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A numerical model for externally prestressed beams

M.A. Pisanit

Department of Structural Engineering. Politecnico di Milano, P.zza L da Vinci 32, 20133 Milan, Italy

Abstract. A method to numerically evaluate the behaviour of single span beams, prestressed with exter-
nal tendons and symmetrically loaded is presented. This algorithm, based on the Finite Difference Method,
includes second order eftects and large displacements in an attempt to more fully understand the behav-
iour of the beam up to collapse. The numerical technique discussed is particularly appropriate for
the analysis of R.C. and P.C. beams rehabilitated or strengthened by means of external prestressing
but it is reliable for the analysis of new beams as well.
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1. Introduction

An initial distinction is helpful when dealing with precompression: frequently the prestressing
tendons are placed inside the concrete cross section and bonded by filling the tendon ducts
with cement grout; this is called conventional prestressing. When, on the contrary, the bond
between concrete and prestressing tendons is eliminated, friction inside the ducts is artificially
reduced to minimum values and the tendons transfer their loads to concrete through end anchor-
ages and deviators, the terms “unbonded” and “external” prestressing are adopted.

The term “external prestressing” is used if the tendons are placed outside the concrete cross
section, otherwise the name “unbonded prestressing” is adopted.

Unbonded tendons are mainly used in slab systems and cylindrical or conic vessels, while
external prestressing is being increasingly adopted in the construction of new bridges (mainly
precast segmental bridges) and large roofs, or the rehabilitation and the strengthening of existing
structures. v

Referring to the design of bridge superstructures it is interesting to remember that the first
post-tensioned bridge, designed by Dischinger and constructed in 1936-37 at Aue, Saxony, is
externally prestressed. Nevertheless, this prestressing technique was substantially abandoned until
the eighties.

The arguments used to promote external prestressing are related both to durability and to
workmanship during construction or rehabilitation operations.

With regard to durability, external tendons allow inspection of the corrosion protection (very
difficult in conventional prestressing), control and correction of the prestressing forces and replace-
ment of tendons, when needed. If external post-tensioning is adopted in the casting of new
structures, no duct is placed inside the concrete section, but this means easier pouring of concrete
and no obstruction of the ducts (as sometimes happens in conventional post-tensioning). When
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this prestressing technique is adopted to strengthen an existing structure only anchorages and
deviators need be added to the old structure and no crib is required.

If, then, external prestressing has interesting advantages compared to conventional prestressing
and is old technology, nevertheless the behaviour of beams prestressed with external tendons
at the ultimate limit state is a topic which has yet to be examined in any depth. Usually the
analysis of these beams is carried out adopting the hypothesis that the tensile stress in the
tendons is constant, or independent of the level of the loads (see for instance E.C.2), although
Naaman (1990), (1991) demonstrated that even before the beam cracks, the increase of the tensile
strain in the tendons is more than one half of that measurable in the cables of a similar beam
conventionally prestressed.

The absence of bond between tendons and concrete implies the solution of a structural problem,
whereas the evaluation of the stress distribution in a conventional P.C. beam is a problem
related to its sections: the changes in the shape of the concrete beam involve changes in the
relative position of the tendons, so that their influence on the equilibrium conditions of the
deformed beam may be significant. Many works neglect this effect though its extent is not well
known, as the hypothesis of small displacements is usually adopted even though in a condition
near collapse the displacement of the beam may be considerable.

To more fully understand the beam behaviour, a numerical algorithm, based on the Finite
Difference Method, was developed.

The present work aims to describe this algorithm that includes second order effects, large
displacements and the change in length of the beam due to compression, neglects shear deforma-
tion both before and after cracking, and adopts the hypothesis that bending of the beam is
a continuous function. This assumption is particularly advisable in the analysis of simple span
R.C. or P.C. beams (i.e. existing bridges) repaired or strengthened by means of external posttension-
ing, but demonstrated to be reliable for the analysis of new beams prestressed with unbonded
tendons as well.

2. Formulation of the problem

Let's adopt the global coordinates x, y, z. The shape of the undeformed beam, or when no
external load and no prestressing are applied, will be described by means of these coordinates,
set with plane yz coincident with the plane of symmetry of the cross section, origin O placed
in the center of rotation of the left bearing (a hinge, see Fig. 1) and the z axis parallel to
the beam axis (or usually coincident with the lower edge of the beam). Notice that mathematically
speaking. origin O could be placed anywhere; nevertheless the previous assumption will allow
us to explain more clearly the physical meaning of some terms and to avoid difficulties related
to the definition of the boundary conditions.

