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A boundary element method based on
time-stepping approximation for transient heat
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Abstract. The time-stepping boundary element method has been so far applied by the authors to
transient heat conduction in isotropic solids as well as in orthotropic solids. In this paper, attempt
is made to extend the method to 2-D transient heat conduction in arbitrarily anisotropic solids. The
resulting boundary integral equation is discretized by means of the boundary element with quadratic
interpolation. The final system of equations thus obtained is solved by advancing the time step from
the given initial state to the final state. Through numerical compuation of a few examples the potential
usefulness of the proposed method is demonstrated.
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1. Introduction

A wide class of linear problems can be formulated into boundary integral equations, and
hence numerical implementation of their solution requires the discretization of only the boundary
surface of the domain by using boundary elements. Because of this inherent advantage, the
boundary element method has been recognized as a powerful alternative to the domain-type
numerical methods of solution such as the finite difference and finite element methods. The
boundary element method has been successfully applied to linear problems in static and steady
states, such as elastostatics, elastodynamics, thermoelasticity, acoustics, electromagnetcs and so
on. However, there seems to be still some difficulty for the linear problems in dynamic and
nonsteady states, ie., the time-dependent problems. Several boundary element formulations have
been so far presented for the time-dependent problems. They can be classified into the following
three kinds: Transform Method (Rizzo and Shippy 1970), Direct Method (Liggett and Liu 1979,
Wrobel and Brebbia 1979, Pina and Fernandes 1984, Taigbenu and Liggett 1985), and Time-
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Stepping Method (Curran, Cross and Lewis 1980, Roures and Alarcon 1983, Ingber 1987, Tanaka
and Matsumoto 1990, Matsomoto, Tanaka and Fujii 1990, Ingber and Phan-Thien 1992, Tanaka,
Matsumoto and Yang 1993 and 1994). The first one makes use of the Laplace transform, while
the second one does the time-dependent fundamental solution and derives a set of boundary
integral equations in space and time. The third one first approximates time derivatives involved
in the governing differential euqations, and then transforms the reduced governing differential
equations thus-obtained into boundary integral equations. Although each method of solution
has advantages and disadvantages, at present Direct Method has been popularly used in practical
analysis (Brebbia, Telles and Wrobel, 1984), mainly because this method treats directly the time-
dependent variables in the boundary-only formulation and requires no inverse transformation
as in Transform Method. In this respect, Time-Stepping Method may have almost the same advantage
as Direct Method.

The authors previously reported on the time-stepping boundary element methods for transient
heat conduction in isotropic and also orthotropic solids (Tanaka, Matsumoto and Yang, 1993
and 1994). This paper aims at its extension to the solution of transient heat conduction in
arbitrarily anisotropic solids. Several papers have discussed this method for the solution of parabo-
lic differential equations. Curran et al. (1980), first discussed the method and investigated its
properties for one-dimensional problems, introducing linear and quadratic finite difference appro-
ximations. A simple finite difference scheme was applied to approximation of time derivative
by Roures and Alarcon in (1983), Ingber (1987), and Ingber and Phan-Thien (1992), dealing
with two-dimensional problems of the parabolic differential equation. It is interesting to note
that the time-stepping boundary element method has been also successfully applied to transient
elastodynamic problems including first- and second-order time derivatives in the governing diffe-
rential equations (see Tanaka and Matsumoto 1990, Matsumoto, Tanaka and Fujii 1990).

In this paper, time derivative in the governing differential equation of transient heat conduction
is approximated by a generalized time-stepping scheme introducing the so-called time-scheme
parameter. Then, the reduced governing differential equation is transformed into a boundary
integral equation in the usual manner using the fundamental solution of the modified Helmholtz
equation. A numerical implementation of the formulation is then discussed in detail, and a
few examples of the two-dimensional problems are computed by a new computer code developed
in this study. To obtain accurate numerical solutions, the so-called regularization technique is
applied to the resulting boundary integral equation so that no Cauchy principal-value integrals
are included in the formulation. The usefulness of the proposed method is demonstrated through
numerical experiment for a couple of problems. It should be mentioned that the proposed method
is easily applicable to 3-D problems if the 3-D fundamental solution is employed for the formula-
tion.

2. Formulation and implementation

Let us consider two-dimensional problems of transient heat conduction in arbitrarily anisotropic
solids as shown in Fig. 1.

