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Braced, partially braced and unbraced columns:
complete set of classical stability equations

J. Dario Aristizabal-Ochoa t
School of Mines, National University, Medellin, Colombia

Abstract. Stability equations that evaluate the elastic critical axial load of columns in any type of
construction with sidesway uninhibited, partially inhibited, and totally inhibited are derived in a classical
manner. These equations can be applied to the stability of frames (unbraced, partially braced, and totally
braced) with rigid, semirigid. and simple connections. The complete column classification and the corres-
ponding three stability equations overcome the limitations and paradoxes of the well known alignment
charts for braced and unbraced columns and frames. Simple criteria are presented that define the concept
of partially braced columns and frames, as well as the minimum lateral bracing required by columns
and frames to achieve non-sway buckling mode. Various examples are presented in detail that demonstrate
the effectiveness and accuracy of the complete set of stability equations.

Key words: buckling; building codes; construction type; columns; computer applications; design; frames;
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1. Introduction

The elastic stability equations of braced and unbraced columns are presented and discussed
in the technical literature on structural design (Salmon and Johnson 1980, Chapter 14). Both
transcendental equations and their corresponding alignment charts have been endorsed by most
construction codes (ACI 1992, AISC-ASD 1989, AISC-LRFD 1993). Since the inception of the
alignment charts in the design process of columns and frames (Kavanagh 1962), the case of
partially braced columns and frames has not been mentioned in the technical literature nor
in the construction codes. Because of their paradoxical results in nonsymmetrical frames and
in frames with leaning columns, the validity of the alignment charts’ K-factor has been questioned
(Cheong-Siat-Moy 1986, 1991). Recently, the writer has proposed an approximate and nonpara-
doxical approach for the stability analysis and calculation of the effective length K-factor including
the case of partially braced columns and frames of any type of construction (1994a-c, 1995).

The main objective of this publication is to present the complete set of classical stability
equations for columns with semirigid connections, including the case of partially braced columns.
[t will be demonstrated that the stability equation of the partially braced column has been
the “missing link” to fully understand the elastic stability behavior of columns and frames,
and 1s the key to solve the paradoxes of the current alignment charts. As a consequence, the
complete set of three stability equations, not only is more general than the current set of two
stability equations (or the corresponding alignment charts), but also avoids any paradoxical results.

+ Professor



366 J. Dario Aristizabal-Ochoa

NN
iﬁ
|
b

@ (b)

Fig. 1 Column with sidesway partially inhibited and with rotational and lateral end restraints.
a) Structural model;
b) End moments, forces, rotations and deflections

Their utilization will be illustrated with various examples, and criteria for minimum bracing
required by frames to achieve non-sway buckling mode are presented.

2. Structural model

Assumptions. Consider a prismatic element that connects points 4 and B as shown in Fig.
la. The element is made up of the column itself 4B, the lumped flexural connectors x, and
K, and the lateral shear connectors S, and S, at the top and botiom ends, respectively. It is
assumed that:

1) the column 4B is made of a homogeneous linear elastic material with a modulus of elasticity

E.

2) the centroidal axis of the member is a straight line;

3) the column is loaded with an end axial load P applied along the centroidal axis of the

cross-section of area A4 and principal moments of inertia /, and /,; and

4) deformations are small so that the principle of superposition can be applied.

The lumped flexural connectors have stiffnesses «, and x, (whose units are in force-distance/ra-
dian). respectively. The units of lateral shear connectors S, and S, are in force/distance. The
ratios R,=«,/(El/h) and R,=k;,/(El/h) are denoted as the stiffness indices of the flexural connec-
tions. Where /=the column moment of inertia about the principal axis in question, and 4 =the
column height. These indices vary from zero(i.e. R,=R,=0) for simple connections (i.e., pinned)
to infinity (ie. R,=R,=o0) for fully restrained connections (i.. rigid). It is important to note
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that the proposed algorithm can be utilized in the inelastic analysis of framed structures when
the nonlinear behavior is concentrated at the connections. This can be carried out by updating
the flexural stiffness of the connections «, and «, for each load increment in a linear-incremental
fashion. Gerstle (1988) has indicated lower and upper bounds for x, and x,. More recently,
Xu and Grierson (1993) used these bounds in the design of frames with semirigid connections.
Also Chen and Kishi (1989), Chen and Lui (1991) have presented data and modeling of semingid
connections in the stability of steel structures.
For convenience the following two parameters are introduced (Aristizabal-Ochoa 1994a):

1

P,= 3 (la)
R,
and
pPy= . 3 (1b)
1+ R,

where P, and P, are called the fixity factors. For hinged connnections, both the fixity factor
p and the rigidity index R are zero; but for rigid connections, the fixity factor is 1 and the
rigidity index is infinity. Since fixity factor can only vary from 0% to 100% (while the rigidity
index R may vary form 0 to o), it is more convenient to use in the analysis of structures with
semirigid connections (Cunningham 1990, Xu and Grierson 1993).

