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Abstract. In Lagrangian mechanics, attention is directed at the body as it moves through space. The
region occupied by the body is called a configuration. All body points are labelled by the position
they would have if the body were to occupy a chosen reference configuration. The reference configuration
can be regarded as an extra fictional copy where notes are kept.

As the body moves and deforms, it is important to correctly observe the usé of each configuration
for computational purposes. The description of strain is particularly important. The present work establi-
shes clearly the role of each configuration in total and in incremental forms. This work also details
the differences between gradient and configurational calculus.

Key words: large displacement; strain Lagrangian; configurational calculus; gradient, equilibrium prin-
ciple

1. Preliminaries

In Lagrangian, or referential, mechanics attention is directed at the body as it moves through
space. A body is represented as a gross distribution of mass over its configuration, where the
configuration is the region of Euclidean space occupied by the body. Mass is considered an
appropriate scalar valued measure of matter. All quantities pertaining to the body and the body-
points themselves are labelled by the position of the body-points when the body is in some
reference configuration or placement. Commonly, but not necessarily, this is an initial position
or an unstrained configuration. The choice of reference configuration is quite arbitrary. Any
possible configuration would serve the theoretical purpose of having a way to label body-points.
The only theoretical restriction is that the placement chosen for reference must be one which
the body could occupy. The analyst is at liberty to choose any configuration deemed suitable
for use. The body does not have to ever actually occupy or pass through the chosen placement.
This placement is needed only to keep our definitions and naming conventions well organized.
As such an artefice, the ability to refer a quantity to a configuration is crucial to our analysis
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Fig. 1 Positions of a body-point X invarious configurations.

and computation. An informal way to think of a reference configuration is as an extra copy
where notes can be made.

There is no restriction to use only one reference configuration. It is often useful or convenient
to use several different placements as reference configurations. The configuration in which a
quantity is measured has no inherent theoretical relationship to the configuration in which all
body-points are labelled. So, the value of measured quantities is invariant with respect to choice
of reference configuration. Throughout the changes and motions a body undergoes, it is always
possible to identify a body-point by where it would be, if the body in a reference configuration.
For example, particles in a vibrating body are often labelled by their position in an undistrurbed,
equilibrium configuration.

In incremental calculations the choice of which configuration to use as a reference configuration
is commonly a recently calculated one and the choice may be changed from time to time.
Such a practice leads to the so-called Updated Lagrangian Formulation. In theory, this is all
equally well, but, in practice this can lead to complication.

There are several configurations that will be used in developing the relations among strain
tensors: (consult Fig. 1):

Cy Unstrained configuration. The only important feature of this configuration is that it is
unstrained. Here the body is relaxed and has no stresses or forces acting on it. The
location and orientation of this placement are unimportant. For bodies that are strained
ab initio, this configuration is never actually occupied.

C, Initial configuration. This is the region of space occupied by the body at the beginning
of the period of consideration. All other configurations that the bodies actually occupies
at any point in its motion form a sequence that starts with this configuration. Usually
problems are stated in such a way that all needed quantities are known a priori in C,.
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In the case of the strain tensor, we need to know it in some configuration. In the event
that the placement in which strain is known is not the initial placement, we can use
known relations to find the strain in C,.

C, Present configuration. This configuration may be displaced and/or deformed from C,.

C, Next configuration. This may be a configuration occupied by the body at some stage
in its motion (or transplacement) later in sequence than C, and possibly incrementally
close to C,.

Cr Reference configuration. This represents any possible placement of the body in any location
and having any orientation. It may be deformed. It is not necessarily in the sequence
of configurations that the body actually occupies.

All calculations are always carried out in a reference configuration. Configurations with other

names are used from occasionally in the argument presented. These are called C,, Cp and so
on.

1.1. Notation
Left superscripts

Left superscripts denote the configuration(s) in which a quantity is measured. For example,
X(X) is the position vector of body-point X when the body is in configuration C,. For displace-
ments and other quantities which require more than one configuration for their definition, there
are more than one left superscripts. To define a displacement requires two configurations. So,
the first (leftmost) superscript is used for the “to” configuration. The second (rightmost) superscript
is used for the “from” configuration. For example, the displacement of X from configuration
C, to configuration Cp is *#u(X). Note that for displacements, “'%=0.