The material constants are assumed to be constant in the temperetature range under considera-
tion. The governing differential equation of the problem can be expressed as follows (Carslaw
and Jaeger 1978):
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Fig. 1 Transient heat conduction problem
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The notation used in the above equations is summarized in the following;

temperature,

internal heat source,

time,

mass density,

specific heat,

A, and A, principal values of heat conduction coefficients,
n; and m; direction cosines defined by

ceoed

n=cos(A1, x,) my=cos(A, x1) }
n,=cos(A,, x3) m,=cos(A,, x3)

The boundary conditions can be such that
Dirichlet type:

T=T on I,
Neumann type:

oTr oT _
=—a nxl*ﬂ—ﬁ;znxzzq on I;

Robin type:
q=h(T—T,) on I3
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In the above equations, @ and S denote the heat conduction coefficients in the coordinates
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x1 and x,, respectively; The direction cosines of the outward normal n to the boundary are
denoted by n,, and n,, that is,

My, =Cos(n, X)), Ny, =COs(n, X;) )
Furthermore, the given initial condition is as follows:
ﬂlZOZTO (8)

We now divide the time axis into small time steps, introduce the time-scheme parameter
6, and approximate the temperature T as well as the internal heat source Q between time steps
t=t, and t=t,+, as

T=0T,,,+(1-0)T,, 0=00Q,.,+(1-6), 9
Time derivative is approximated by
ﬂ — Tn+1_Tn
o A (10)

where Ar=t,+1—t,.
Using Egs. (9) an (10) for the governing differential Eq. (1), we obtain

0T, 0T, 0°T,
Kii— > 3 ox, 3 +(K12+Kzua 0% +Kzz 8x2;1

1—0 07T, 0T, 0T,
_+_( 7 l{,(” ax17 +(K'|2+K")1] Ox a » +x K» ox 2 }

_ o T—T, _{ 1-6 }
=pc OA! Qn+I+L0_lQn (11)

Depending on the value of 6, Eq. (11) can lead us to the following solution schemes:

0=1/2 corrsponds to the Crank-Nicolson scheme,
6=2/3 to the Galerkin scheme, and
60=1 to the backward finite difference scheme.

Now we rewrite the reduced differential Eq. (11) into the following form:

viAVT, + -4 DviAvT,
T,+.—T, 1-6
—pe-Tal fo 4 (Z00) (12)
where V, denotes the Hamiltonian operator, and ¢ the transpose of a matrix. Matrx 4 in Eq.

(12) can be given by

A:zﬁAU:[ i "] (13)

K1 K»

Denoting by a and g the eigenvalues of matrix A, and by U the transform matrix correspond-
ing to eigenvectors, we can express A and U as follows:
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_|la 0 _| cosp sing
A [O ﬁ]’ v [—sin(p cosq)] (14)
Using the transform matrix U, we can relate the coordinate axes x, and x, to the orthogonal
principal axes X; and X, through

X, }: cosp  sing {xl }
{Xz [ —sing  Cosgp X, (15
Using Egs. (12) to (14) for Eq.(11), and arranging it leaving the variable T, ,, on the left hand
side, we obtain

a ]:H—I {)a Tn+l _ Tn+l
*oxz TP oxy Pon
0=, 0T, (oL
0 ﬁx (9x22
7, (1-6) }
OAt {Qn+l+ 6 Qﬂ (16)

In the above equation, 7., is the unknown to be determined through analysis at time =1, ,
whereas all the terms on the right hand side have been known from previous computations
up to t=t,.

For the solution of Eq. (16), we shall apply the standard boundary element method. To this
end, we have to introduce the fundamental solution to the differential operator of Eq. (16),
the so-called modified Helmholtz equation. The fundamental solution 7* is defined for infinite
domain by

[;sz 20T I* v

where §(X—Y) denotes Dirac’s delta function. The fundamental solution can be given by (Tanaka,
Matsumoto and Yang, 1993 and 1994)

1 X )1
P= B { VS (18)

in which S=60A:/pPc, K, denotes the zeroth order modified Bessel function of second kind,
and ry is the distance between two points X and Y defied by

— 2 —_ 2
ro(X. Y):\/ix‘ aY‘) +-& ﬂYz) (19)
The flux g* derived from the fundamental solution 7* can be given by
x= g oT 2X, B aT JdX,
oX, on X, on
dT
c?X ﬂ a“X (20)