The relationships between the fixity factors £,, 0, and the alignment charts ratios y, and
v, [ie., y= Z(El/h)( /Z(EI/L)g at the top and bottom ends, respectively] of a column in a symmet-
rical rigid frame with sidesway uninhibited or partially inhibited are: £,=2/(2+ y,), and £,=2/(2
+ ;) (Aristizabal-Ochoa 1994a). In symmetrical rigid frames with sidesway totally inhibited,
the relationships are: £,=2/(2+3y,), and P,=2/(2+3y;). In symmetrical frames with semirigid
beam-to-column connections, the fixity factors can be determined using structural principles
as shown by the writer (1994a). Finally, for unsymmetrical frames with semirigid connections,
the fixity factors can be determined using structural principles as shown by example 2 of this
publication.

2.1. Stability equations and the effective length K-factor

Stability criteria. In a frame with sidesway uninhibited or partially inhibited every column
is defined as having reached its critical load when sidesway buckling of the frame occurs, with
the distribution of load among the columns being as specified. The effective length K-factor
of each column of the frame, then, is defined as that value that yields the appropriate critical
load when applied to the classic Euler's formula, 7°El/(Kh). The K-factor so obtained for each
column must be greater than that calculated for the same column but assuming the frame
with sidesway inhibited. Thus, the effective length K-factor would be infinity for unloaded columns,
since critical load. as defined. is zero for those columns. Obviously, in this concept, the K-factor
of each column is a function of its own properties, the properties of the entire frame (support
and bracing conditions), and the distribution of load among the columns in the frame. The
complete set of stability equations are included at the bottom of each case for easy reference
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Fig. 2 Column classification and corresponding stability equation.
a) Column with sidesway totally inhibited;
b) Column with sidesway partially inhibited;
¢) Column with sidesway uninhibited

and convenience (Figs. 2a-c). The stability equations are discussed and derived in the next sections.
2.1.1. Columns with sidesway totally inhibited

For columns in which the lateral sway between the two ends A and B is totally inhibited
(Fig. 2a), the stability equation in terms of the stiffness indices is as follows:

(WK)’ ] 1\, K ] Tan(72K)
R.R, +< R, )[l Tan(K) |~ w2k =0 2a)

which in terms of the fixity factors Egs. (la-b) into (2a) becomes:

_ _ 5 _ 1K Tan(n2K) . |_
(1= X1 = PYAIK Y+ 30, 2p,,p,,)[1 T ]+9p(,p,,[4—l(jm) 1] 0 (b

Eq. (2a) is the classical stability equation for braced columns (Salmon and Johnson 1980).

2.1.2. Columns with sidesway partially inhibited

For columns in which the lateral sway between the two ends is partially inhibited by springs
S, and S, (Figs. la or 2b). Eq. (3a) is proposed by the author:
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(;ilézz—l*(R_la“LTlh) Tag(/f/l() - (n/}o2 E%flr‘ x
Ty iy ) v omt] Y
which in terms of the fixity factors Eq. (la—b) into Eq. (3a) becomes:
(1= ,X1— B NAK Y =90, 0,— 30+ P, — 20, P5) Tag{fm) ~ (ﬂ/}()_, A x (3b)
{9/)(, P, [%%éﬁL 1] (L= o)1= PXAK Y = 300+ Py~ 20, P) [—h—r’l’%ﬁ - 1]} =0  (3b)

Where 1/SA=1/S,+1/Ss
2.1.3. Columns with sidesway uninhibited

For columns in which the lateral sway between the two ends is uninhibited (Fig 2c), the
stability equation in terms of the stiffness indices is as follows:

(WKyY—R.R, 1K

R,4R,  Tan(n/K) (4a)
which in terms of the fixity factors Eq. (la-b) into Eq. (3a) becomes:
A=PY1=PY7K)—90,P, _ /K @b)
3(1+P,+P,—2P,P) Tan(m/K)

Eq. (4a) is the classical stability equation for unbraced columns (Salmon and Johnson 1980)
and is a particular case of Eq. (3a) when SA=0. The derivations of Eq. (3a) and Eq. (3b)
are presented next.

