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Analysis of natural frequencies of delaminated
composite beams based on finite element method

M. Krawczukt, W. Ostachowiczt and A. Zakit

Institute of Fluid Flow Machinery Polish Academy of Sciences 80-952 Gdahsk ul.Gen. J.Fiszera 14, Poland

Abstract. This paper presents a model of a layered, delaminated composite beam. The beam is modelled
by beam finite elements, and the delamination is modelled by additional boundary conditions. In the
present study, the laminated beam contains only one delaminated region through the thickness direction
which extends to the full width of the beam. It is also assumed that the delamination is open. The
influence of the delamination length and position upon changes in the bending natural frequencies
of the composite laminated cantilever beam is investigated.
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1. Introduction

High-speed machinery and lightweight structures require high strength-to-weight ratios. For
this reason, in recent years, the use of anisotropic reinforced laminated composites, of which
the strength-to-weight ratios are very high, has increased substantially in the fields of mechanical
and civil engineering.

Delamination is one of the most important failure modes of laminated composite materials.
Delaminations introduced during the manufacturing process or produced by impact and other
service hazards may substantially reduce the stiffness and buckling load of the structure, thus
influencing the vibration and stability characteristics. The effects of delamination on buckling
and post-buckling deformation and delamination growth with various geometrical parameters,
loading conditions, material properties and boundary conditions have been studied extensively
in the past (Chai er al. 1981, Bottega and Maewal 1983, Whitcomb 1986, Yin er al. 1986, Chen
1991). However, only a few investigations have been conducted to study the effect of delamination
on vibration characteristics. Natural vibrations of delaminated beams have been studied by Ram-
kumar et al. (1979) on the basis of the Timoshenko beam theory. The authors, however, did
not take into account the effect of coupling of the transverse vibration with the longitudinal
wave motion in the upper and lower split layers. Their analytical results predicted significant
reduction of the fundamental frequency (from that of the perfect beam) and this prediction
was found to disagreec with the experimental observation. Wang er al. (1982) used the classical
beam theory but in the contrast to Ramkumar et al. (1979) they considered the coupling effect.
With the inclusion of coupling, the calculated fundamental frequency was not appreciably reduced

t PhD, MSc

I Professor, DSc, PhD, MSc
It MSc




244 M. Krawczuk. W. Ostachowicz. and A. Zak

by the presence of a relatively short delamination and the results were in close agreement with
experimental measurements. The natural frequencies of a composite beam with delamination
emanating from a transverse crack have been analysed by Ostachowicz and Krawczuk (1995).

The present work is restricted to the analysis of natural vibrations of a layered composite
beam with delamination. The beam is modelled by beam finite elements with three nodes and
three degrees of freedom at a node (i.e, the transverse and axial displacements and the indepen-
dent rotation). In the delaminated region additional boundary conditions are applied. In the
present study, the laminated beam contains only one delaminated region through the thickness
direction which extends to the full width of the beam. It is also assumed that the delamination
is open (ie., the contact forces between lower and upper parts are neglected in the model).
The influence of the delamination length and position upon changes in bending natural frequen-
cies of the composite laminated cantilever beam is investigated.

2. Formulation of a discrete model

A discrete model of a delaminated part of the beam is presented in Fig. 1. The delaminated
region is modelled by three beam finite elements which are connected at the tip of the delamina-
tion by additional boundary conditions.

The layers are located symmetrically with respect to the x-z plane. Fach element has three
nodes at x=—L/2, x=0, x=L/2. At each node there are three degrees of freedom which are
axial displacement g;(i=1. 4, 7). transverse displacement g;(i=3. 6, 9) and the independent rotation
g:(i=2, 5. 8), Additionally it is assumed that the number of degrees of freedom is independent
of the number of layers.

2.1. Description of the element number 1

Neglecting warping, the displacements « and v of a point can be expressed as:

ulx, y)=u'(x)=y o)

v(x, y)=v"(x) (Y
where u’(x) denotes the axial displacement, ¢(x) the independent rotation, and 1’(x) the transverse
displacement.