From a general point of view a beam prestressed with external tendons may be considered
as the coupling of two substructures: the concrete beam and the external tendons.

Fig. 1 shows that the interaction between the two substructures is restricted to the points
(with coordinates y,. z,; in the undeformed shape of the concrete beam) where anchorages and
deviators are placed.

To describe the beam behaviour, we will evaluate the displacements of the trace of the z
axis on the concrete substructure that, through the hypothesis that plane sections remain plane
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Fig. 1 Undeformed shape of the beam

Fv(s)
image of the z axis in
the deformed shape

Fig. 2 Deformed shape of the beam

and orthogonal to this trace (shear deformation is neglected) after bending, will allow us to
determine the displacement of every point of the beam and then the response of the tendons
too.

2.1 The defomed shape of the beam

Let us call the curvilinear coordinate s, measured on the image of the z axis in the deformed
shape (or usually the lower edge of the bent concrete substructure), the displacement of a point
P of this image in the y direction v(s), while /4 (s) is the position of point P on the z axis (or
the sum of its abscissa before bending plus its horizontal displacement). The curvature X of
the concrete substructure in the yz plane can be written as (see Fig. 2):

2 2 2
o=y /| L1 (L0} < o

Moreover, A(s) and v(s) are related by the equation:

ARV [ V) Vo Loy =
( s + 7 h'(s)+v7(s)=1 2
Extracting A”(s) from the first derivative of Eq. (2) and introducing it in Eq. (1) we get:
vllzs » _
g o= &)
, _ VU S
M= @

so that v(s) is now independent of A(s) and, if X(s) is known, can be computed assigning two
boundary conditions, while /(s) will be determined after v(s), making use of the last boundary
condition (ie. v(0)=v($,)=0, A(0)=0).
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Eq. (3) is non linear and gives two solutions. They can be written as:
v'(s
1—v"*(s)

but stating that for 5=1 Eq. (5) violates the arbitrary assumptions adopted in Figs. 1, 2 regarding
the positive sign of v(s) and X(s), we get:

. V” S
1= = ©)

x©=(=1y (6=1.2) )

or:
X6s) _ v'(s) D
x©! W)l

so that X(s) and v"(s) must have the same sign. (Note that owing to the change in length of
the beam, 4 and v are functions of s, not z, and therefore Eq. (6) is quite different from the
one usually adopted).

2.2 Correlation between the concrete beam axis and the cross section behaviour

In the preceding paragraph we implicitly adopted the hypothesis that the image of the z axis
in the deformed shape is a continuous function of s. Consequently precast segmental beams,
especially if cast with dry joints, are excluded from this analysis that aims to numerically simulate
the behaviour of beams with continuous reinforcement.

If the conditions we have already fixed are fulfilled, curvature X(s) can be set equal to the
curvature of each section of the concrete substructure and if the hypothesis that plane sections
remain plane after deformation is adopted, the computation of the concrete cross section respons
is well established (Rotter 1985, Mirabella 1986).

From the analysis of the concrete cross section we get both curvature and strain g (tensile
strain is negative) on the image of the z axis in the deformed shape of the concrete beam.

The curvilinear coordinate s is related to & by means of Eq. (8):

s=s(z)— (1 —&)dz ®

where z is the coordinate of the cross sectlon before bending.
2.3 Evaluation of the tensile stress in the tendon

Once h(s) and v(s) are known, it is possible to evaluate the increase in strain Ag, in the
tendons (tensile stresses and strains in the tendons are positive).
Named L, the length of a straight segment of the tendon in the undeformed shape we have:

L= \/(y,,,-+ ! _ypi)2 +(Zpi+1 _Zpi)z )

while if 1; is the length of the same segment of the deformed shape we get:

8= h(Spis 1) =Y pir 1V (Spie1)— [h(spi) VYV (Spi)] (10)
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d’i:v(sth I)+ypi+ 1 h’(SpH- 1)— [V(sz')+y/;ih' (Spi)] (1 1)

1= V (S:i2+ 5_;12 (12)
where 5,4, is the curvilinear coordinate of the concrete cross section where the i-th deviator
is placed. Note that &; and §, are the lengths of the projection on z and y axes respectively
of the i-th segment of the tendon after bending.

If the tendons are not protected with cement grout (or they are protected with grease, so
that friction is usually negligible), Ag, is uniform over the entire tendon and is equal to:
2l
Ag,=——F=— —1 13)
P Z" L (
otherwise each straight segment will have a different increase in strain Ag,
1;

Aé‘,n:fi—l (14
Once strain Ag, in the deformed shape is known it is easy to determine the stress resultant
F,; in the tendon by means of its constitutive law.