3. Derivation of the classical stability equations

The classical stability equations for a prismatic column in Fig. 1b are easier to formulate
using the flexibility coefficients (Salmon and Johnson 1980) as follows:

9:M"h Sin¢—¢Cos¢+Aih Sing— ¢ _ A—A M, (5a)
“ EI »*Sing EI  ¢°Sing h K,
g —Muh Sing—¢Cos¢ | M,h_Sing—¢ _ _ A=A, M, 5b)
" EI »2Sing EI  ¢Sing h K

Where: 6, and @,=total rotations at 4 and B, respectively.
A, and A,=total lateral sway at 4 and B, respectively.
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Since four unknowns (M,, M,, A, and A,) are involved, two more equations are required.
These can be obtained applying static equilibrium (horizontal and rotational equilibrium of
the column in Fig. 1b) as follows:

S{1A11+ShAb:O (63)

MH+M;,+P(A[,—ALI)_’S/,AI7/’I:0 (6b)
Substituting Eq. (6a) into Eq. (6b) gives:

M, My, (p SuSh _ _

p + 0 (P S.+S, h)(A,, A)h=0 (6¢)

or simply

AZ“ +—Mh—” +(P—SAhYAR)=0 (7)

— SaSb - . .
Where: S A5 1g =overall lateral stiffness provided to column AB;
a b

A=A,— A,=relative lateral sway of B with respect to A. and

, EI
hZ

P=0¢

Notice that the combined effect of the lateral shear connectors S, and S, is equivalent to
a lateral spring in series S at either end of the column. The proper evaluation of S is vital
to the stability analysis of framed structures. In general, there are three sources of SA:

1) that provided by other columns that are part of the same story level from which column

AB is located;

2) from diagonal bracings or shear walls within the same story level of the frame; and

3) from external bracing provided by other structures or structural elements connected to the

column’s top and bottom levels.

For instance, the lateral stiffness provided by a single column under axial compressive load
N can be approximated by Eq. (8).

12E1 P, +P,+P.Py 2N 1
h? (4_papb) 5(4_pup/>)2 h

SA=

[40+8(0>+ o)+ 0,00, + P, +30,0,—38]  (8)

Eq. (8) is derived by Aristizabal-Ochoa (1994a). The spring constant S A provided by a single
diagonal bracing of cross-sectional area A,, horizontal length L and height # is as follows:

__AELR
SAT T+ Wy T B

Eq. (9) is derived by Salmon & Johnston (1980). The utilization of Eq. (8) will be demonstrated
in the next section of comparative examples.
Now. Eq. (5) and Eq. (7) can be represented in matrix form as follows:



Braced. partially braced and unbraced columns 371

- h [ Sing—¢Cos¢ EI) _h Sing—¢ - M
EI< ¢°Sing - K.h EI  ¢°Sing : M. 0
_h Sing—¢ _h [ Sing—¢Cosg El _
El 0°Sing EI( oSine | 1ok ! My =10
1 1 ET
L A h ¢ Spahd LA/RD L0
(10)

Eq. (10) indicates that there are three major buckling modes in the elastic range of columns,
they are:
1) buckling with relative sidesway totally inhibited (i.e.. A=0) corresponding to what is commo-
nly referred to as “braced” columns:
2) buckling with relative sidesway partially inhibited (i.e., A#0 and SA>0) corresponding to
“partially braced” columns; and
3) buckling with sidesway totally uninhibited (ie., A#0 and SA=0) corresponding to what
is commonly referred to as “unbraced” columns.
The current classical “braced” and “unbraced” cases. and the corresponding stability Egs. (2)
and (4), respectively and alignment charts are presented in the technical literature and are endorsed
by most construction codes (Salmon and Johnson 1980, ACI 1992, AISC-ASD 1989, AISC-LRFD
versions 1986 and 1993). However, partially braced columns were first introduced by the writer

and approximate solutions for the effective length K-factor were proposed (Aristizabal-Ochoa
1994a-c).

