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Nonlinear finite element analysis of fibre
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Abstract. A study on the behaviour of fibre reinforced concrete deep beams with and without web
openings is carried out using nonlinear finite element analysis. Eight node isoparametric plane stress
elements are employed to model the fibre reinforced concrete materials. Steel bars are treated using
a compatible three node truss elements. The constitutive equations for fibre reinforced concrete materials
take into account the softening effect of co-existing shear strains. Element stiffness at each step is formulat-
ed based on the tangent modulus at the current level of principal strains. Transformation between principal
directions and global coordinate system is imposed. Comparison of analytical results with experimental
values indicates reasonably good agreement. The proposed numerical model can be used to study the
behaviour of this composite structures of practically any geometries.
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1. Introduction

Deep beams are beams with a span to depth ratio of less than about 5. Owing to their geometri-
cal proportions. strength of deep beams is normally governed by shear rather than by flexure
provided that nominal amount of longitudinal reinforcement is present. The failure mode of
this type of structure is characterised by a gradual propagation of diagonal cracks towards the
support and loading points along the natural load path (Kong er al. 1978). For deep beams
with a span to depth ratio of less than 2, Chow er al. (1953) based on finite difference solutions
showed that the distribution of stresses in such deep beams differs significantly from that of
ordinary slender beams. Results from finite element analyses reaffirm the above postulate (see
e.g. Fafitis and Won 1994).

When short discrete fibres are added to the concrete matrix, the fibres are able to arrest
the growth of micro-cracks which will enlarge under stress to form visible cracks which ultimately
cause failure. The restriction of the growth of these cracks increases the tensile strength of the
concrete. Compared to steel bars, fibres are able to arrest any cracks more effectively as they
are randomly distributed throughout the concrete at a much closer spacing than can be obtained
by the reinforcing bars. The inclusion of these fibres also enhances the fracture toughness and
post cracking ductility. The performance of the composite materials will depend on the physical
and material properties of the constituents as well as the strength of the bond between the
two.
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Several researchers have conducted experimental investigations on the behaviour of reinforced
concrete deep beams with and without steel fibres. Kong et al. (1970, 1978) reported results from
a series of tests carried out on reinforced concrete deep beams with an without web openings.
Based on these experimental results they proposed empirical formulae to predict the ultimate
strength of these beams. A more rational semi-empirical formula was also presented by Ray
and Reddy (1979) for the same type of structures. The behaviour of fibre reinforced concrete
deep beams with and without web openings was reported by Swaddiwudhipong and Shanmugam
(1985, 1994) and Shanmugam and Swaddiwudhipong (1988).

So far, no accurate theory exists for predicting the behaviour of deep reinforced concrete beams.
This is due largely to the nonlinearity of the mechanical properties of the concrete materials
as well as the deviation of the behaviour of deep beams from the basic beam theory. The
presence of openings in this type of beams aggravates further the complexity of the problems.
These openings are usually necessary to provide access to utility and service ducts without further
increase in the ceiling head room.

In this paper, the finite element method is used to study the behaviour of fibre reinforced
concrete deep beams. Material nonlinearity is considered in the study. Effect of shear strains
on the softening of concrete materials is considered in the adopted constitutive equations. The
proposed numerical model has wide application and can be used to analyse this composite
structures of practically any geometries.

2. Constitutive models

2.1. Fibre reinforced concrete

It has been observed that the compressive stress of concrete is not only a function of the
compressive strain but also depends on the co-existing shear strains. The shape of the compressive
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Fig. 1 Stress-strain diagram of (a) concrete materials and (b) steel bar.
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curve is influenced by the shear coefficient A, which is a ratio of the shear strain to the compressive
strain. Both the peak stress and the corresponding value of strain are reduced by a factor 1/4.
The shear coefficient, A, is always greater than one and reduces to unity in the case of uniaxial
compression (Vecchio and Collins 1981, 1986) The stress-strain relationship of steel fibre reinforc-
ed concrete materials (Mansur and Ong 1991) is shown in Fig. 1(a). The constitutive model
for each regime depends on the state of principal strains in concrete. The constitutive equations
for various regimes of principal strains can be expressed as follows:

2.1.1. Concrete under compression
(1) Prior to reaching strain corresponding to peak stress, |g,|<]g,l

Y DAY B
fi= [ —a( )] m

(2) Strain softening range, |&,|<|e&/l<le,l
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(3) Constant stress regime, |&]>lg,l
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The maximum shearing strain, %,=¢&—¢&; f is the cylindrical compressive strength in MPa;
v the Poisson’s ratio of concrete; & (=0.002), is the strain at the maximum compressive stress
of nonsoftened concrete; V; the volume fraction of steel fibre; 1, the length of the fibre in mm;
¢ the equivalent diameter of the fibre in mm and f, £, & and & are the current state of principal
stresses and principal strains respectively. The expression for threshold value of strain for constant
stress regime Eq. (4d) was given by Kent and Park (1971) while the fibre coefficient & in Eq.
(4e) was obtained empirically from the test results of Fanella and Naaman (1985).