2.4 The internal forces in the concrete substructure
Named Q; the j-th concentrated external load acting on the beam in the y direction in Fig.
1, the vertical reaction V, of bearing 4 is:

hisor
VA:ZQJ[l“%]
bearing B acts.

(15)
where sy, is determined setting z=zg; in Eq. (8), while A(s,.) is evaluted in the section where

By means of Egs. (10) and (11) we can now evaluate the slope B of the i-th segment of
the tendon after bending Fig. 3:
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Bi=arctg Bt (16)
62i+l

If F, is constant along the tendon, the direction y; (with respect to the z axis) of the stress
resultant R, transferred by the i-th deviator to the concrete substructure is:

—_ mtBtB

v=-" 5 ! (17
and then:

R,;=2F,cos(y;— B) (18)

By naming the slope of the concrete cross section u(s), we get:
u(s)=arcsin v'(s) (19)

and the direction of R, with respect to the beam axis in the deformed shape (or the image
of the z axis) is:

V=i~ 1) (20)
Finally, the interanl forces in the concrete cross section are:

N6)Y=LVi— 2,021 - Vi(s)+F,cos(uls)— B)+

+ 2R, cosy; 1)
M(s)=V,[h(s)+ya - Vi(s)]+

=250 Lh(s)— hisq) +7g, * V)] +

—F, ()= v(s,1) =V, * h'(sp1)Jcosfo+

+F,LA(s) = h(s,)typ * V'(sp1)IsinSy+

— Z,R,,, O, [v(8) = V(Spi1) = Vpir 1A (i 1) Jcosy+

+ DR A2 LA() = Aspis 1)y (s,041)Isiny; (22)

where
.Q;:l if Spg+|_<_S

.Q,:O if S[,,‘+1>S

=0 if s> s 23)

2.5. The iterative process

Because of the coupling of two distinct substructures interacting only in a discrete set of points,
the evaluation of the deformed shape of a concrete beam prestressed with external tendons
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leads to the solution of a hyperstatic problem, even if we are dealing with a single span beam.

This observation, together with the assumptions of geometrically nonlinear behaviour of the
structure and mechanical nonlinear response of the materials, implies an iterative process to
determine the deformed shape. In other words v(s) can be evaluated, by means of Eq. (3), once
X(s) is known, but X(s) and s themselves have to be determined once the internal forces, that
depend on A(s) and v(s) are known. 4

Stating that we aim to evaluate the beam behaviour under increasing loads, a step by step
method is preferable.

The first step of this analysis has to compute the deformed shape of the beam subjected
to prestressing and loaded by permanent loads. As a matter of fact, during prestressing operations
we get the final tensile stain ¢, in the tendons (index 1 means first step of loading), measured
on the beam deformed by prestressing and permanent loads, while the tensile stress in the
undeformed shape is unknown.

Although at this stage no crack is admissible and the stress level is usually small, so that
displacements are small and second order effects are negligible, it is preferable to adopt the
same equations applied to evaluate the ultimate limit state of the beam, unless creep effects
are considered.

Dealing with long term loading (this analysis is independent of time), the time evolution
of the tensile force in the tendons is usually included by modifying the initial stain &,.

Mola ez al. (1993) discuss some simple operational techniques, suitable for practical applications,

capable of rectifying ¢,. These formulas adopt the hypotheses of linear viscoelasticity and small
displacements. '

3. Solution by means of a numerical algorithm

X(s) is an implicit function of s, so Egs. (3) and (4) have to be solved by means of a numerical
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Fig. 4 Geometry of the undeformed shape
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algorithm. '

We will adopt the well known Finite Difference Method.

This algorithm is useful whether we are dealing with a boundary value problem, or with
an initial value problem. Nevertheless, if we study a boundary value problem Eg. (3) becomes
a system of quadratic algebraic equations whose solution is unduly cumbersome.

We will transform our problem into an initial value problem by simply adopting the hypothesis
that the beam and the loads are symmetric with reference to midspan.

The concrete substructure is then subdivided in r segments of equal length Az in Fig. 4.
where external concentrated vertical loads and deviator reactions act.

Point O is placed in the midspan section.