For columns with sidesway inhibited (i.e., A=0), the stability equation is obtained by setting
the determinant of the coefficients of the first two rows and columns in Eq. (10) equal to zero
follows:

Sing—¢Cos¢  _EI )(Sz'n<p-¢)Cos<j) LB )_(Sin(p—qb S
¢>Sing Kh ¢°Sing K, h ¢°Sing

which may be simplified to become Eq. (2a). This buckling mode is depicted in Fig. 2a

(11)

For columns with sidesway partially inhibited or totally uninhibited (ic., A+0), there are no
applied moments M,. M, and sidesway A can exist only after buckling occurs. Therefore, Eq.
(10) may be satisfied when M,, M, and the relative sidesway A are zero (ie. nobuckling) or
the determinant of the coefficients must equal to zero.

(0 EI _SAh){<Sln¢——QCos¢+ﬂ><Sm¢—¢Cos¢)+ﬂ>_< Sing— ¢ >2}_

h’ ¢°Sing K.h ¢’ Sing Ky h ¢°Sin¢
_1 [Sing—¢Cosp, EI __Sing—¢ | Sing—9¢Cos¢ EI _ Singg—q)J:O (12)
EI ¢>Sing K. h ¢°Sing ¢ Sing Kh  ¢’Sing

which may be simplified to become Eq. (3a). These two buckling modes are depicted in Fig.
2b-c. respectively.
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Fig. 3 Example 1: Rigidly connected frame.
a) Structural model;
b) Variation of the effective length K-factors with «

4. Comparative examples
4.1. Example 1: Rigidly connected frame

Consider the simple asymmetrical frame shown in Fig. 3a. To simplify calculations and for
convenience, assume that the girder’s flexural stiffness EI/L is infinitely larger than that of the
columns. Determine using Fig. 3(b) the variation of the effective length K-factor of column AB
and CD with @, B, and y and compare the results with those presented by Cheong Siat-Moy
(1986) for the particular case of f=y=1 and a=1, 025, and 0.

Solution: This frame appears to be a frame with sidesway-buckling uninhibited, however, this
classification needs to be checked first. Assuming that column CD is partially restraining column
AB, the K-factor of column 4B must be detcrmined first from Eq. (3b) taking into consideration
that: £,=10, P,=0 for column 4B, and P.=10, p,=0 for column CD, and from Eq. (8). Sp

:éﬁf—éa—lj"ﬂ Where the term éﬂ{ represents the lateral stiffness provided by column
(vhy S ' (vhy

or

CDon column 4B, and the termé the approximate reduction (ie. the geometric stiff-

5 Yh
ness of column AB) caused by its compressive axial load aP,. Therefore. using Eq. (3b):
mK 1 SA mK il=o0 3
Tan(WK)  (WK): EUR | TanwK) |~ (13)

which after substituting S A:%%f—%a?:"" into Eq. (13), the stability equation of the frame

in terms of the effective length K-factor of column 4B can be approximated by Eq. (14).
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K 5 2a 7K 1
Tan(7/K) 31:7’3(77/1()2 5y ][Tan(n/K) 1]~0 (14

where a=P,/P,
B=(EI),/(EI),
Y=h>/h

The solution of Eq. (14) [the variation of the K-Factor with a] is presented in Fig. 3b for
three particular cases: a) f=r=1. b) =1, y=0.5; and ¢) B=y=05. The K-factor of column
CD can be obtained from the condition P,=aP, or K>=K*B/ar?).

The solutions shown in Fig. 3b for case a) of: K,=20, 1.585 and 1425; K,=20, 3.170 and
oo for a=1. 025 and 0, respectively, compare very well with those reported by Cheong Siat-
Moy (1986) and Aristizabal-Ochoa (1994a). Notice that the K-factors of both columns vary, not
only with the end flexural restraints (as it is usually specified by most construction codes), but
with a, B and V. That is, all columns in a particular story of a frame are coupled together
and the stability of the entire story depends on:

1) the end flexural restraints of each column;

2) the load distribution among the columns;

3) the flexural stiffness of each column;

4) the unsupported lengths of each column that make up the story under consideration;

and

5) coupling effect by which the stronger columns (ie., those with large EI/A and strong end

flexural restraints) and columns with low axial load provide lateral support or bracing
to those heavily loaded and with soft end flexural restraints.