Left subscript

The left subscript denotes the configuration of reference. Lack of a left subscript indicates
the use of a so-called material formulation. So,

PUX)=%"u("x) )

The configuration of reference can be any configuration and this has no effect on the value
of the measured quantity. For a body property, 7, when the body is in configuration Cj, it
must be that 7T, 3T and T all describe the same quantity and must have the same value,
though the formulae may look different. Though not necessary, it is common practice to keep
all terms on each side of an equation referred to a single configuration. Special care must be
exercised with spatial derivatives.

1.2. Spatial derivatives

The meaning of the calculus is clear so long as we are differentiating with respect to a well
understood scalar, say time. For differentiation with respect to position there are at least two

quite different derivatives that can arise. For differentiation with respect to any tensor, -;':



76 W.RC Underhill MA. Dokainish and GAE. Oravas

we have the usual
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restriction. Take the case of derivatives with respect to position. The independent tensor is
position, x. A differential change in position is

where ;' are the local basis vectors of

dx=dx'g, )

The parametric values are the spatial coordinates. The basis vectors are the local tangent basis
of space. So, the derivative of some quantity with respect to position in space is
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So far we have shown what mathematics we use for a derivative with respect to position.
Now, let us put this into the context of Lagrangian continuum mechanics. There are at least
two different reasons why we might wish to examine values to be found at nearby points in
space.

One possibility is that the two locations under consideration are two distinct body-points within
a single configuration. This is the familiar gradient calculus. It is important to distinguish it
from other comparisons. Sometimes, these distinctions are not easy to notice in formulae for
scalar components of tensor derivatives. We could also consider the same body-point as the
body occupies two distinct configurations. This is an entirely different comparison from the
gradient calculus. Call this configurational calculus; it is a particular case of the more general
calculus of variations. In an effort to avoid any possible confusion between the two types of

~ 2

derivatives as will use dd_ij for gradients and %—I)_: forconfigurational derivatives.

There is still the matter of which placements are to be used for measurement and reference.
First look at the gradient calculus. Since the above arguments are true for tensors of any order
we will simplify the notation here by considering the example of the dependent tensor being
always of second order, although order can be used. There are several possible configurations
of which to keep track. Let Q be the gradient of P. Then

“%in%g )
The material property, P, can be measured in any placement, say C,. The configuration
of reference of “P could be Cy. That is, when measuring the value of P, we named the body-
points by the position they would have, if the body were in configuration Cy. Informally, we
can imagine writing the measured values on a copy of the body in Ci. In this case we have

»P. This is a function of position in Cs. That is

3 P=3P(®X) (6)
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It can be differentiated with respect to x. Differentiation is with respect to position as measured
in configuration Cc. So, the configuration of measurement for position in the gradient must
be the same as the configuration of reference for the property. Then Cp and Cc must be the
same. This position may itself be referred to any configuration. The reference placement for
the position vector is the configuration of reference for the gradient. So in Eq. (5) Cp is the
same as Cr With this clearly understood we_may now make a convention for the notation
of gradients. Where Q is the gradient of P, Q has the same left superscripts as P plus one
more left superscript. This extra left superscript is preceded by a comma and indicates the place-
ment of measurement for the position vector with respect to which P has been differentiated.
The left subscript of Q denotes the reference configuration for the gradient, which is the reference
configuration of the position vector with respect to which P has been differentiated. So, for
gradients we have

0P

0= @)

In=a similar examination of the configurational calculus, we start with the five configurations.
et O be the configurational derivative of P, then

ascp=_ OsP

P is measured in C, and referred to Cy. X is measured in C¢ and referred to C,. What is
being varied is C¢. Only one body-point is being watched as we make different choices of
configuration in which to measure position. We observe changes in the value of P as various
placements near Cc are chosen for x. Since this is the position with respect to which we wish
to differentiate P, P must be a function of this position. That is P must be referred to the same
configuration” as the one in which position is measured. So Cz must be the same configuration
as C¢. The choice of Cp, the reference placement for the position with respect to which we
differentiate P, is independent. A notation like that of the gradient calculus can be used. So

6cP

A4:C

n0= ()
is used for the configurational calculus. The punctuation among the left superscripts to denote
the configuration of measurement of the position with respect to which P is differentiated is
changed from a comma to a semicolon.