3.1. The deformed shape of the beam
Having named all the variables related to the k-th concrete cross section with index k, all

the terms related to the g-th loading step with index ¢ and referring to the notation drawn
in Fig4, Eq. (8) holds:

kAz (k— 1Az
ASk,q:Sk.q—SA—I«qu (I—Qq)dz—J (1—¢&,)dz=
0 0
:Az(l_ﬂ%@ﬂ ) (24)
and Eq. (3) becomes:
_ 2
8 Ask+11/(ASk.q+A~qk+l.zl)
_ 2
& Aspi14"Asi
_ 2
& Ask.q(ASk.q"}_Ask+l.q)
As
g=8—3"
25=2 ASk+|_42_ASﬂ
As;,
g=g =5 25)
1 )
Xf (glVk+l‘q—g2Vk.q+g3Vk-l,q)+
. q
+(g4vk+l.q+gsvk,q‘gﬁvl\—l.q)': 1 (26)

Setting:
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b= )le (&2Vi 4= 83Vi—1. ) —&4(&5Vi s~ 86Vi-1.0)
kq
c= (gzvk"’_zgzvk_l"’)h (g5Vh g~ 8eVi-14) 1 (27)
Xiy
we get:
bx\/b—
VA+I.q:ﬂ )

a
and the true solution satisfies Eq. (7):

g Vki1g— 8 Vi g T8 Vi-14 _ Xiy

lgvie iy =&Vt @Vl 12l @9
(or X, and g\Vis1,—&2Vi 8 Vi—1, hold the same sign).
Moreover, the boundary conditions:
v(0)=0  ie. vo,=0 (30)
V0)=0 e v, =V, (31)
allow us to specialize Eq. (26) for k=1
T (32)

Once v,, and v, are known, v,, can be computed by means of Eq. (28), and so on until
k+1=r. In the same way the boundary conditions lead to:

h(Lq:O (33)
while Eq. (4) becomes:

_8 &s I
hk+l¢/—g_zhk* Lt/_;hk, (/+ m{l (gl vk+).q—g2vl\. q+g3vk“1.q) (34)

that, because of symmetry, if k=0 leads to the approximate solution:
hl.q:ASl.t/ (35)
3.2. The tensile stress in the tendons at the q-th loading step
By naming the abscissa and the ordinate of the i-th deviator after bending w;+,, and ¢,
Egs. (9)-(12) become:

hq (Spi) = hm, g

Yy (550 = Vim. 4 e mAz=z, (36)

w; t[:hﬂ'ﬂ, q_ypi(g4vm+ l.yg +85V1n. g —86Vm— l.q)
; q:vm. g +ypi(g4hm+ l.g +g§ hn_u/ —gﬁhnl” L c/) (37)

(the evaluation of g, gs and g, is still performed by means of Eq. (25). setting k=m)
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6ziq:wi+l.q_a)i.q
(Syi,q:(pi-*—l.q_(pi, q

1i, q = V 6:21 q+ 6_5/. 7

Eq.(37) fails when m=0 or m=r in Fig. 4.

If a deviator is placed in the midspan section, setting m=0 (i=1) it is:

(!)1.,/:0

(pl.q:ypl

while if no deviator is placed in the midspan section we get:

0)1.(]:0‘

(pl.q:(p’_.q

When m=r (i+1=n), if we approximate the first derivative of 4,, and v,, with:

h,,—h

_ rg r—l.g
h,q (sr)_ AS
.
vV, (s)= el ;v_,‘ -
Sy
we get:
v, q Vr—i q
Wy, 4 h,q"y,m As
Sy
hk qwhr-— 1.

(f)::.q:vn(;+y/;n AS
\

(38)
39)

(40a)

(40b)

(1)

(42)

Having named the tensile strain in the tendon at the end of the prestressing operation &,

its stress resultant F,; and its length (when undeformed) L. we have:

n—1
Z 1i|:L(]+£pl)
n—1

Z liq:L(l + 8/1:/)

i=1

and removing L from the preceding equation we get:

n—1
gpq: IIIZI (]+gpl)_l
L

i=1

(43)

(44)

Eq. (44) gives the strain g, in the tendon at load step ¢ if the tendon is not protected with

cement grout (ie. &, is constant along the tendon).