Similar procedure can be carried out for the frame shown in Fig. 4a (which is similar to
that of Fig. 3. but with support D fixed). The stability equation of this frame in terms of the
effective length K-factor of column AB can be approximated by Eq. (15).

3.0
Slenderness
K-Factor
P oP
L
— — 2.0
A oo EI c T
f=7=10
yh
: D ‘ 1.0 — | K —|=7=05
h ~|E K ‘ — ] $=1.0
0.699 z‘.'—":‘i N o copuutl Y=0.5
B B%/yhinge 0
Z ¢ 0.5 1.0 1.5 2.0
(84
(a) (b)

Fig. 4 Example 1 (Modified): Rigidly connected frame.
a) Structural model;
b) Variation of the effective length K-factors with ¢«



374 J. Dario Aristizabal-Ochoa

WK Jf 4 2all__wK _|]_
Tan(m/K) 3[ r(mwKy 5y ][ Tan(7/K) 1}_0 (15)

The solution of Eq. (15) is presented in Fig. 4b for the same three cases: a) f=7=1. b)
B=1, y=05; and ¢) B=r=05. Notice the lower limit of K=0.699 (corresponding to a pin-
ned-clamped column with sidesway inhibited) affects cases b) and ¢). Studying these two cases
of this particular frame, one finds that stability analyses based on the current alignment charts
give unsafe designs. For instance, consider case b) with identical axial loads in both columns
(ie. a=1). From Fig. 4b the frame will become unstable by individual buckling of column
AB without sidesway (ie. K=0.699); therefore, (P)),=(P.)=m"EI/(0.699h)=2.04677°El/h°. Had
a been greater than 1.35, this frame case would have been classified as a frame with sidesway-
buckling uninhibited (because K>0.699). Notice that K<1.0 in some ranges of « in all three
frame cases under consideration.

It is interesting to note that utilizing the current alignment chart for unbraced columns the
designer would obtain K=20 (P,,=mEl/4h*) and K= 1.0(P,,=4m’EI/h’) or columns AB and
CD. respectively, with a “predicted” total critical load for the frame of P+ P,,=4257"EI/h".
This would result in an extremely conservative design for column AB (overdesigned by a factor
of 4X2.0467=8.187), but unconservative for column CD (underdesigned by a factor of 4/2.0467 =
1.95), and an overall underdesigned frame (since its total critical load capacity of 2X2.04677° EI/h*
<4.257°EIl/R* predicted by the alignment chart). What makes this situation even worse is that
by reducing the applied load on column CD, the total buckling capacity of the frame is reduced
from 47572 EI/h* (for a=225) to 2.04687° EI/h* (for @=0). This large variation in the total critical
load capacity in unsymmetrical frames, like the one shown in Figs. 3-4, makes nonsymmetrical
structural configurations susceptible to instability at much lower loads than that predicted by
the current alignment charts.

These results also indicate that the classification of frames as braced or unbraced, based purely
on, the frame's geometry is not correct. In addition, the calculation of the K-factors for the
columns based on the current alignment charts K-factors should be avoided because it might
result in deficient designs.

4.2. Example 2: Bent frame

Consider the one-story frame shown in Fig. 5a. Assume L=h=12.192 m (40 ft), /=41.6231 X 1074
m* (10,000 in*) and E=20,684.272 KPa (3000 Ksi). Neglect axial elongations of all three members.
This frame would be considered a frame with sidesway-buckling uninhibited by most designers
with K-factors obtained from the alignment chart for “unbraced” frames as follows:

1. For column AB: ,,=04; and Wiouon=0: then K;=1.10

2. For column CD: y,,=04: and Wuuom=0: then K¢»=2.10

According to Eq. (3b), however. the fixity factors must be established first in order to determine
the K-factors. This can easily be carried out by applying a unit horizontal load at node A4 (or
C) (ie. 1 Kip=4448 KN) and finding the moments and rotations at joints 4 and C of the
frame with sidesway uninhibited. This can be accomplished using a standard structural enginee-
ring analysis for plane frames (like moment distribution) with the following results:

1. For column AB: Rotation at 4=0.000624 Radians: and Moment at 4=19.30 KN-m (170.84

Kip-in)
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Fig. 5 Example 2: Bent frame.
a) Structural model:;
b) Variation of the effective length K-factors with «