1.3. Change of reference configuration

At any time it may be convenient or necessary for an analyst to change the reference configu-
ration. In principle this is a simple operation. The referring of a quantity to a configuration can
be thought of as writing the measured value of the quantity on a fictional copy of-the configura-
tion chosen for reference. This allows calculations to be carried out in a consistent fashion.
Access to all body-points and their properties is easily achieved through the location of that
body-point in the reference configuration. However, in the case of spatial derivatives this is
not always the most useful method. It is appropriate in many calculations to transform the
derivative so that the differentiation is with respect to position in the reference configuration,
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Fig. 2 Different position vectors “dx and Rdx

instead of with respect to position in the configuration of measurement.

Consider the transformation for gradients. To do this use three configurations, C,, Cp and
C¢ and two distinct but nearby body-points, X and Y. Then some material property, P, is measured
in coinfiguration C¢. So it is P. The values of this property at body-points X and Y are:

‘PX)=cP(X) (10)

and

“P(Y)=EP(Ex+Cdx) (11)
Eq. (11) can be expressed as
JcP
dEx
Since body-points X and Y are very close to each other the difference in P, “dP, can be expressed
as

P(Y)=SP(X)+odx- (12)

P(Y)=P(X)+dP(X. Y) (13)

Through the rest of this argument differentials refer to differential changes in values of properties
between X and Y. So further references to, for example, “dP(X), are taken to mean “dP(X Y).
Take advantage of the invariance of P(Y) to compare Eq. (12) and Eq. (13). The difference
of these gives the usual form for a gradient

IcP

“dP=jdP=¢dx- s (14)

The value of ‘P is invariant with respect to configuration of reference and can be referred to
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C 25P
Cip-_C3p_C — C
d{’—RdP—Rdx- 0% (15)
As an alternative, we could refere “P to C, at the beginning of the argument. We find
PX)=EP(X)=GP('F) (16)
“P(Y)=S{P(*x+dx) (17)
‘P(Y)=SP+1dx- 94 P (18)
an A o4x
Using the same approach as for Eq. (14) one finds
e s 4 5P
“dP={dP=/dx- ;‘,)7 (19)
A
or
j— — C P
iP=SdP="1dx- ‘;jf_: (20)
R

The differential 3dx should be noted. As shown in Fig. 2, “dX locates body-point ¥ with respect
to body-point X when then body occupies C, but not when the body occupies any other configu-
ration.

This same process can be repeated to refer “P to Cp. We find

= ¢ =5, 03P
CszgdP=,§dx-—a-§§ 1)
or
o
iP=CdP=" dx- d‘,’;;’ 22)
R

The differential position vector ?dx locates body-point Y with respect to body-point X, only when
the body occupies configuration Cp. The argument so far can be applied immediately. Suppose
that the differential of interest is “dx. Replace “dP with “dx. Then Eq. (22) becomes

A]y—=4 _:B Yo 0"‘;;
dx=4dx=rdx TS (23)
This in turn may be substituted into Eq. (20) to give
¢ m_s - Oh% 5P
RdP=rdX s " oi% 24
This leads use to see that
5P _ oix 5P o5

’x  Px 'k

Now we have a useful transformation. At our convenience we may leave the gradient untransfor-
med and merely copy values during a change of configuration of reference or we may take
the gradient with respect to the new reference configuration.
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This is applied in several important cases. Among the most famous are the First and Second
Piola-Kirchhoff pseudo-stress-tensors. The term “pseudo” is very descriptive. These tensors are
not identical to the Cauchy stress except under special conditions. Instead some transformation
has been applied and a different quantity, a pseudo-stress, has been found. These can be very
useful. Another very important “pseudo-” quantity is the Lagrange pseudo-strain tensor.

