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Abstract. This paper presents a construction of adaptive boundary element for the problem with mixed
boundary conditions such as heat transfer between heated body surface and surrounding medium. The
scheme is based on the sample point error analysis and on the extended error indicator, proposed
earlier by the authors for the potential and elastostatic problems, and extended successfully to multidomain
and thermoelastic analyses. Since the field variable is connected with its derivative on the boundary,
their errors are also interconnected by the specified condition. The extended error indicator on each
boundary element is modified to meet with the situation. Two numerical examples are shown to indicate
the differences due to the prescribed boundary conditions.
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1. Introduction

The construction of appropriate meshes or elements is a fundamental requirement for success
in numerical analyses using discretized elements such as the finite element method (FEM) and
the boundary element method (BEM), which demands serious research for adaptive elements
(e.g. Babuska er al. eds. 1986, Shephard and Weatherill eds. 1991, Kamiya ed. 1992). Accuracy
of the results obtained through these softwares, specifically employed as blackbox by inexperienced
users, will not be satisfied. Some FEM softwares are implemented to improve accuracy automati-
cally, up to the desired level, with the adaptive elements.

The researches of the adaptive boundary elements date back to about ten years, e.g., Alarcon
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and Reverter (1986), Rencis and Jong (1989), Rank (1989), Guiggiani (1990), Parreira (1990), Postel
and Stephan (1990), Mullen and Rencis (1985), Urekew and Rencis (1989), Umetani (1986), Ingber
and Mitra (1986), Sun and Zamani (1990), Cerrolaza, Gomez-Lera and Alarcon (1988), Yuuki,
Cao and Ueda (1990), see also for further References, Kita and Kamiya (1994). Among others,
the authors proposed a method “sample point error analysis and h-version mesh refinement
by extended error indicator”. Its reliability has been proven by various applications to the potential
problem (Kamiya and Kawaguchi 1992a), clastostatics (Kamiya and Kawaguchi 1992b), multi-
domain problem (Kamiya and Koide 1993), thermo-elastostatics (Kamiya, Aikawa and Kawaguchi
1994a) and elastic problem with body force (Kamiya, Aikawa and Kawaguchi 1994b). The method
uses the extended error indicator representing an influence of element-wise error on an incon-
sistency of the integral equation, in place of element-wise errors directly employed conventionally.

We here further extend the method to the problems with the mixed boundary conditions,
for which element-wise errors of the field variable or its derivative are not defined explicity.
The heat transfer conditions in the heat conduction phenomena and the spring support in the
elasticity are the typical cases of the mixed boundary conditions. The extended error indicator,
however, can treat such case without substantial modification, because it is defined by the bound-
ary integral equation and the related integral representation connecting the element-wise errors.
In what follows, we explain the method by using the potential-type problem, say, corresponding
to the steady-thermal problem without internal heat generation accompanying the heat transfer
boundary condition. Analysis will be conducted for the two-dimensional heat conduction problem
and elastostatics.

2. Boundary element formulation and the difficulties in error analysis

Consider the following potential problem governed by the Laplace equation in the two-dimen-
sional domain £ bounded by the boundary I

Viu=0 (D
with the boundary condition
g=autp (2)

where u, g(=0du/on) are the potential and the flux, derivative of u in the normal direction
n on the boundary, and a. B are the constants. Eq. (2) is ordinarily the mixed condition but
can represent the Dirichlet and Neumann conditions by selecting appropriately two constants
a and B

Introducing the fundamental solutions for the Laplace equation:

1 1 Ju*
K— — *— L
“ log r’ 1 on )
Eq. (1) is transformed to the following boundary integral equation:

cu:f w* q—q*uydl' 4
r

where r in Eq. (3) and ¢ in Eq. (4) are respectively the distance between the source and the
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field points, and the constant depending on the place where the source point is taken.
Eq. (4) is discretized by boundary elements such as

N

cu'= Z (w*q—q*uw)dI’ ®)
=1 T

where i denotes the selected point on the boundary and N indicates the number of boundary

elements. Using assumed interpolations for # and ¢ on the boundary elements, Eq. (5) is reduced

to

Hu=Ggq 6)

where u and ¢ are the vectors of ¥ and ¢ on the boundary nodes and the coeffticient matrices
H and G are computed on each boundary element by integrating the product of the fundamental
solution with the interpolation function. Eq. (6) is solved, for the approximation of # and g,
simultaneously with the mixed boundary condition Eq. (2).

In order to estimate the errors of the solution obtained by Eq. (6) for the construction of
adaptive elements, the principal difficulties are as follows:

(1)-When the Dirichlet condition is given on one part of the boundary and the Neumann
condition on the other, the solution is ¢ on the first part and « on the other. Therefore, their
dimensions are different and cannot be compared directly. Conventional methods use appropriate
constants for nondimensionalization of these variables. It is evident that the result will depend
on such selection.