Therefore, the stiffness of the flexural connector at A is
Kk, = 19.30/0.000624=30931 KN-m/Radian; and the stiffness index at A4 is
R.= i,/(EI/h).5=30931/(20.684.272X 04X 0.00416231/12.192)=10.953; then using Eq. (la), the
l _
153710953 078>
. R I
The fixity factor at B: p,= 14 3/e0 =10
2. For column CD: Rotation at C=0.000119 Radians; and Moment at C=12.168 KN-m (107,70
Kip-in). Therefore, the stiffness of the flexural connector at C is
k.=12.168/0.000119=102251 KN-m/Radian; and the stiffness index at C is
R.= K EI/h)cp=102251/(20,684.272X 0.4 X0.00416231/12.192)=36.232; then using Eq. (la),
1

the fixity factor at C becomes: Q:W%E:OQ%.
1

1+3/0 =0

Once the fixity factors at the top and bottom of each column are determined and column
AB s selected as being laterally restrained by column CD. the K-factor can be calculated using
Eqg. (3b) and Eq. (8) taking into consideration that: SA= 3X2;4E1 Py— a}lli., (H— psd >

The variation of the K-factor of both columns with @ is shown in Fig. 5b. Each of these
two K values has its own lower limit as indicated by the broken lines. These lower limits are
obtained from Eq. (2b) assuming that the frame is “braced” (ie.. with sidesway totally inhibited
at the top). To calculate these two limits, the fixity factors for each column must be determined
again assuming that the frame is “braced” (i.e. zero sidesway at the top joints 4 and C). An
additional structural analysis was carried out with a unit moment at C (I Kip-in=0.11298
KN-m). and the frame restrained along the horizontal direction AC at the top. yielding the

fixity factor at 4 becomes: P,=

The fixity factor at D: p,=
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following results:
1. For column 4B: Rotation at 4=3312X10"° Radians; and Moment at 4=0.03742 KN-m
(0.3312 Kip-in)
Therefore, the stiffness of the flexural connector at A is
Kk, =0.03742/(3.312X 107 %)= 11298 KN-m/Radian; and the stiffness index at 4 is
R.= k,/(EI/h),5=11298/(20,684,272X 04X 0.00416231/12.192)=4: then using Eq. (1a), the fixity

1 1

factor at 4 becomes: ;?(1:1+—3/4:4/7. The fixity factor at B: P,,:WOZLO
Therefore, using Eq. (2b):
/K Tan(77/2K )
- + — =
{1 Tan(7/K) ] 4[ (m/2K) 1] 0 (16)

Whose solution is: (K.g)with sway totally inhivitea = 0-5896
2. For column CD: Rotation at C=1.2733X107¢ Radians; and Moment at C=0.01079 KN-
m (0.0955 Kip-in).
Therefore, the stiffness of the flexural connector at C is
k.=0.01079/(1.2733 X 10" %=8474.1 KN-m/Radian; and the stiffness index at C is
R.= k. (El/h)c;,=847.410/(20,684.272 X 04X 0.00416231/12.192)=3; then using Eq. (1a), the fixity
1 1

factor at C becomes: p.= 11373 =0.5. The fixity factor at D: p":H——B’/O:O
Therefore, using Eq. (2b):
2 _ /K _
(m/K) +3[1 Tan(7K) ]»—0 (17)

Whose solution is: (Kcp)ith sway totally inhibited = 0-8431

The values of K,z and K, and their lower limits are plotted in Fig. 5b. It can be concluded
that: 1) this particular frame will buckle with sidesway under any compressive axial load combina-
tion (ie. any a-value); 2) if the designer utilizes the alignment charts, columns AB and CD
would be underdesigned for load combinations corresponding to @>0.3 and a<0.25, respectively.
Now, by reducing the height of column CD to 0.5/ as shown in Fig. 6a and maintaining everything
equal, the K-factor of the short column CD is increased substantially, whereas that of the long
column AB is reduced significantly as shown in Fig. 6b. Notice that the K< for values of
a<0.687. These results, again, indicate that is unsafe to design unsymmetrical structures using
the current alignment charts with the short columns being underdesigned and the long ones
overdesigned. It is wrong to assume that each column has its own critical load. In reality, all
columns are coupled in the stability of framed structures.

