allows for minimization of the fundamental
eigenvalue since, when employing the Rayleigh-Ritz method, one obtains upper bounds.

The procedure can be extended using additional polynomials in order to increase the accuracy
of the results and to deal with frequencies of excitation of higher order.

However for frequencies below the second natural frequency. expression Eq. (2) yields excellent
engineering accuracy. Expression Eq. (2) is particularly advantageous in view of its simplicity
and the fact that it is immediately applicable for any value of the flexibility coefficient. Eq.
(1), on the other hand, posseses a more complicated mathematical structure.

Consideration of local variations in mass and/or rigidity does not introduce any formal difficul-
ties when Eq. (2) is used.
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There are many papers concerning uniform and variable cantilevers with or without tip mass.
as shown in Laura, Pombs. and Susemihl (1974), Mabie and Rogers (1974), Kaiser, Shaker.
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and Nayfeh (1974), Goel (1976), Bhat and Wagner (1976), To (1982), and Lau (1984).

The motivation of current our paper (1995) is to solve simply the dynamic analysis of slender
tapered thin-walled towers with additional mass and rigidity. Therefore, the discontinuous varia-
tion of mass and rigidity due to local additional mass and/or local structural rigidity is formulated
rationally as a continuous function by means of a characteristic function. The characteristic
function proposed here is defined as the Dirac function exists continuously in a prescribed
region. The use of this function has the following merits on the formulation and computations:

(1) the variation of mass and rigidity is expressed exactly;

(2) the continuous condition of elastic deflections and rotations at discontinuous points in

rigidity is satisfied because cutting at the discontinuous points is unnecessary;

(3) the treatment is very simple and general in the -formulation and computation; and

(4) when the region of local and additional mass and rigidity is extremely smaller than the

total height, the formulation and computation are simplified by means of an approximation
_ proposed.

Thus, in current paper the Galerkin method is employed to utilize effectively the above-men-
tioned merits of characteristic function proposed here. The accuracy of results obtained from the
Galerkin method depends on shape functions used. The shape functions of current member
adapt well-known ones for a cantilevered uniform member without additional mass and rigidity
from the following reasons: the tapering angle of the variable member considered here is small
and the behavior is dominated by the original variable member without additional mass and
rigidity.

Although the shape function used is simple, the numerical results obtained from the function
show to be effective in practice. The shape functions depend on the magnitude and location
of the additional mass and rigidity, on the tapering angle of variable members, and on the
supporting conditions at the base. Laura and Gutierrez (1986) proposed an effective shape function
by means of a polynomial. However, since this shape function includes optimization parameter,
it is not effective to apply its function to the current Galerkin method. The effect of additional
mass at the top is effective to employ the shape functions proposed by Laura, Pombo, and
Susemihl (1974) and To (1982). Meanwhile, Goel (1976) proposed a shape function of transverse
vibrations of tapered beams. Although this function is exact, the computation is very complicated
because of including Bessel functions. A simplified shape function., which is usable to variable
members with the arbitrary location and magnitude of additional mass and rigidity, is lacking.
Current analysis is considered to provide engineering approach and effective approximate solu-
tions in quasi-closed from solution for dynamic analysis of slender tapered thin-walled towers
with additional mass and/or rigidity.
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