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Abstract. The dynamic behavior of an Euler beam with multiple point constraints traversed by a
moving concentrated mass, a “moving-force moving-mass” problem. is analyzed and compared with
the corresponding simplified “moving-force” problem. The equation of motion in matrix form is formulat-
ed using Lagrangian approach and the assumed mode method. The effects of the presence of intermediate
point constraints in reducing the fluctuation of the contact force between the mass and the beam and
the possible separation of the mass from the beam are investigated. The equation of motion and the
numerical results are expressed in dimensionless form. The numerical results presented are therefore
applicable for a large combination of system parameters.
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1. Introduction

The dynamic responses of a beam subjected to moving loads or moving masses have been
studied extensively in connection with the design of railway tracks and bridges and machining
processes. Timoshenko (1922) reported the classical solution of a beam subjected to a constant
moving load. The book by Fryba (1972) presented a comprehensive survey of the references
and methods for solving the problems involving moving loads on structures. Studies by Nelson
and Conover (1971), Benedetti (1974), Steele (1967), Florence (1965), Katz er al. (1987), and Lee
(1994) took into account the effects of elastic foundation, moving mass, multiple supports, and
deflection dependent moving loads. Sloss er al. (1988) studied the feedback control of a simply
supported Euler beam subjected to loads moving at constant speed with constant and harmonic
magnitude. The dynamic behavior of a beam acted upon by a moving mass, the original “moving-
mass moving-force” problem was approximated by the simplified “moving-force” problem by
Timoshenko e al. (1974). Sadiku and Leipholz (1987), using Green's function, showed that the
approximate solution for the “moving-force” problem was not always an “upper-bound” solution
in terms of the deflection under the moving mass for the related “moving-mass moving-force”
problem. It was found that the inertial effect of the moving mass could not be neglected in
comparison with the gravitational effect even if the velocity of the moving mass was relatively
small. However, the mass was assumed to be always in contact with the beam and the contact
force between the mass and the beam had not been examined to verify this assumption. More-
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over, there is no reported study on the behavior of a beam with multiple supports subjected
to a moving mass.

In the present study, the equation of motion in matrix form for an Euler beam on multiple
supports acted upon by a concentrated mass moving at a constant speed is formulated using
Lagrangian approach and the assumed mode method. The multiple supports are in the form
of intermediate point constraints modeled by linear springs of very large stiffness. The equation
of motion is non-dimensionalized so that the numerical results presented are applicable for
a large combinations of system parameters instead of just applicable for specific cases in the
reported studies. The possibility of the mass separating from the beam during the course of
the motion is examined by monitoring the contact force between the mass and the beam during
the motion. The effects of the presence of the intermediate point constraints in reducing the
fluctuation of this contact force and therefore diminishing the possibility of the mass separating
from the beam during the motion are to be investigated.

2. Theory and formulations

A slender beam of length L and mass m per unit length acted upon by a concentrated mass
of mass M moving at a constant speed v shown in Fig. | is considered for the present study.
A set of coordinate system, shown in Fig. 1, is assumed to be fixed in the inertial frame with
the i unit vector parallel to the undeformed beam and the j unit vector pointing downward
in the same direction of the gravitational field g. The two ends of the beam are either simply
supported or clamped, which are the most frequently encountered boundary conditions in the
actual applications. The transverse deflection for a point located at xi along the beam is denoted
by w which is a function of both the time r and x. Fig. 1 also shows the beam with an intermediate
point constraint. Multiple point constraints with locations indicated by x=s,, -+, sy are considered
in the present formulation. The position of the mass at any instant is indicated by s in the
i direction. The transverse deflection of the beam is assumed to be small for the behavior of
the beam to be governed by Euler beam theory.

The kinetic energy 7 of the beam is
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Fig. I An Euler beam on multiple supports acted upon by a moving mass.
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The bending elastic strain energy of the beam is

1 'L
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where E and / are the Young’s modulus and the principal second moment of area of the cross
section of the beam.

The intermediate supports at x=s,(p=1, -, N) are modeled as linear springs of large stiffiness
k. The potential energy due to the intermediate supports is
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where w(s,) is the deflection of the beam at x=s,.

The equation of motion can be formulated using Lagrangian approach either by considering
the mass to be part of the system with the external force acting on the system given by the
gravitational force acted on the mass, or by considering the presence of the moving mass in
terms of the contact force acting on the beam. The two approaches result in the same equation
of motion. The first approach which assumes the mass to be part of the system and treats
the contact force between the mass and the beam as an internal force in elaborated in the
following section.