Multiplying Eq. (16) with the fundamental solution 7*, and applying the Gaussin divergence
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theorem to the resulting identity, we finally obtain the following integral equation:

ﬂn+l(Y)—f "X Y)an(X)dT‘Ff g* X Y)T,.\(X)dl'

r

0O+ [ 7o vg,onar- [
r

) q* X Y)I,(X)dI' }

v 4 o o[B8 - Aigg, 00+0-0p,001]0 ey

Note that the third terms on both the sides of Eq. (21) should be evaluated in the sense
of Cauchy’s principal value integral. To circumvent this difficulty, we shall here regularize Eq.(21).
To this end, we introduce the flux ¢* of the fundamental solution to the Laplace equation.
Considering the field of uniform temperature governed by the Laplace equation, we have (Tanaka,
Matsumoto and Yang, 1993 and 1994)

+f g* X dIr=9 (22)
r
where

~ . —1 0"?'0 Jro }

P =g G B @)

Making use of Eq.22), we can regularize Eq.21) as follows:
U X V) —* X Y)}dI“]TnH(ka T*X, Y)qs,(X)dl
r r
+ q*(X Y){Tn+I(X)—Tn+I(Y)}dF

:ﬂéﬁL{—[ f "X NG X Y)}]Tn(Y)

f X, ¥)g, (X)dI+ f ¢*X VT, (0—T,(v)ldr}
—j T*(XY) 4’—‘>+- 60,00+~ 0)0, (X)}]dn 24)

Eq. (24) holds for point Y in the inner domain as well as on the boundary if 7, and 7,4,
satisfy the Holder continuity, and this equation is so regularized that it includes no Cauchy
principal value integrals. It should be here mentioned that for the solution of boundary integral
Eq. (24) we have to subdivide the inner domain into small cells to evaluate the domain integral
resulting from the “pseudo initial condition” at each time step, even if the given initial condition
is homogeneous. This seems to be an inherent disadvantage of the time-stepping boundary element
method proposed in this paper.

We now summarize the main flow of the proposed time-stepping boundary element method.
At =1, advancing Ar from the initial state, we first calculate the right hand side of Eq. (24)
from the given initial condition. Then, we can determine all the unknowns on the boundary
and then compute the necessary values in the inner domain using the discrtized version of



A boundary element method based on time-stepping approximation 67

=0
E 9 D
Ti=sin(7mx;)
2 A
T=0 \Z 0 T=0

L=10

x, < >
pe=1.0

l A 7=0 B

X

o 1
Fig. 2 Analysis model

Eq. (24). From the next steps, the inner temperatures thus calculated are to be used as the
“pseudo” initial condition. If we iterate this procedure in the step-wise manner until the final
time of analysis, we can solve the problem under investigation.

3. Numerical results and discussion

In order to demonstrate the validity fo the proposed time-stepping BEM, we shall analyze
two typical problems of transient heat conduction. As in the previous papers (Tanaka, Mastumoto
and Yang, 1993 and 1994), we introcude the diffusion number x defined by

aAt

AL

(25)

where a=(A, cos®> g, +A;cos’ @)/Pc, At is the time-setp width, and AL is the averaged distance
between the two adjacent nodal points. Moreover, we introduce the averaged percentage error
defined by

k

100 100
E, (%)= Z( N
i=1 j

J

(26)

S T —=Tl| )
S (Tl

where K is the total mumber of time steps and N is that of nodal points, whereas subscripts
ex and be denote the exact solution and the present boundary element solution, respectively.

The domain of the two problems to be analyzed is a square, and the notation and coordinate
system are shown in Fig. 2. The boundary conditions, initial conditions and material constants
are such that

Problem 1:

T=0 at x,=0 and 1; g=0 at x,=0 and 1; Ty=sin(mx,); 4, =10, 1,=0.5, ¢,=15[deg], ¢.=45[deg]
(27)
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Fig. 3 Boundary element mesh and internal cells
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Fig. 5 Results for Problem 2
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Problem 2:

T=0 at x,=0 and 1; ¢g=0 at x,=0 and 1; To=sin(mx;) sin(/x,); 4, =10, L,=0.5,
o=15[deg], ¢,=45[deg] (28)

The boundary element discretization and the internal cell subdivision are shown in Fig. 3.
It is noted that the whole boundary is uniformly divided into quadratic boundary elements
and the inner domain also uniformaly into eight-node quadratic internal cells.