In the finite-element modelling, the bending displacements v'(x) are assumed to be cubic
polynomials in x, while the axial displacement #°(x) and the rotation ¢(x) are assumed to be
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Fig. 1 The delaminated region of a beam modelled by finite elements.
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quadratic. Additionally it is assumed that shear strain variation is linear, as proposed by Tessler
and Dong (1981). Employing the above conditions, the displacements and rotation in the element
may be written in the following forms:

u’(x)=a,+ax+a:x’

ox)=as+asx+3a.x’

V() =ae+ax+agx* +a.x? )
The constants a;-ay can be expressed in terms of the element degrees of freedom by using the
nodal conditions in the following forms:

u'x=—L/2)=q,

v(x=—L/2)=q;

Pc=—L/2)=q,

W x=0)=q.

V(x=0)=g¢s

& (x=0)=¢gs

W (x=L/2)=q,

V(x=L/2)=g,

¢ x=L/12)=qy ®)
Finally we obtain: _

ar=qs

— }4 4

_ 2Aq1—2q.+¢)
L2

as

as={s

~gsy+
as= fIz q9

As—(s

a= —6412_(13L+2116L+6C18‘Q9L
7_ 6L

_ 2Ag>—2g5tqy)
L2

asg

2 - )+ s
o= (45 3?212( q9) @)

Taking into account Egs. (4) and Eq. (2) we can determine the matrix of the shape function
for the single layer of the element.

N=X-A ()
where matrix X has the form:

X*[l x x -y —xy 0 0 0, —lx-y] )
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whereas the matrix A can be expressed as:

0 0 0 1 0 0 0 ]

——Ll— 0 0 0 0 0 —i— 0 0

20 0 —~L4; 0 0 Lz 0 0

0 0 0 0 1 0 0 0

A= 0 0 ——i 0 0 0 0 0 %

0 0 0 0 I 0 0 0 0

e S S Al

o 2 0 0% 0 o0 2
R A U

Employing the shape function matrix for the single layer, we can determine the inertia matrix
of the whole element using the following formula:

J#=R J=R J=R
M= > M,= > p f N'NdV,= > pA" f X"XdV, A (8)
i1 =g A

i Yi

where j denotes the number of a layer, R the global number of layers in the element, V; the
volume of the j-th layer of material and p the density of the i-th layer.

The values of the integral in Eq. (8) (for the j-th layer) can be expressed in closed form
as:

~cx»O Iéa——; 0 0 0 0 —lézﬁ i
1L_za 0 0 —;/3 0 0 0 0
é—ga - é’;ﬂ 0 0O 0 0 ~%§
—;~ 0 0 0 0 —%y
IXTXde:BL é‘g y 0 0 0 0
i 2
a 0 %a 0
%a 0 v—%a
é;ga 0
o sym. 7121;8 a+ %; }/4 Q)
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where a=H,.\—H, p=H;, ,—H, y=H . —H.

J

The strains of the single layer of material are given by the following formulas:

_du(x, y) _ du'(x) . ag(x)
X

& ox ox
_dux y) vy )
YT 9y T ox Ox ¢ (10)

Taking into account relations Eq. (2) and Eq. (4), the strains in the single layer can be expressed
as a function of nodal degrees of freedom:

q
MR
where matrix B equals 90 (1D
B=X-A (12)
and matrix X is given as
=000 5 20t o7 | (13)

The stiffness matrix of the whole element has the form:

J=R J=R J=R
K= 2 K.= > [BDBdV= 3 A7 f X'DXdV; A (14)
=1 =y, = :
where D denotes the matrix which descr]ibes relations betweén stresses and strains in the j-th
layer of the element (see Appendix A).