5. Partially braced columns and minimum lateral bracing

5.1. Partially braced column criterion

A partially braced column is one whose effective length K-factor lies between Kybpuced Cotunn
and K’l’«)tull) Braced Column OT Slmp]y
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Fig. 6 Example 2 (Modified); Asymmetrical bent frame.
a) Structural model;
b) Variation of the effective length K-factors with a

KTotally Braced Column SI<szially Braced Column SK(,Jnhraccd Column (18)
(from Eq. 2) (from Eq. 3) (from Eq. 4)

This criterion is simple to apply and indicates that the K-factor of a partially braced column
might be less than 1 but never less than that of the same columm but with sidesway totally
inhibited. The lower bound of K for any column with no intermediate lateral support between
its ends is 0.5 (this corresponds to a braced column with both ends clamped).

5.2. Minimum bracing criterion

The minimum bracing required to convert a frame with sidesway uninhibited or partially
inhibited into a fully braced frame can be determined utilizing Eq. (18) by comparing Egs.
(2) and (3).

K’I'o[ully Braced (‘olumn:KPurtiull_\ Braced Column (19)
(from Eq. 2) (from Eq. 3)

By combining Egs. (2b) and (3b), for instance, the required SA can be determined directly
following the steps described below:
1) The fixity factors £, and P, must determined for both conditions braced and unbraced,
as it was done in the frame of Example 2;
2) The K-factor for braced conditions is calculated from Eq. (2b) [utilizing, of course, the
fixity factors P, and p, for the braced casel;
3) The braced K-factor and P, and p, for unbraced conditions previously calculated are sub-
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Fig. 7 Example 3: Minimum lateral bracing.
a) Structural model:
b) Variation of the minimum lateral bracing with «

stituted into Eq. (3b) from which the required minimum bracing SA can be calculated
directly as follows:

o o oy oy K }
oo CTKF1-RXI= AT 92,0, 30,4 A 20,00 Tan(7/K) 0)
El/h® Tan(n/2K) B _ , _ K
9'[)“ ’Dh[ (n/ ) l] +(1 p(,)(l pb)(ﬂ/K) 3(pu+ph Zpa p/?)[ Tan(n/K) 1:]

An example describing the steps for the calculation of (SA)ms in a bent frame is presented
below.

5.3. Example 3: Minimum lateral bracing

Utilizing Egs. (3b). (8) and (20) determine the minimum bracing required to convert the bent
frame of Example 2 case a) shown in Fig. 7a into a fully braced frame for any value of
a

Solution: Assuming that column CD is restraining column 4B laterally, and taking into consid-
eration that: 1) £,=0.785, p,=1 for column 4B and P.=0, and P,=09235 for column CD under
unbraced conditions; and 2) K=0.5896 and 0.8431 for columns 4B and CD. respectively, for
braced conditions (already calculated in Example 2), then the required minimum bracing must
be provided by at least two sources. First, by column CD itself [(SA)cp which can be obtained
approximately from Egq. (8)], and second by an additional element or elements (like diagonal
bracing) which will be denoted as to (SA).s. Therefore:

SA = (SA)(D+ (SA)mld (2 1 )
From Eqg. (8):
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12BEI P+ P+ PPy 2aP 5 5
= ¢ — +pAH+e, A+ 0,+3P.P— 22
CAC="00y “@—pp)  SThE— ) [0+ 80 PO+ PP Prt3PL—3N] (22)

or

SA)ep _ 128 PHPHPPs 2a(7/K ) , , B

(SA)aw can be estimated combining Egs. (20), (21) and (23) as follows:
2301 _ L _ _ _ K }
SAw (7/K) {(] ,0,,)('17 PXA/K Y —9P, P, —3(P,+ P, — 2P, Py) Tan(/K)

Ell Tan(m2K) _ AV . - &K ]
9p,, phl: (IT/ZK) l]+(1 pu)(l ph)(ﬂ/K) 3(pa+ph 2,0(, ph)[ Tan(ﬂ/K) l]

128 ptptPPy n 20(/K ) 40+ 802+ p. )+ _
2 [§ « ('pl ('_+_ +3p(p 34 24
y3 (4~p(‘prl) 57(4—p(pd)_ [ ('0 pl) & l(p pd ¢ ):I ( )

Eq. (24) represents the approximate solution for the minimum amount of lateral bracing requir-
ed bv a bend frame of any geometry, member sizes, support condition, and axial loadings
in the columns. For the particular frame of Fig. 7a case a) for which f=y=1, =L, and I,jumns =041
and any a, the variation of (—‘Z—‘?]i—:?—dwith a is shown in Fig. 7b.