(2) In the finite element methods, however, the global equation is constructed by assembling
the equations holding locally with the aid of the finite element discretization. For the displacement
method, the unknowns are the displacement components alone. On the other hand, the discretized
Eq. (5) reduced from Eq. (3) is related to a whole boundary elements. This fact indicates that
the error on one element affects the accuracy of the entire solution, and that the modification
of the element by the criterion of the magnitude of its error seems not sufficient. If the mixed
boundary condition is specified, the solution is obtainable by eliminating either u or ¢ by using
Eq. (2). However, the error estimation will be different depending on the way of elimination.

Consequently, a unified strategy is required for the appropriate error estimation rule over
the whole problem irrespective of the Dirichlet, Neumann and mixed boundary conditions.

3. Sample point error analysis

Since the details of the original sample point error analysis is given in Kamiya and Kawaguchi
(1992a. b), here we briefly summarize it for convenience. The scheme is based on the fact that
the boundary integral equation in the conventional boundary element analysis holds, only on
the selected collocation points on the boundary, and does not on other boundary points than
those indicated. Therefore, on the latter boundary points called “sample points”, the solution
inevitably yields some inconsistency (or residual) of the boundary integral equation, which is
thought to appear owing to the discretization error of the boundary elements (other errors such
as numerical integration should be removed by sufficiently precise and careful computation).
We suppose that the prescribed value for the boundary condition does not have any error.
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And therefore, the errors on the boundary for the Dirichlet and Neumann conditions are those
of u and ¢, respectively, which have different dimensions. This is one difficulty arising in the
direct boundary formulation as mentioned above.

The inconsistency due to the approximate solutions u, g is defined as

r=cu— f (w* g—q* uydI+0 )
r

Since the errors e, and e, are thought to required amendments to the approximate solution
for fulfillment of the integral equation on the sample point, the following equation is de-
rived \

c(u +eu):f [u*(c}+eq)—q*([4+eu yldr (8)
r
which leads to

r= f (u*e,—q*e,)dI—ce, 9
r

It should be mentioned that the solution inconsistency r at the sample point can be decided
when the approximate solution is obtained for the Dirichlet or Neumann boundary condition.
Distribution of e, and e, is not known in advance and is assumed, on the element j, approximately
by

e.=e] ¥, e,~e/¥ (10)

where ¥ is supposed to be a triangular interpolation function (approximation to the quadratic
distribution diminishing at the extreme points; the error will be higher function than the assumed
distribution of the variable) in terms of the local coordinate (—1<¢<1)

=1+ E—1<EL0),  1—HOLELT) (11)

for the sample point taken on the middle of the boundary element (£=0) with linear interpolation.
In general, it is possible to take some sample points on one element but the adaptive process
requires iterative computation and thus, the indicated selection is for the convenience to reduce
computation time for the adaptation and further corresponds to the way of element modification;
h-version bisection at the middle point of the element in this paper.

From the discretized equation of Eq. (9) for each sample point taken on the middle of every
boundary element, ¢/, ¢/ can be determined because r is already known. Formally Eq. (9) is
written as

r=Be (12)

where e is the vector of either ¢/ or ¢/ on each element. It must be mentioned that for the
Dirichlet condition e,=0 and ¢,#0, and for the Neumann condition ¢,=0 and e,#0.
In the case of the mixed boundary condition, owing to Eq. (2)

e,=ae, (13)

holds and is employed in Eq. (9) to eliminate either e, or e,; and thus for instance, after elimination
of ¢,

r=RBe, (14)
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where e, is the vector of ¢/ on each element.

We should recognize, from Eq. (12) or (14), that the influence of the element-wise error on
the solution inconsistency is not by only its magnitude but by the product with the coefficient
matrix B or B’, composed of the integral over the boundary element of the fundamental solution.
For the total N boundary elements, Eq. (14), in component, is

N
= 2 Biel (15)
k=1
Each term of the right-hand side of the above equation is expressed by

n/'k:lei euk (16)

which is defined as the extended error indicator.

N« represents the magnitude of the influence of error (e,)* of the element k on the solution
inconsistency at the sample point taken on the element j. As indicated above, for the Dirichlet
condition ¢,=0 and ¢,#0, and for the Neumann condition ¢,=0 and ¢,#0, but for the mixed
boundary condition both e, and ¢, are not vanishing. However, as mentioned in the derivation
of Egs. (13) to (16), ¢, and e, are related by Eq. (13) and formally Eq. (16) is formulated by
eliminating one of them. The required modification for the problem with the mixed boundary
condition is contained in Egs. (13) to (16). nx is employed to choose the elements to be refined
for the A-version adaptive process: in comparison with the specified criterion 7, if

7ij 2 Tt ( 17)

the “element k" is divided into two at the sample point (middle point on the element). This
means that the ervor on the element k multiplied by the corresponding fundamental solution has relatively
large amount of contribution to the solution inconsistency at the sample point on the element j, and
then the element j and then the element k is refined n itself does represent neither the absolute
error nor the relative percentage error of the solution, which is thought as the measure for
the mesh refinement. Refinement iteration is repeated until a sufficiently accurate solution is
obtained.