2.1.2. Concrete under tension

(1) Prior to cracking in concrete, g<g,
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=(&—0.15¢) E. (5)
(2) Strain softening range, &,<¢<g,

S= = fu) +ﬁr (6)

(3) Constant stress regime, &=2¢;
Sr= N

where
+ 5
=2f, ( E E) (8a)
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E, and f, are Young's modulus of elasticity and yield stress of steel respectively; p, is the reinforce-
ment ratio, 7,(=0.5), the length efficiency of the fibre; 1,(=0.33), the orientation factor for the
fibre and t,(=4.12 MPa), the ultimate bond strength between the fibre and concrete matrix.
Egs. (8a) and (8b) were proposed by Barzegar and Schnobrich (1988) and Lim er al. (1986)
respectively.

2.2. Steel bars

The steel bars are modelled as an elastic-perfectly-plastic material as shown in Fig. 1(b). The
constitutive equations of steel bars in concrete is expressed as follows:
Before yielding, |&l<|s

J/=Ee 9
and after yielding, |&l>]gl

J=h (10)

3. Finite element solution

The finite element package “ABAQUS” is employed in the analysis. Eight-node isoparametric
plane stress elements with a 3X3 Gauss point quadrature as shown in Fig. 2(a) are used to
model the fibre reinforced concrete materials. The main reinforcement is treated as comprising
several three-node truss elements attached to the boundary of plane stress elements at the assigned
locations. The total amount of web reinforcement in each direction is evaluated, and evenly
distributed as truss elements attached to the boundary of plane stress elements. The truss element
with 2 Gauss point quadrature is depicted in Fig. 2(b). Perfect bond between steel bars and
matrix materials is assumed. This is especially true for the main reinforcement which is fully
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Fig. 2 Finite element model (a) eight-node plane stress element for concrete matrix and
(b) three node truss element for steel bar.
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Fig. 3 Typical finite element mesh for beams with openings.

anchored to the side steel plates as described in the experimental study (Swaddiwudhipong and
Shanmugam 1985, 1994). No element is present at the openings. A typical finite element mesh
for beams with openings is depicted in Fig. 3.

Since the material properties of the constituents are highly nonlinear, a nonlinear solver is
unavoidable. The modified Riks method (Riks 1972, Crisfield 1981 and Ramm 1981) is adopted
in the solution process of the resulting nonlinear stiffness equations. Static option, assisted by
automatic incrementation scheme based on displacement-controlled procedure (Hibbitt, Karlsson
and Sorensen Inc. 1991) is adopted to control the increment size and consequently the rate
of convergence of the solutions. Details on finite element formulation are available in standard
finite element textbooks such as Zienkiewicz and Taylor (1989) whereas the solution process
is described by Powell and Simon (1981). Ramm (1981) and Hibbitt, Karlson and Sorensen
Inc. (1991).
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4. Element stiffness matrix

Formulation of element stiffness in finite element procedure requires the knowledge of the
material rigidity at current state of stresses or strains. The expressions for material stiffness for
various states of strains in principal directions are as follows:

4.1. Fibre reinforced concrete under compression

(1) Prior to reaching strain corresponding to peak stress, |g<|g,l.

G _ 2 2k 1 [ &
Je, _‘ﬁ'[&, &’ 24 ( &’ )] (b

(2) During the strain softening regime |g,[<|g,|<|e,l,

I :ﬁ’(l—k’)&(&f—@)[ L& 2 ] 0

o Weleg) | (66 & a) (12
(3) When [&/l>g4l,

9 _

e =0 (13)
4.2. Fibre reinforced concrete in tension
(1) Before cracking. &<é,.

af _

oe =E, (14)
(2) In the strain softening regime, &,<¢g<¢,,

of o= Sw)

de (6.~ &) (15)
(3) When g2¢;

il =0 (16)

Oe

Eqgs. (11)-(16) are the constitutive equations for fibre reinforced concrete materials at any state
of current strains in the principal directions. In standard finite element process, the element
properties are formulated in a selected global coordinate system which normally does not coincide
with the principal directions. The constitutive matrix derived earlier has to be transformed to
the global system prior to the application of standard finite element formulation.

The relationship between states of stresses in principal and global systems is expressed through
equilibrium conditions ag™Timoshenko and Goodier 1970)).

Rl D

o, cos"a sin” a f
o. (=| sin*a cos’ a . }
Ty sina@cosa  —sinacosa

(17)
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or
{o}=[11"{o,} (18)

where a is the angle between the principal and global axes.
Principle of contragradient gives

{e,}=[T]1¢} (19)
and
[D1=[T]"[D,]LT] (20)

where [D] and [D,] are the element stiffness matrices in the global system and principal strain
directions respectively.