The values of the integral in Eq. (14) (for the j-th layer of the material) can be presented
in closed form as:

0 0 0 0 0 0 0 0 0 ]
Sha 0 —Ska *%/3 Siea 0 0
Sul? Sl? Sil?  S),L?
3 ¢ 0 T @ 0 0 3 @ > B
fiTD,idn:BL Ses —-%‘LB 0 —Ska 0 0
V/’ S LE 2 2
wl'at4S, ¥ _SssL _SsoL
D 0 6 Qa 6 a 0
0 0 0 0
Ses 0 0
S66L2 _Slg,l,z
3 @7, B
_ sym. SaL’y A1 (15)
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where a=H;+—H, :B:H,;H—Hizv }/ZH%HI_H/}'
2.2. Description of elements number 2 and 3

In order to connect element 1 with elements 2 and 3, the following boundary conditions

are applied at the tip of the delamination:

u () =u’ (x)+z,¢,(x)

u, ()= u’(x)+z, ¢, (x)

¢, ()=, ()=, (x)

v 0)=v"(x)=v,"(x) (16)
where z, and z; denote distances between neutral axes of elements 1-2 and 1-3, respectively
(see Fig. 1),

Taking into account relations Eq. (16) and Eq. (2), the relationships between constants ¢-
o, for the above-mentioned elements can be evaluated as:

n— ,1__ 7 III— 1_ 1
a"=a/'—z,a,, a"'= z,a,
n—

a'=a)—z,a/, a,” a’—-z3a5’
a"=a!-3zay, a;"=a/—3z,a)
a/=a/=a"

al=ali=a

a/=al=alm

a all— 7]1

a/=ad'=a"
aj=al"=a" (17)

where the superscrips 7, IT and 11 denote the number of the element in the region of delamination.
The shape function matrices for the elements number 2 and 3 will have the following forms:

NZZX.AZ (18)
N]ZX‘A3 (19)
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where

-0 0 0 1 0 =z 0 0 0 ]

o 0 0 0 0 1 0o 0 0

A 0 0——£ o o0 0 0 0 —111

0o 0 0 1 0 0o 0 0

T 0 0 0

0o = o 0~22 0 0 % 0
0 0 3% 0 0——% 0 0 3%5_ 20)

-0 0 0 1 0 z 0 0 0 7]

——i 0 % 0 0 0 —}4— 0 __%

o 0 0 0 0 1 0o 0 0

Am 0 0——2 0 0 0O 0 0 —i

o 0 0 0 1 O 0 0 0

R E =

o 2 0 0t o 0 2 g
L0 0 S5m0 0 -5 0 0 | @

Taking into account matrices A, and A; we can determine (using relation 8) the inertia matrix
of elements 2 and 3.

In a similar way matrices B, and B; of elements 2 and 3 can be evaluated, and finally the
stiffness matrices (using relation 14) of these elements can be calculated.

3. Numerical calculation

The formulation of the elements and the method of modelling of the delaminated region
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Fig. 2 The effect of the location of delamination along the beam height on the first bending natural
frequency.
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Fig. 3 The influence of the length of delamination on the first bending natural frequency.

of the beam have been evaluated by performing several example calculations.

Numerical calculations have been made for the cantilever beam of the following dimensions:
length 600 mm, height 25 mm and width 50 mm. The beam was made of graphite-polyamide
composite. It was assumed that all layers of the beam have the same mechanical properties,
i.e,, the volume fraction of fibers and the angle of fibers in each layer are identical. The mechanical
properties of the material are given in Appendix B.

The first example illustrates the influence of the delamination position along the beam height
upon the changes of the first bending natural frequencies. The length of delamination was equal
to 180 mm (a/L=0.3) and the centre of delamination was located 510 mm from the free end
of the beam (L1/L=0.85). The angle of fibers (measured from x-axis of the beam) was 45 deg,
whereas the volume fraction of fibers was equal to 10% the volume of the beam. The beam
was discretized by 13 finite elements (6 elements in 2 layers around the region of delamination
and 7 elements outside the delaminated region). The results of numerical calculations are given
in Fig. 2. It is clearly shown that the largest drop in the natural frequency is observed when
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Fig. 5 The influence of the length of delamination on the third bending natural frequency.
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Fig. 8 The effect of the location of delamination on the third bending natural frequency.

the delamination is located along the neutral axis of the beam. When the delamination is located
near the upper or the lower surface of the beam the changes in natural frequencies can be
neglected.