Conclusion: Eq. (24) indicates the required additional bracing is a funtion of the degress of
fixity of the columns (P’s), the load distribution (), the ratio of the columns’ flexural stiffness
(B) and height (7). and the K-factor of the column that is first to buckle under braced conditions,
For instance, for the frame shown in Fig. 7a, from a=0 to approximately 0.50 the buckling
under braced conditions is controlled by buckling of column 4B, and for @>0.50 by buckling
of column CD. To guarantee braced buckling under any axial loading combination (ie., for

SA). S ..
any a value).  then SAus. E?/Lfd must be greater than 38971, which is is the minimum lateral
bracing required to achieve simultaneous buckling in columns 4B and CD (which occurs at
a:O.SO)

6. Summary and conclusions

The complete set of three stability equations by which the effective length K-factor of columns
in any type of construction can be evaluated is presented in a classical fashion. To understand
the threeway classification of columns and the corresponding stability equations, three well docu-
mented examples are presented and the results compared to other researchers’ work. The proposed
column classification and the complete set of transcendental equations are more general than
the current two classical stability equations and the corresponding alignment charts for braced
and unbraced columns and frames. Definite criteria is given to determine the minimum amount
of lateral bracing required in frames to achieve nonswaying buckling.

The studies carried out in this research indicate that:

1) the current stability equations and their corresponding alignment charts are limited to sym-
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metrical frames under symmetrical loading; and

2) to avoid absurd results in unsymmetrical frames, partially braced frames, and frames with
semirigid connections the utilization of Eq. (3a) and (3b) is recommended. Examples are presented
that demonstrate the misconceptions of the current methods based on the alignment chart for
unbraced columns and the accuracy and effectiveness of the poposed three-way classification
method.

Analytical studies indicate that the utilization of the current column classification and their
alignment charts in the design of framed structures with columns of different heights gives faulty
and unsafe designs. This is vital in the design of highway bridges (at interchanges) and buildings
on slopes (or with different column heights). While the alignment chart for unbraced cases
indicates that the long columns have the lowest critical load and the short columns have the
largest, the proposed model indicates opposite behavior. For systems with sidesway uninhibited
and partially inhibited, all columns in the system arc coupled together. It is wrong to assume
that in a frame structure with side sway each column has its own critical load independently
from those of the rest of the columns. In unsymmetrical frames this assumption gives unsafe
designs. Frames and columns should be classified according to the buckling mode and the
provided interstory lateral bracing as proposed by the writer and not according to frame “looks”
or engineering “judgement”.

According to the proposed classification, columns under light axial loads the effective length
K-factor become very large (K=o when the applied axial load is zero). Therefore, the limit
imposed by most construction codes to the slenderness ratio Kh/r to all vertical members is
not realistic. In a framed structures the slenderness ratio Kh/r for the column under the largest
axial load shall not exceed a specified limit. However, the rest of the columns of the story
system should have limited ratio of (A/r), instead.
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Notations

The following symbols are used in this paper

A, area of the truss bracing member
E Young's modulus of the material

wo and vy, X(I/h)/Z(I/1,) at ends A4 and B of column AB, respectively

h column’s height

I, girder moment of inertia

I or [, column’s moment of the inertia

K effective length factor of the representative column

L girder span

N applied axial load

P, column’s buckling load [ =m’EIl/(Kh)*]

(P)en buckling load of column CD[=qa(P.)]

S. and S, lateral stiffnesses or bracings provided to column at 4 and B. respectively

SA= E%C%,, resultant lateral stiffness or bracing provided to column at either end

R, stiffness index of the flexural connection at 4 [«,/(El/h)]

R, stiffness index of the flexural connection at B [, /(El/h)]

a ratio of axial load of column CD to that of representative column AB [Pcep/Pas)

B ra]tio of flexural stiffiness of column CD to that of representative column AB [ = (EI )p/(ET)
AB

y ratio of height of column CD to that of representative column AB [ =hcp/hys)

k. and x,  the flexural stiffness of the end connections at A and B, respectively
p. and P, fixity factors at 4 and B of column AB. respectively