4. Examples and discussion

Two numerical examples are shown for the two-dimensional problem to .verify the potentiality
of the extension of the original adaptive scheme. The employed boundary elements are straight
line segments with linear interpolation (linear elements, with double modes on the corner points:
selection of the linear elements is closely connected to the error model employed). The sample
points are taken at the middle of each element. Careful computation of the numerical integral
by the adaptive integration and of the simultaneous linear equation is performed to avoid addi-
tional errors. A whole adaptive process starts with the least number of boundary elements sufficient
for the given problem: indication of the geometry and the prescribed boundary condition. As
a criterion of Eq. (17). n.. the average of 7 is employed. because it is one of the value easily
obtainable and worked well in the previous studies.

Fig. 1 shows the first example of the L-shaped two-dimensional domain. The side FA is
in the condition of heat transfer with the parameter (a) a= —30 (1/m) and (b) a=—00! (1/m).
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Fig. 1 Example 1 (heat conduction problem)

9 loops

127 elms

(a) Element discretization

1

—

| T 1
2 4 6

Tangential coordinate
(b) Potential

8000 —
6000 —
4000 —
2000 — J
99 M
2000 -
| | [ T
0 2 4 6 8
Tangential coordinate
(c) Flux

Fig. 2 Computation results (after 9 loops, a= —30)

The latter corresponds nearly to the adiabatic condition ¢=0. Figs. 2 to 4 are the obtained
results after a few adaptive iterations: the adaptive meshes and the distributions of u and ¢
along the boundary measured from the point 4 counter-clockwise. Accuracy of the results is
partially verified by comparing them with sufficiently fine, uniform boundary meshes, say, 200
elements. These results indicate that the desired adaptive boundary element distributions are
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Fig. 3 Computation results (after 7 loops, a=—0.01)
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Fig. 4 Adaptive boundary elements for the adiabatic case (after 6 Joops)
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Fig. 5 Adaptive process (a= —30)
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Fig. 6 Example 2 (two-dimensional elastostatics)

different for each distinct problem with distinct boundary conditions, and cannot be predicted
in advance. The final meshes for the heat transfer condition with a=—0.01 (Fig. 3) is almost
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Fig. 8 Computation results (after 8 loops, k=10%

identical to the adiabatic case (Fig. 4). The detailed adaptive process is shown for a=—30 in
Fig. 5, from the initial 6 elements to the ninth iterative loop.

Fig. 6 is the second example in a two-dimensional elastostatic rectangular plate problem under
the plane stress state. The left side of the plate is constrained in the y-direction but the displace-
ment in the x-direction is proportional to the force thereon: the boundary condition is u,=0,
1,= —ku, (k is constant; r and u are the traction and the displacement, respectively). The formula-
tion and adaptive scheme for the elastostatic problems were shown in Kamiya and Kawaguchi
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Fig. 10 Adaptive process (k= 10%)

(1992b) and are applied here (Young’s modulus=2.1X10¢ Kgf/cm?, Poisson’s ratio=0.3). The
magnitude of k is taken as 10° 107, 10¥, 10" Kgf/cm®. Only four initial elements, one on each
side. are sufficient for this problem. Figs. 7 and 8 are the results of the distributions of the
displacement and traction components along the boundary measured from the point 4 coun-
ter-clockwise. Fig. 9 is the schematic enlarged view of the deformation of the plate in the vicinity
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Fig. 11 Comparison of adaptive element distributions

of the left side. It can be noticed from Figs. 7 to 9 that for larger k£ the condition on the left
side approaches the clamped condition. Fig. 10 shows the adaptive iteration process from the
initial four elements to the eighth loop. For different values of k, Fig. 11 declares the clear
difference of the adaptive boundary element distributions.

Further to the first example for the scaler-valued problem, the second example shows the
potentiality of the proposed adaptive boundary element scheme for the case of vector-valued

problem (nodal values have each two components in x- and y-directions in the problem considered
here), even for the problem with the mixed boundary condition.

5. Conclusion

The adaptive boundary element s-scheme using the sample point error analysis and the mesh
refinement by the extended error indicator was extended to include the mixed boundary condition
for the potential and elastostatic problems. Only slight modifications of the original scheme
and of the computer code are necessary to give acceptable results for the above-mentioned bound-
ary conditions on the numerical examples. The scheme is also applicable to a class of symmetric
condition, e.g. the displacements in the x- and y-components are identical, u,= u, on the line
x=y. By using the indicated adaptive scheme, without a priori proper prediction of the boundary
element distribution, one can obtain accurate solution.
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