The kinetic energy of the moving mass is

TM=—é-M<v2+<% +v% >2> 4)

The second term of the kinetic energy of the moving mas is due to the transverse component
of the velocity of the mass caused by the deflection of the beam as well as the horizontal
motion of the mass. The virtual work of the gravitational force on the system is

SW=Mgbw -, )

The quantity w, the virtual displacement of w, is to be evaluated at x=s. Using the Lagrangian
approach, the Lagrangian of the system is defined by

L=Tp+Ty—V.—V, (6)

In the above formulation as well as in all the reported studies, the moving mass and the
beam is assumed to be in contact at all times. The possibility of the mass separating from
the beam during the course of motion can be detected by the change in sign of the contact
force given by

o " owar TV ax @
The contact force is defined to be positive if the force acting on the beam is pointing down-
ward in the positive j direction. A change of sign from positive to negative indicates that the
mass has separated from the beam and the equation of motion is no longer valid to describe
the ensuing motion.
For simplicity in the subsequent computations, the following dimensionless quantities are intro-
duced
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Using the assumed mode method, the dimensionless quantity w can be expressed as
w= 2 4.0 ¢ ©)
i=1

The resulting Euler-Lagrange’s equation in vector form is

(M+MH)q+2MvAq+EK+Mv C+kS)q=Mg @ (10)
where $=S,+---+S, and
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The vector ¢ and ¢ are nX1 column vectors consisting of ¢g; and ¢; respectively. The matrix
M is equal to the identity matrix due to the orthogonality of the assumed normalized beam
functions. All the matrices exept C are symmetric. The numerical integrations are performed
using the fourth-order Runge-Kutta' method on a personal computer. For a simply supported
beam, the normalized assumed functions are

¢(&)=y/2sin ing (18)
For a clamped-clamped beam, the normalized assumed functions are
¢(&)=sinh ,¢—sin B,&+yi(cosh f¢—cos B.§) (19)
where f are the solutions of the corresponding characteristic equation
I —cos Bcosh f=0 20)
and
___sinh Bi—sin f
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3. Numerical results and discussion

The convergence of the numerical solutions in terms of the number of terms for the assumed
functions and the stiffness of the linear springs is first examined for both the simply supported
and the clamped beams with the system parameters given by Sadiku and Leipholz (1987):

L=6m v=6m/s EI/m=2754408m"/s* M/mL=0.2 (22)

These parameters are first non-dimensionalized as indicated in the preceding section. The
gravitational acceleration g is taken to be 9.81 m/s’. The deflection under the moving mass and
the contact force are presented in dimensionless form denoted by U=w(x=s)/L and F.=F.LYEI
It was found that the numerical results for both the dimensionless deflection under the moving
mass and the dimensionless contact force are almost converged for a simply supported beam
using a two-term approximation for w. A clamped-clamped beam would require more terms
(n=8) for the convergence of the numerical results. The convergence of the numerical results
in terms of the stiffness of the linear springs are shown in Fig. 2 for a simply supported beam
and in Fig. 3 for a clamped-clamped beam for a beam with an intermediate support at the
midspan. It is apparant from the equation of motion that a very large value of k will give

rise to difficulties for numerical computations. The computational time is in general longer for
a larger k especially for k larger than 107. Moreover, for very large k, the numerical results

*x10-3
3

]

1.7s

163

1.as

1.3s
o

=
W
0
LIRS N B R B s |

Fig. 2 Convergence study for a simply supported beam. ‘—— k=105 ‘+--... ’.
k=100, *———--- , k=10
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Fig. 3 Convergence study for a clamped-clamped beam. ‘—", k=10% ‘----. .
k=100 ‘------ T k=10,

for the dimensionless contact force is found to be superimposed by small-amplitude perturbations.
As both the dimensionless deflection under the moving mass as well as the dimensionless contact
force are almost converged for k= 10¢, this value of & is used in the following numerical computa-
tions. This value of k is also found to be sufficiently large to ensure that the deflection at the
intermediate support, indicated by W, in Figs. 2 and 3, is many orders smaller than the maximum
dimensionless deflection under the moving mass.