5. Description of tested specimens

A total of eleven fibre reinforced concrete deep beams reported earlier by Singh (1990) and
Swaddiwudhipong and Shanmugam (1994) are analysed using the proposed numerical models.
All the beams share the same dimensions, the same clear span and are all reinforced by two
16 mm diameter bars anchored by welding to 10 mm thick steel plates at both ends. The yield
strength of the bars is 408 MPa. The length, the depth and the thickness of the beams are
1550 mm, 650 mm and 80 mm respectively. Details of the beam geometry, locations and size
of web openings are tabulated in Table 1 and illustrated in Figs. 4 and 5. The cube strength
of fibre reinforced concrete matrix, f, of each beam is included in Table 1.

One percent of steel fibre was added into the concrete mix. The steel fibre is of a mean
diameter of 0.5 mm, a length of 30 mm, Young's modulus of elasticity of 205 GPa and a yield
strength of 1172 MPa. In each beam of the A-series, 6 numbers of 6 mm deformed bars evenly
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Fig. 4 Details of geometry and web reinforcement for beams of B-series.
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Fig. 5 Location of web openings.

Table 1 Beam geometry and concrete strength

Series Beam x/D kix(mm)  kDmm)  2a;x(mm) 2a:D(mm)  f,(MPa)

A ASH/04 04 NA NA NA NA 435
AOH/04 04 130 325 175 125 474

AOHV/04 04 130 325 175 125 43.1

B BOB1/0.3 03 40 455 175 125 433
BOC1/0.3 03 40 195 175 125 41.8

BOB2/0.5 0.5 220 455 175 125 414

BOCI1/0.5 0.5 40 195 175 125 40.8

BOC2/0.5 0.5 220 195 175 125 41.1

BOA1/04 04 85 325 265 125 43.1

BOA2/04 04 130 325 265 125 434

BOA3/04 04 175 325 265 125 45.1

distributed at 100 mm c/c are provided as horizontal web reinforcement on each face. Additional
16 numbers of 6 mm bars are evenly distributed in beam AOHV/04 to serve as vertical web
reinforcement on each face. The yield strength of web reinforcement is 446 MPa and no extra
bar is provided to compensate for the reinforcement cut-out by the opening. Each beam of
B-series contains on each face a layer of welded wire fabric of diameter 3.3 mm spacing at
50 mm in each direction. The yield strength of the wire employed as web reinforcement for
the beams of the B-series is 304 MPa.

Fach test beam was supported on a hinge at one end and on rollers at the other over a
clear span of 1300 mm on a 1000 kKN. Avery Universal testing machine which is a load controlled
equipment. The beams were tested under two point loading symmetrically placed as shown
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Fig. 6 Schematic diagram showing the test set-up.
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Fig. 7 Finite element meshes for beam ASH/04.

in Fig. 6. Loading plates were provided to prevent the crushing of concrete at the loading and
supporting points. All the beams were tested to failure and vertical displacements at midspan
as well as under the loading points were monitored. Details of the testing procedure can be
found from Swaddiwudhipong and Shanmugam (1994).

6. Results and discussions

Owing to the symmetrical condition about the vertical axis at the centre of each beam. only
half of the beam is considered in the analysis. Symmetrical boundary conditions are imposed
along the line of symmetry. Loads are assumed acting uniformly under the loading plate and
the vertical displacements of the lower nodes at the elements in full contact with the supporting
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Fig. 8 Load-deflection curve of beams (a) ASH/04, (b) AOH/04 and (¢c) AOHV/04.
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Fig. 9 Load-deflection curve of beams (a) BOB1/0.3 and (b) BOC1/0.3.

plate are constrained.

Convergence study was carried out for beams with and without openings to establish the
appropriate mesh size. As an example, the results from the analyses of beam ASH/04 based
on 2 mesh sizes shown in Fig. 7 are given in Fig. 8(a) along with those obtained from experimental
investigation. The values from the two finite element analyses show close agreement implying
sufficiently refined mesh size. Finite element and experimental load-deflection curves of each
beam are depicted in Figs. 8-11. Numerical results deviate somewhat from the raw experimental
data. However, if slackening in the early part of the test results is corrected, analytical and
experimental values agree reasonably well.

The load carrying capacities of each beam obtained (1) experimentally, (2) through a semi-
empirical modified Kong and Sharp formula (Swaddiwudhipong and Shanmugam 1994) and
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Fig. 10 Load-deflection curve of beams (a) BOA1/04, (b) BOA2/04 and (c) BOA3/04.
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Fig. 11 Load-deflection curve of beams (a) BOB2/0.5, (b) BOC1/0.5 and (c) BOC2/0.5.