In the next example the influence of the length of the delamination upon the drop in bending
natural frequencies of the analysed beam was observed. It was assumed that the delamination
is located along the neutral axis of the beam and the distance between the centre of the delamina-
tion and the free end of the beam is equal to 300 mm (L1/L=0.5). The other parameters were
the same as in the first example. The results of numerical calculations are presented in
Figs. 3-5. It is noted that when the length of the delamination increases the values of natural
frequencies are greatly reduced. The intensity of these changes also depends on the number
of natural frequencies (ie.. the mode shape and the location of delamination along the beam).

The third example shows the influence of the location of delamination along the beam on
the drop in bending natural frequencies. As in the first and second examples the beam was
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made of polyamide-graphite composite material. The delamination was located along the neutral
axis of the beam. The length of delamination was equal to 60 mm (a/L=0.1). Figs. 6-8 illustrate
the changes of analysed frequencies for different locations of the delamination. It is clearly
shown that the changes in natural frequencies strongly depend on the location of delamination.
For the analysed beam the largest drop in natural frequency is observed when the centre of
the delamination is located at the node of mode shape associated with this frequency.

4. Conclusions

A finite-element-based model was developed to study the bending natural frequencies of a
cantilever composite beam with delamination. The method of modelling the delamination in
the beam is versatile and allows analysis of the influence of multiple delaminations on natural
frequencies of beams with various boundary conditions. Using the elaborated model the effects
of location and size of delamination on bending natural frequencies of composite were studied.

Based on the numerical results, the following conclusions are drawn:

1) The delamination in the cantilever composite beam causes, as expected, reduction in bending
natural frequencies.

2) The changes in natural frequencies are a function of the location (along the length of
the beam and also along the height of it) and length of the delamination.

3) When the centre of delamination is located at a point where the bending moment has
the maximum value (for analysed mode shape) the reduction in the bending natural frequen-
cy associated with this mode is largest.

4) The largest drop in the bending natural frequencies is observed when the delamination
is located along the neutral axis of the beam.

5) When the length of the delamination increases the drop in natural frequencies also increases.
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Appendix A

In the case of the element analysed, the stress-strain relations matrix has the form (Vinson and Sierako-

wski 1991):
—| S Sk
D [S.b Sﬁﬁ]

where the elements of the matrix D; are expressed by relations:

§||=S||m4+(S|2+ZS"<,6) m2n2+822n“
S16=(S11—S1—2Se) m*n+(S1,—Sn+2Se) n’'m
Sb(v:(Sll _2S|3+S22—2Sf,ﬁ) n12n3+S66(m4+n4)

where m=cos(@) and n=sin(q) (@ denotes the angle between the fiber direction and the axis of
the beam perpendicular to the delamination).

The terms S; corresponding to the material principal axes are determined by the following formulas:

E
S Ty
1—v), E11
E>
S22— 7‘_TE?7
TV,
v E
I 12 E.
See=G12

where £y, E», vi» and Gy, are given in Appendix B.
Appendix B

The properties of the graphite-fiber reinforced polyamide composite analysed in the paper are
assumed as follows (Vinson and Sierakowski 1991);
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matrix fiber
(polyamide) (graphite)
elastic modulus E,=2756 GPa E,=2756 GPa
Poisson’s ratio Vi =033 v=02
rigidity modulus G,,=1.036 GPa G=1148 GPa
mass density Pm=1600 kg/m’ o= 1900 kg/m*

The material is assumed to be orthotropic with respect to its axes of symmetry which lie along
and perpendicular to the direction of the fiber. The gross mechanical properties of the composite
are calculated using the following formulas:

P=p0t pu(l—0)
E||:Eﬂ)+Em(l - U)

2 Em E/'+Em—(Ef_‘Em)U

Vo= Vv0t+ v, (1—0)
G+G,HG—G)v
Grt+G,— (GG

where v denotes the volume fraction of the fiber. The principal axes 1 and 2 are in the plane
of the composite specimen aligned along and perpendicular to the fiber direction.
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