The dimensionless deflection under the moving mass as well as the dimensionless contact
force for a simply supported beam and a clamped-clamped beam with multiple supports (N=0.
1, 2) are shown respectively in Figs. 4 and 5. It can be seen from these figures that the presence
of just a single intermediate support located at the midspan of the beam drastically reduces
the deflection under the moving mass. A further increase of the number of intermediate supports
does not produce any significant reduction in the magnitude of the dimensionless deflection
under the moving mass. The presence of a single intermediate support at the midspan also
reduces the fluctuation of the contact force between the mass and the beam. A further increase
in the number of intermediate supports once again does not produce any significant reduction
in the fluctuation of the dimensionless contact force.

The use of the presence of intermediate supports to suppress the separation of the mass from
the beam during the course of motion is examined in Fig. 6 for a mass moving along a clamped-
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Fig. 4 The dimensionless deflection under the moving mass and the dimensionless contact force for
a simply supported beam. ‘——", N=0, *++---- " N=1, =172, ‘"~ TLN=2,5=1/3, $2=2/3.
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Fig. 5 The dimensionless deflection under the moving mass and the dimensionless contact force for
a clamped-clamped beam. *——' N=0, ‘+-+--- N=1,5=1/2, ‘"~ T, N=2051=1/3, 5:=2/3.

clamped beam with v=9 m/s. For this case, the sign of the contact force changes from positive
to negative towards the end of the motion in the absence of any intermediate support, indicating
that the mass has separated from the beam and the equation of motion is no longer valid
to describe the ensuing motion. The presence of intermediate supports reduces the fluctuation
of the dimensionless contact force and makes the magnitude to be closer to the gravitational
component, keeping the contact force to remain positive throughout the duration of the prescribed



310 HP. Lee

152102 : : :

-4 . . N . . . . A

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

3

Fig. 6 The dimensionless deflection under the movmg mass dnd the dlmensmnless contact force for

a clamped-clamped beam with v=9 m/s, "—— ", N=0, "+++--- L N=1,5=1/2, *———-- , N=2,
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Fig. 7 C omparison between the dlmensmnless deﬂccnons under the moving load computed using the
“moving-force moving-mass” formulation (*— ") and the “moving-force” formulation ~ (*------ )
for a simply supported beam. (a) N=0. (b) N=1. si=1/2, (¢) N=2, 5,=1/3. $2=2/3.
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Fig. 8 Lompanson between the dxmensnonless deﬂecnons under the moving load computed usmg the
“moving-force moving-mass” formulation (* — ") and the “moving-force” formulation  (*------")
for a clamped-clamped beam. (a) N=0, (b) N=1, s;=1/2, (c) N=2, s,=1/3, s:=2/3.

motion. The possible separation of the mass from the beam due to a high travelling speed
of the mass can therefore be avoidéd by the use of multiple supports. However, if the travelling
speed of the mass is too large, the presence of some intermediate supports may not be able
to avoid the possible separation of the mass from the beam.

The differences between the numerical results for the present “moving-force moving-mass”
formulation and the related “moving-force” formulation by removing the inertial terms of the
moving mass are examined in Fig. 7 for a simply supported beam and in Fig. 8 for a clamped-
clamped beam. The numerical results for both formulations, when converted to dimensional
form, are found to be in excellent agreement with the reported results by Sadiku and Leipholz
(1987). It has been concluded in Sadiku and Leipholz (1987) that the “moving-force” approxima-
tion is not an upper bound solution for the related “moving-force moving-mass” problem for
the prescribed system parameters. This is indeed the case for the numerical results shown in
Figs. 7 and 8 even for a beam with multiple supports. The numerical curves for both the formula-
tions cross each other on several occasions during the course of the prescribed motion. However,
the magnitude of differences between the numerical results for the two formulations diminishes
with the increase in the number of intermediate supports.
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4. Conclusion

The equation of motion in matrix form has been formulated for the dynamic response of
a beam on multiple supports acted upon by a moving mass using the Lagrangian approach
and the assumed mode method. The multiple supports are modeled by linear springs of large
stiffnss. Convergence of numerical results is found to be achieved with just a few terms for
the assumed deflection function and the stiffness of the linear spring moderately large. The
present numerical results in dimensionless for enable the results to be applicable for a large
combination of system parameters. Numerical results for other combinations of beam length,

magnitude and speed of the moving mass can therefore be easily computed. It is found that
the presence of multiple supports can suppress the separation of the mass from the beam by
reducing the fluctuation of the contact force between the mass and the beam. The present numeri-
cal results also confirm the finding by Sadiku and Leipholz (1987) that numerical results computed
using the “moving-force” formulation are not always upper-bound solutions for the results compu-
ted using the corresponding “moving-force moving-mass” formulation.
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