2. Strain tensors

A careful derivation of the Lagrangian (referential) strain tensor and of incremental forms
of the Lagrangian strain tensor is useful here. It will clarify the later use of these important
measures of material distortion. This derivation follows from the classical argument concerning
the separation of two distinct body-points in various configurations. The separation of two body-
points may change from an unstrained configuration to a deformed configuration. Consider
the quadratic form for deformation:

'D="dx-'dx—"dx-Ydx (26)

Note that 'D as a symbol does not mention Cy. This is because any unstrained configuration
will serve. Now, refer this to the deformed configuration, C,. The differential Ydx can be replaced
by

U—
1X
Ix

Vdx=\dx- Q7

We can maintain generality and facilitate the discussion of the use of an arbitrary reference
placement if we keep the differential 'dx in the form
d1x
2lx

dx=dx" (28)

Introduce these forms to find

I— = U= U—
oolae{ G Pan (G Jax (G e (5E) e
or 1— 1— \T U— U— \T
Py =1 4=, aix . 1X . Jix . o1 X
D= 1dx, dx: [( ax ) ( ox ) ( % ) ( % )] (30)

or we can gather all of the information about distortion of the material into a single factor
as

\D=1dx dx : 2 |&('x) (31)

where '€ is the true strain tensor of the body in configuration C,. 'D can be referred to any
configuration, say C,, as

AD=.dx \dx : 2 JE(x) (32)

[ P R Jix . aix \ [ &% aix Y
aDZadx ydx [( aix )( ax ) ox )\ Tax ] (33)

That is
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In calculation the use of these differentials and gradients can be extremely inconvenient or
impossible unless the chosen reference configuration is the present configuration. For any other
case the analyst may prefer to transform the quantities so that the differentials are of, and
derivatives are with respect to, position in the reference configuration. To do this retrace the
steps in deriving '¢ strarting by substitution for the differentials in Eq. (26) with

1 —
;dx:jd;-—@% (34)
and
U A g— 04X
adx=,dx- 1% (35)
The same arithmetic steps lead us to
_ _ alf dl— T dU_ dU— T
ot tav s (55 (5% ) (65 M5 G0
1D="dx 4dx : 2" E("X) (37)

In Eq. (36) the expression in brackets has an important difference from the one in Eq. (30).
.This time all of the derivatives are with respect to position in the arbitrarily chosen refernce
placement, C,, instead of the present configuration, C,. Likewise the differential position vectors
that are the leading dyad of Eq (36 and 37) are measured in C4 instead of C,. This shows
that “E is not the same as '¢ "E contains the same information to describe how the material
is strained in Cy, but “E is rooted in C,. We call “E the Lagrange pseudo-strain of a body
in C, transformed to C,. It is possible to refer this to yet another configuration, Ck. One
finds

D=4dx 4dx : 24E (%) (38)

R
PR oix aix \ [ dYx ix \'
weias o [( G ) )G (GE )]

This shows how each configuration is used in the pseudo-strain. The use of different configura-
tions for C; and Cy is possible but it is not a common practice. This is because of the implied
use of differentials of form ;df, where the measurement and reference configurations are not
the same. This immediately leads to difficulties, illustrated in Fig. 2, that we were trying to
avoid by transforming out of C,.

The transformation between 'z and “E can be found by referring Eq. (29) to Cy to get

Lp A o 2ix \.i=(_dix \'
RD:R X Rdx : 2< a;;f )'R8'< a,;; ) (40)
Also, by the definition of '“E, we find

1— 1= \T
aA.X _12‘. 3Ax _ 4
Rx "X #

Now we can transform true strain to pseudo-strain and vice versa. This allows us to use either

o]

@1
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z

Fig. 3 Configurations of a body and displacements of body-point X.

form in further development knowing that which ever form is more convenient can be obtained
at need. This also shows the condition required for the pseudo-strain, “E. to be the same as
the true strain, 'e. The deformation gradient, '“F, must be an identity tensor. This only occurs
when configurations C; and C, are indeed the same configuration or are different only by a
rigid body translation. This is the same condition as is required for the First or Second
Piola-Kirchhoff psedudo-stress tensors to be identical with the Cauchy true stress tensor.