(3) finite element solutions are tabulated in Table 2. All finite element solutions but one overpredict
the ultimate load when compared with experimental values. This is most likely due to (1) the
assumption that perfect bond between web reinforcement and matrix materials exist and (2)
local defects in the test beam which propagate when the applied load is close to the ultimate
load causing the beam to fail earlier than predicted. In all study cases, the finite element values
deviate within 20% from experimental results. Finite element solutions also agree reasonably

well with those obtained from the modified Kong and Sharp formula. Larger discrepancies bet-
ween the latter two solutions for beams AOHV/04 and BOB2/0.5 are noted and this is most
likely due to the semi-empirical nature of the modified Kong and Sharp formula where certain
coefficients were established from linear regression analysis based on experimental results.
As expected. the ultimate strength of deep beams depend largely on the presence of web
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Table 2 Comparison of ultimate strength of deep beams

FEM Experimental ~ Modified Kong & Priim Prim

Ref Beam Sharp Formula : -
Prm(kN) Pop(KN) Prs (kN) Pexp Puks

== ASH/04 850 854 838 1.00 1.01
k= g AOH/04 480 458 471 1.05 1.02
» = AOHV/04 595 520 489 1.14 1.22
o BOB1/0.3 499 495 461 1.01 1.08
= BOC1/0.3 356 310 325 1.15 1.10
= go _ BOB2/05 416 350 321 1.19 1.30
2 EX BOCINOS 329 280 274 1.18 1.20
252 BOC20S 454 480 429 0.95 1.06
=2 BOA1/04 457 397 386 1.15 1.18
Z% BOA2/04 356 340 364 1.05 0.98
VOA3/04 470 400 395 1.17 1.19

i,

Fig. 12 Typical display showing principal stress distribution.

openings and the extent to which these openings interrupt the load path. The introduction of
web openings in solid beam ASH/04 forming beam AOH/0.4 reduces the load carrying capacity
from 850 kN to 480 kN. The beams with openings that intercept the load path to a greater
extent show substantial reduction of ultimate strength. The ultimate strength of beam BOB1/0.3
as compared to beam BOC1/0.3 decreases from 499 kN to 356 kN. The openings in beam BOC1/0.3
obviously intercept to a greater extent the load path than those of beam BOBI1/0.3. Another
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example is the comparison of ultimate load of beam BOA2/04 with those of beams BOA1/04
and BOA3/04. The load carrying capacity of beam BOA2/04 is 356 kN which is significantly
lower than the valus of 457 kN and 470kN for beams BOAI1/04 and BOA3/04 respectively.
The openings in beam BOA2/04 obviously intercept the load path more completely than those
of beams BOA1/04 and BOA3/04.

The study also reveals that the ultimate strength of beams with openings in the lower portion
are lower than those with openings in the higher portion when the degree of interruption of
the load path is comparable. This is demonstrated through the comparison of the results of
beams BOC1/0.5 and BOB2/0.5. The ultimate strength of the former is 329 kN which is substan-
tially lower than the value of 416 kN for the latter.

A typical graphical display showing the principal stress distribution for beam with web openings
is illustrated in Fig. 12. It is observed that large compressive stresses exist in the vicinity of
the loading and supporting points. Tensile stresses occurs predominantly at the bottom of the
beam and near the opening. The materials at the top-left corner are relatively stress free. Fig.
12 shows distinctively the flow of compressive stresses along the natural load path between
the loading and supporting points around the web openings as well as thrusting each other
across the symmetrical line at the level just above the top of the openings.

The study indicates that openings in deep beams, if unavoidable, should be located away
from the load path ie., in the region where stresses are relatively low. The ideal place for the
problem under study will be in the vicinity of the top corner above the support or in the lower
part of the beam somewhere below the loading point and midspan preferably at about middepth
closer to the midspan. The amount of reinforcement loss due to the cut-out for the openings
should be approximately doubled and provided around the openings. It is a good measure
to provide diagonal steel bars with sufficient anchorage length at the four corners of the penings
especially those lie in the vicinity of the load path.

7. Conclusions

The behaviour of fibre reinforced concrete deep beams with and without web openings is
studied using finite element method. Effect of shear strains on the principal compressive strains
as well as nonlinearity of concrete materials are considered. Finite element solutions compare
reasonably well with experimental results especially when inherent error in the latter is eliminated.
The results from the study reinforce the postulate that ultimate strength of deep beams depends
largely on the presence, the locations of web openings and be affected significantly by the extent
to which these openings interrupt the load path. Openings, if required. should be located in
the low compressive stress zone. The model as proposed herein can be empolyed to study the
effect of size and locations of openings on the behaviour of fibre reinforced concrete deep beams
of practically any geometries.
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