Tanaka, Matsumoto and Yang (1993) previously reported on the numerical properties of the
time-stepping BEM for transient heat conuction in orthotropic solids. It is revealed there that
there is an optimal value of the diffusion number k to minimize the averaged error if the uniform
mesh is employed. A chart has been available for the relationship between the diffusion number
and the number of boundary elements in uniform mesh (Tanaka, Matsumoto and Yang 1993).
This chart be helpful to determine an appropriate time-step width. In the present computation,
we shall make use of this chart to estimate an optimal time step. For Problem I, as a=1.18

6
—e— BEM

T

5
4 |

3+

E,(%)

2+

1 +

0 | . 1 PR ! L . | . I "
02 03 04 05 06 07 08

Fig. 6 Relation between x anhd minimal error Er

R

Ty=sin(7x,))

T= T=O

Fig. 7 Transient heat conduction in thick-walled plate
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Fig. 8 Analysis model of thick-walled plate
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Fig. 9 Results for temperature of FC (Ar=0.036)

and AL=0.125, we have from the chart for one-dimensional heat flow k=255 and hence from
Eq. (25) we have AL=0036. Assuming §=1/2, we can obtain the results as sown in Fig. 4,
where the computational results are compared with the exact ones (Carslaw and Jaeger 1987).
Good agreement can be recognized between the results, which may imply partially the usefulness
of the chart. Furthermore, for Problem 2, as a=1.18 and AL=0.125, we have from the chart
for two-dimensional heat flow x=1.70 and hence from Eq. (25) we have Ar=0.024. Assuming
also §=1/2, we can obtain the results as shown in Fig. 5, where good agreement is again recogni-
zed between the computational results and exact ones (Carslaw and Jaeger 1987).

Now, we check which value can be recommended for the time-scheme parameter 6 In Fig.



A boundary element method based on time-stepping approximation 71

0.8
: — Exact(H=~)
| o BEM(H/L=2)
06 |
o i =0.054(s]
2
8 1
2 04}
E I
E..
02 L 1=0.162[s]
0 T 1 o . N

0 0.2 0.4 0.6 0.8 1
Fig. 10 Results for temperature on FC (At=0.054)

6. are shown the results obtained for Problem 2 when we change 6 from 04 to 0.6 by the increment
0.05. To minimize the averaged error Er, we should choose 6=1/2 which corresponds to the
Crank-Nicholson scheme.

Finally, we shall apply the method to transient heat conduction in a thick-walled plate infinitely
long in axis x, as shown in Fig. 7. The material constants are as follows:

A=10, 4=05, ¢=30[deg], and ¢ =30[deg] (29

The other information required for analysis is presented in Fig. 7. We consider a two-dimensio-
nal model of this problem as shown in Fig. 8 in which the Neumann condition is assumed
on the sides AB and ED. The results obtained for the two cases H/L=1 and H/L=2 were
compared, but better results were obtained when H/L=2.

Assuming Pc=1.0 also in this problem, we have a=1.125. If we divide either of the sides
AB and ED such that AL=0.125, we can obtain from the chart for one-dimensional heat flow
the recommended diffusion number as k=2.55, from which we may choose by Eq. (25) Ar=0.036.
The computational results obtained in this case are compared with the exact ones for infinitely
long plate (Carslaw and Jaeger 1987). Good agreement can be recognized between both the
results. In Fig. 10 are shown the results obtained when a larger time step Ar=0.054 is selected.
In this case, less satifactory agreement is appreciated.

The above investigation would imply broader applicability of the chart for the relationship
between the number of boundary elements and the diffusion number to other transient heat
conduction problems.

4. Conclusions

The time-stepping boundary element method has been discussed in detail for the solution
of two-dimensional transient heat conduction problems. This approach is an extension of the
solution procedure previously proposed by the authors in 1993 and 1994 to transient heat conduc-
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tion in arbitrarily anisotropic solids. As reported on in the previous papers, the time-scheme
parameter 8 should be chosen as 8=1/2, which corresponds to the Crank-Nicolson scheme
in the finite difference method. It is also shown that the diffusion number defined as in the
isotropic cases is an important factor for numerical accuracy of the solution.

In this paper. investigation is limited to the two-dimensional problems, but it is an easy matter
to extend the proposed method of solution to three-dimensional problems, if the corresponding
fundamental solution is used for the formulation. Such extension and also application to more
complicated problems with sharp concentrations even in the two-dimensional case could be
recommended for future research work in this direction.
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