3. Displacement forms for the strain tensor

In most work done using a referential description, it is the Lagrange pseudo-strain that is
used. So, further investigation is developed for that tensor. In practical analysis the position
of a body-point is often tracked by the use of displacement rather than directly. So next we
develop forms of the pseudo-strain tensor based on the use of displacement. It is usually the
case that the transformation configuration, C,, is the same as the reference configuration, Ck.
However, for the sake of generality and clarity we will assume that C; is not necessarily the
same as Ck.

We may express Yx and 'x as displaced from “x. From Fig. 3 it can be seen that

Uz

X 3 — AU

X u

(42)

The deformation gradient can be written as
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dix = A=
%; =1-""%u (43)
where 1 represents the identity tensor and
U—
AU . A=__ AU
is the displacement gradient. Similarly,
e OaX(X) _ 24X (X)) | 2Yu(x)
Iy =A% + 4 ) ) L
YT TR OrX . O%X
OiX = ua-
o =1+"zu 45)
Now these expressions are substituted into zD. This gives
=pdx zdx : 2 RE (46)

where the pseudo-strain tensor

IZE:%—[{M';;T‘l‘ ]A,;_+(IA A= 14 :ET>}+{AUA _T+AUA ~_(AU,;;; AU:ET>}] 47)

The braces in Eq. (46) emphasize a grouping of tensors in the final expression in terms of
the original two gradients as thier source. It can be seen that the first term in braces depends
on C, and on C; but not on Cy. So a different choice of C, will not affect this term. The
second term in braces depends on C4 and on Cy. So a change in C, will not affect this term.
This property reappears later. It is easily shown that 'D is invariant with respect to the choice
of an unstrained configuration; so is “E. In general, all six terms are nonzero and all six must
be evaluated.

3.1. Special cases

If the transformation configuration is unstrained, then
dx=Ydx, “4u="""Y% and "V iu="""%u=0 48)
This shows the quadratic measure of deformations:
sD=YdxYdx - [V Va+Y et e i aT] 49)
kD=pdxpdx : 2'RE(*%) (50)
We recognise 'y E is the Green-Lagrange (pseudo-) strain tensor. If we chose Cy as the reference

placement, then this is the so-called Total Lagrangian Formulation.
If the transformation configuration is the present configuration, then

Adx_ld— MAu 1R 1Izu O and 4U.;§:IU.II€; (51)

which yields

R R

II{D:]](d; lled; . [lU,z;_JrIU,ZET_IU,UZ—Z.IU.UET] (52)
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xD=pdX zdx : 2RE(*%) (53)
where "'E, the Lagrange pseudo-strain, is identical with the Lagrange true strain, 'z. This must
be, since each time the configuration of transformation matches the configuratioin of measure-
ment the transformation is pre- and post multiplication by the identity tensor. If we use C,
as a reference configuration, then this is an example of an updated Lagrangian formulation.
Therefore the last (nonlinear) term is not always added to strain tensors in referential (Lag-
rangian) formulations, but will always be subtracted. The only exception to this is where the

final term can be neglected altogether because it vanishes. This will happen if the placement
of transformation is unstrained. That is where -

AUEE-O (54)

"E is recognized as being coincident with the Euler strain tensor, ' €. This is so even though
the derivative and philosophy of the two measures is quite different. In using the spatial (Eulerian)
strain tensor the analyst keeps attention directed at a location in space as the material passes
by. In this particular updated Lagrangian description, the analyst has attention focused on the
body-point and keeps track of the body-point as it moves through the current configuration.
By choosing to update the placements of transformation and reference to the current configuration
all vectors measured, or that are the basis of a measurement, are coincidentally the same as
those that would be employed in an Eulerian style of investigation. For that particular case
the two tensors must have the same values.

If the present configuration is an unstrained configuration, then

mzﬁzu.g;: WAU./;E (55)
This choice yields
' 'p=Up="dx 1dx : 2“E="1dx 1dx : 2,0=0 (56)

This could have been arrived at more directly from the definition of i D without involving displa-
cements. The result that YD is zero is expected and gives that “E, UZ and Y € are all zero
for any unstrained placement, but gives us no further insight into the nature of being unstrained.