Once ¢, in known, F,, is easily calculable by means of the constitutive law of the tendon.
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3.3. The internal forces

Because of symetry Eq. (15) becomes:

%ﬁ%+2% (45)
]:
and Egs. (16)<(20) hold:
= arctg 2o (@6)
i+ 1.q
[where 8,4, and &4, are still evaluated by means of Egs. (36)-(42)].
— n+ B, B-1.
A @)
Rpi.qzszqCOS(V/i,q_ﬁL q) (48)
V'q(sk):g4vk+1,q+gsvk,q“gsvk—nq 49)
[ where g4, g5 and g, are defined by Egs. (25), (30), (31) and (41)].
L, g = arcsin v', (sy) (50)
Vig™ Yig— lh g (5D

Nq(sk)z—[VBq— Zl quﬂj] V)T Fcos( gt B2 )t
F=

— :Z R, 4§ cosy;, (52)
M, ()= Vs, [h, o= bi y—y5 -V, (5:)]1+

2 0 he g V)]

+Fp[ =iyt @, Jcos B2, +

—F[—h,t o, Jsin B, ,+

n—-2
- Z] R,,Lqﬂ[—vk,q-f-(p,ﬂ,ﬂ COSV/,;q+

n—-2
+ Z]: Rpiqni[—hk,q+a)i+1,q:| Sin-v—/iq (53)

where @, and ¢, are still evaluated by means of Egs. (36), 37), (40), 42).

Stating that inequalities Eq. (23) can be written referring to the undeformed shape, terms
0 and £ become:

if  z,.,2z=k- Az

.Q,-Zl
:0 if Zp,'+1 <Zk (ISlSn—'z)

{2
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=1 if j>k
0=0 if j<k (1<j<p (54)

3.4. The deformed shape of the beam after prestressing

As already observed, we are interested in the beam behaviour both before cracking and after
it. until collapse occurs. To achieve this target a step by step analysis with increasing loads
was chosen.

At each g-th step an iterative solution of Egs. (3) and (4) is required: if the final values 4,
and v, ,, obtained at the end of the preceding step are adopted as a first approximation of
the present step, by means of Egs. (36)-(44) the tensile stress in the tendons is computed, while
Eqgs. (45)-(54) give new internal actions. The concrete cross section analysis gives new curvatures
Xig and strains €4 , that allow us to update 4, and v, and so on until A, and v, do not
vary any more.
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The first step corresponds to the evaluation of the deformed shape of the beam after prestressing.
This step is performed neglecting Egs. (39), (43) and (44) (the tensile stress F,, is the final value
measured at the end of this step referring to the deformed shape of the beam), or setting
F,;=known constant value and adopting the undeformed shape of the concrete beam (ie.
ho =z=k-Az, v, 1=0) to start the iterative process.

4. Comparisons with the experimental data

The numerical model presented was devised to replace experimental tests, or to enable a
reliable numerical research on the behaviour of R.C. beams repaired or strengthened by means
of external post-tensioning.

To achieve this goal no simplifying assumption is set in dealing with second order effects
and large displacements.

The method brings with it essentially two limitations:

(1) cracking is spread over a segment of finite length in the concrete beam;

(2) friction between the tendon and the deviators is neglected.

Verification on the reasonableness of these assumptions and on the reliability of the numerical
model is still in progress.

Among 28 experimental tests already numerically reproduced, Fig. 5 shows those by Gongchen
Du er al. (1985) (thick curves). These tests refer to beams prestressed with unbonded tendons,
that do not exactly meet the specifications of the method but can be modelled (thin lines) by
adopting a dense subdivision of the beam and by placing deviators in each cross section.

The good agreement between the numerical output and the experimental data does not change
if the stress evolution in the tendons is considered. These results show that friction is not significant
in the analysis, at least if monostrands are adopted.

Similar results are shown in Fig. 6 where the experimental deflections, measured by Mattok
et al. (1971) on five specimens, are drawn (thick curves). Referring to these tests it should be
noted that the displacements measured under constant loads were discarded because this delayed
behaviour is not included in the numerical method.

Another interesting aspect concerns cracks distribution: some of the specimens tested were
prestressed, but no reinforcing steel was added. Some of them, when loaded, exhibited one single
crack, where collapse occurred because of concrete crushing. Nevertheless the precision of the
numerical results is still surprisingly good. This unexpected outcome may be accounted for by
observing that midspan deflection and tensile strains in the tendons (the experimental data)
depend on the behaviour of the entire beam, whereas the stress distribution around the crack
should be considerably different from the one evaluated numerically.

5. Conclusions

A numerical model that aims to describe the behaviour, up to collapse, of R.C. and P.C.
beams rehabilitated or strengthened by means of external prestressing, but demonstrated to be
reliable for the analysis of new beams prestressed with unbonded tendons as well, is presented.

The algorithm, based on the Finite Difference Method, includes second order effects, large
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displacements and the change in length of the beam due to compression. neglects shear defor-

mation both before and after cracking, friction between the tendons and the deviators, and adopts

the hypothesis that the bending of the beam is a continuous function. Span to depth ratio

is then taken into account through the relative displacements of deviators and anchorages.
The numerical outputs match the experimental data available in scientific literature.
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