4. Increments of strain tensors

The same quadratic measure of deformation in C,, when transformed to C, and referred
to CR, is

AD=4d% fds ¢ [aam U )
R g g )] &7

iD="4dx tdx : 2RE(RX) (58)

It should be noted that the terms involving 27 (the second group in braces) have not changed.
It is possible to think of the displacement from C, to C as a superposition of a displacement
field from C, to C, and a further increment of displacement from C, to C.. That is
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=+ 2 =%+"u+"u (59)
In that case, the displacement gradient can be expresed as
ngja :7.44452 alﬁa &2/11{4— :IA.A;_*_ZI,A; (60)
X R Ax Jdiu K K

Substituting these gradients into the expression for the quadratic measure of deformation
gives

4, 4= 1AA— lAA—- I4A—

sD=%dx f4dx : [{ U+ i+ RuT}
21, 4= ZlA—— IAA-—LIA"— 21A—1AA—
AT AT AT AT Aart

21.A= 21 . A=
+{ RU" RUT}

+{A(/A T_+_4U;u ( A—AUA—-T)}] ' 61)
xD=rdx zdx : 2%E (62)
It is illustrative in this discussion to keep these terms in separate groups in g E such that
RE=RE'+ R E+ R E+ % E (63)
where
WE= M e a a) (64)
225—:2:%{21.2;_#21.;;7_'_ lA.:Z_2l.2§T+21.; ;14237} (65)
)AEQ_L{QLA =‘21.A=r} (66)
RET= RU* U
2AE4 {AUA~T+AUAE AU;EAU}:;T} 67)

If the body achieves configuration C, as a result of an incremental change from C,, then ®E
can be thought of as incrementally changed from “ E. It is recognized that

YD=4dx xdx : 2RE'+%REY (68)
The effect of an increment of motion must appear in 2% in terms zﬁfz and Zﬁl:f. Zzgzz contains
terms linear in k% and may be called the linear part of the increment to WE “FE contains
the nonlinear (quadratic) term and may be called the nonlinear part of the increment to “E.

This is mentioned in Underhill (1992), underhill, et al. (1989), Gadala (1980), Gadala, et al. (1982),
Abo-Elkhier (1985) and Abo-Elkhier, er al. (1985).

4.1. Special cases

C,is C.. If Cg were also Cy, and the initial configuration were unstrained, then a Total
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Lagrangian formulation would be in use.

A 33— — 1AA= W.U= 21, 4=_21.U= AU,
rAX= — R

Uw.U=_T7
Ydx, tau=""Tu, M Ru 0

RU—

EYEN
N
I

)

XU T= 1 Ww.uv= v.U= U=
UE { I ] U u= 1U. ]}

21, U= | 21, U=T Ww U= 2U0,U=r ;, 20.U= WU, U=T
{Ru+ U T TruTT qu T Ut R }

N —

wes_ L fwu=wuv=r
RE“?{ rRU" Ru}

and P E' is 0 as always in a Total Lagrangian formulation.
If the transformation conﬁguration is the next coinfiguration, C,, then

Rdx Rd Ru—lziﬁz_zl.;; 21,;;;:21.;-5’ AU,/;E_"UIZQE
We find
22=_1 21.2=_21.2= 21.2= 21,2=
REI_?{_ jU— U (=" Ru)(— RuT)}
22=7_1 21.2=, 21, 2— 2 = 21.2= 21,2= 21.2 =
A= R R (R (T R+ C i (T )

2% 1 21.2= 21.2=
RE3:-—{ rRU" Rur}

[\

nes 1= 2U2= W= W.2=
E*= 2{ rUT = ru- RuT}

(69)

(70)

7

(72)

Compare the expression for s E* to the expression for '+E. In both cases the placement where
strain is measured is the same one whither gradients have been transformed. So, these two
expressions must have the same form; just change the superscript 1 to 2. This also brings about

coincidence with the Eulerian strain tensor, > &. So it is comforting to find that

2§E1+2§EZ+2§E3=6

(73)

If C, is C,, then this is a case of the referential formulation when the configuration of transfor-

mation has been “updated” to C,. Here

We find

(74)
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2 _E_‘v4:_é_{lU.: U T 77} (75)
Two comments should be made about these terms. The first term involves only gradients of
displacement from C, to C, and so »E' is zero. The other point of interest is the form of
the term, 2'E“. This is identical to ""E. This shows the pseudo-strain tensor changing by a linear
increment plus a nonlinear increment from '\ E. As the body passes through configuration C,
the referential and spatial formulations coincide. As the body proceeds to deform an incremental
change in strain occurs.

The difference between *'E* and *"E°, the linear parts of the increments, should be noticed.
Compare the last two terms in each

= 1 — = = = 2. U= =
W _2_{21,g“+2!,gu7+lU,gu'Zl,ZuT_fr_,_l,Zu.IU‘guT}
2152__1_{21v|=+zr.1:7+11,1:'21.1:T+21.1:_|1.1:T} 7
) 1 U U U u jur o u (76)

Since '} 2=0, the last two terms of 2 E2 vanish identically. This is a distinctive mark of Updated
Lagrangian formulations.

5. Implementation of change of configuration of transformation

Updated Lagrangian calculations occasionally “update” the configuration of transformation
to a recently calculated configuration. This is accomplished easily by the use of the deformation
gradient. This change can be found by the following argument. The Lagrangian pseudo strain
in configuration C, transformed to Cp and referred to Ci is:

r = = \7 U~ U= \T
wE= (G5 ) (22 ) (-2 (92 n
2( X obx Jofx okx | |
The pseudo strain in C, transformed to C, and referred to Cy is:
wog_ 1[( dox \ (_dox \" _(_dox \ (_dox \']
RE 2_( 995 ) ( 995 ) ( oox ) \"aex ) | 78

The deformation gradient is used to find

gox :< dox ( a’zx) dox _(_dox \.(_dx
0% d°x I’x ) 0% 0%% o'

so that we arrive at

wp( 00X \wp. (_0x Y 80)
K 09x K o%8x
R R
In practice, a difficulty can arise since, typically, the position of a body-point in the new transfor-
mation placement, Cyp, is known as a function of position in the old transformation configuration,

Cp. rather than the other way around. So, the deformation gradient in Eq. (80) is not known
explicitly. Fortunately. this difficulty is avoidable since all motions are required to be unique
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invertible functions of position. It can be shown from the invariance of ‘dx that

00x %x |-
o0 :< o ) @D
The updated pseudo strain tensor becomes
0= \ -1 0— \ -T
0 & Jpx AP Jpx
(5 ) 9B ) 2

5.1. Example

Suppose a calculation follows the motion of a body from an initial, unstrained configuration,
Cy. The body moves and deforms and the pseudo strain in C, is calculated, with C, as the
transformation and reference configurations, to be ""E. The pseudo strain tensor is updated
so that C, is the transformation and reference configurations by the use of

n={ dx \ 0= dx \ T

PG ) ur (gt ) 9
Let the calculation continue and the pseudo strain be required in a subsequent coinfiguration,
C,, where the displacement from C; to C, is known explicitly. Then the pseudo strain in configura-
tion C, can be founds as incrementally changed from the pseudo strain in conﬁgurat1on C.
Take advantage of the fact that 2 E! vanishes. Also, use the identity between AF* and "E. We
express the pseudo strain in the new placement with the previous configuration as the transforma-

tion placement, as the stram in the previous placement plus a linear increment, AR plus a
nonlinear increment, 2'E°.

2E="E+1E*+4E? (84)

HE=E+ gy grn gl (85)

Since all of the displacements are well known, there is no problem. C, can then be made the
transformation and reference configurations by the same kind of manipulation as before

»n= 3%)—6 71'21 - 0"%)7 -r
E( ol ) 1 ( B ) (86)

The strain is now expressed as the true strain in C,. The calculation is ready to proceed with
the next incremental step.

6. Conclusions

This work discusses the roles of various configurations involved in the analysis of large displace-
ments using a referential description of matter. In particular, the details of how placements
are used for reference and transformation are given. This specifies many features of the Updated
Lagrangian Formulations and includes an example of how the updating can be done.
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