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Dynamic response of elasto-plastic planar arches

SL. Lee,t S. Swaddiwudhipongt and WAM. Alwistt

Department of Cwvil Engineering, National University of Singapore 10 Kent Ridge Crescent,
Singapore 0511, Singapore

Abstract. The behaviour of elasto-plastic planar arches subjected to dynamic loads in presented. The
governing equations are formulated through the dynamic equations and compatibility conditions. The
latter is established by applying the generalized conjugate segment analogy. Bending moments at the
nodes and axial forces in the members are considered as primary variables in the elastic regime. They
are supplemented by the rotations at the nodes and dislocations in the elements when plastic hinges
occur. Newmark-$ method is adopted in the time marching process. The interaction diagram of each
element is treated as the yield surface for the element and the associated flow rule is enforced as plastic
flow occurs. The method provides good prediction of dynamic response of elasto-plastic arches while
requiring small core storage and short computer time.
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1. Introduction

The response of structures to severe impulsive loadings involving both elastic and plastic regimes
of the behaviour of materials is often required in the survivability design of buildings. An excellent
guideline to the design of structures to blast loads was compiled and presented by the Task
Committee on Updating Manual 42 of the ASCE Committee on Dynamic Effect of the Structural
Division, (1985). Various aspects of nuclear weapon effects were discussed and simplified analysis
of structures suitable for design purposes proposed.

In the earlier development of this subject, the elastic solution was first sought and correction
applied when plastic hinge formed. Among others who adopted the abovementioned approach,
Bleich and Salvadori (1955) proposed modified mode superposition method to study the impulsive
motion of elasto-plastic beams while Berg and DeDeppo (1960) applied direct integration techni-
que to solve the equations of motion of a structural system with masses lumping at the floor
levels. The dynamic reponse of elasto-plastic beams was studied by Heidebrecht er al. (1963)
using a discrete system approach. Tene et al. (1975) adopted backward differences in both space
and time domains to solve the equations of motion governing the forced vibration of elastic
arches. The effect of viscous damping was later considered by Sheinman (1979). Displacement
components were chosen as primary variables in both of their studies. Lee er al. (1988) extended
the discrete system approach to study the dynamic response of elasto-plastic frames and deep
arches. Though the effect of axial force was considered in applying the yield surface, the effect
of axial deformation was ignored and consequently the associated flow rule was not completely
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Fig. 1 Discretization of an arch

observed.

The present paper addresses the response of elasto-plastic arches under dynamic loads. The
discrete system approach is adopted. The bending moments at the nodes and axial forces in
the members are chosen as primary variables. They are supplemented by the rotation at the
nodes, ¢, and dislocation in the member, &, when a plastic hinge forms. Once plastic flow occurs,
the state of stress is carefully monitored and the associated flow rule is enforced. Direct time
integration is carried out using Newmark-f method (Newmark 1959).

2. Structural idealization and assumptions

The structure is discretized into (k-1) straight elements connecting in a series at their nodal
ends as shown in Fig. 1. The loadings, masses and damping effects are lumped and the plastic
hinges are allowed to form only at the nodes. An elastic-perfectly plastic moment curvature
relationship is assumed. Only loadings in the plane of the structure are considered in the study.

3. Equations of motion

The equations of motion are formulated through the virtual work principle and dynamic
equilibrium conditions. For a structure with k nodes, there are k-3 independent mechanisms
each comprising a segment of three consecutive elements as shown in Fig. 2. Applying the
virtual work principle to each segment yields

—ecMi+e M\ —exMi,HesMi 3= —ay Qx(i+ 1)‘+‘ay1 Qy(i+ l)+ax2 Qx(i+2)_ay2Qy(i+2) (1)

where M, Q.; and Q, are respectively the bending moment and D’Alembert forces in x and
y directions and e, a,; and a,; are rotation and displacements in x and y directions at node
i. The displacement components ¢, a,; and a,; are functions of coordinates at node i measured
from any arbitrarily located origin.

Collecting the resulting k-3 equations leads to

[E] My=[4'] {0} @)
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Fig. 2 A virtual displacement configuration for a three element segment
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Fig. 3 Free body diagrams of (a) the entire arch, (b) the first element and (c) the i element

The D’'Alembert force vector {Q} is the vector of the resultants of the applied loads, the inertia
forces and the damping resistance of the form

{0} = {p}—[mit} — [} 3)

in which {p} is the load vector, {u} the displacement component vector, [m] the mass matrix
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and [c] the damping matrix, superdot denoting differentiation with respect to time.
Considering the free body diagrams of the whole arch shown in Fig 3a,

Ry L=(M,—M))+ Z [0, —x)— Qui—))] 4)

Equilibrium of moment about & in Fig. 3b gives

R()L Ml_Mz

e 5
! Ll Sln(l//l + l//()) L1 tan( Wi + W()) ( )
Free body diagram of element i provides
- SIn(W— Yiry) .
M+1_MCOS[V/1— l,l/i+|]_[Mi+1_M:| L L - F Qi+ 1COSY+ 1 — Qv 1 SINY 4 (6)

Substituting Eq. (4) in Eq. (5) and assembling equilibrium equations of all (k-1) elements gi-
ves

{Nt=—[G1 {M}+[H] {0} )

in which [G] and [H] are functions of geometry of the structure and {N} the axial force vector.
Substituting Eq. (3) in Egs. (2) and (7) results in, respectively

{aHal+[C1 {a}+(E] M} =D} | ®)

and
[4,] i)+ L] fid+ LG M+ V)= {g) ©)
where
(A]=[4"][m] (10)
([Cl=[A4"][c] (11)
{D}=[4"][p] (12)
(4,]=[H] [m] (13)
[C)=[H][c] (14)
Lg]1=[H][p] (15)

4. Compatibility and displacement components

Compatibility conditions and displacement components are established through the conjugate
segment analogy presented by Lee (1958) and generalized by Hjelmstad (1986). The constitutive
relationship is taken into account in the formulation. A conjugate segment can be constructed
such that it is identical with the actual structure but subjected to conjugate load and supported
by conjugate shear forces and end moments. With the sign convention depicted in Fig. 4, it
can be shown that the conjugate shear forces and concentrated loads are analogous to rotation
in the actual segment, the conjugate distributed loads to the curvatures and the conjugate bending
moments to the actual displacement components, and that the three compatibility equations
for the actual segment can be derived through the application of the three independent equilibrium
equations to the conjugate segment.
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Equilibrium of forces on the conjugate segments depicted in Figs. 5(a) and 5(b) gives
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Fig. 4 Conjugate analogy (a) actions on actual structures, (b) displacement components, (c) conjugate
segment for displacement v and (d) conjugate segment for displacement u
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Fig. 5 Conjugate segments of the entire arch
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k k=1 X
L [_E,.,a. oo "

k k-1 Y
t A Z[ Ed) ]N':O (18)

in which 5—3~EL7’ when i=1, 2, -, k-1; £=&=0; &, and §, are dislocation components
of node i in x and y directions respectively; X; and Y; are the projections of the length of element
i, L, n x and y directions respectively.

Egs. (16)(18) can be written in collective form as
[K,] {o+ (K] MY+ K] {81+ [Ky} {N}= {0} (19)

where {¢} is the actual or plastic hinge rotation vector, {8} the dislocation vector, [K,], [Ky],
[Ks] and [Ky] are functions of geometry of the structure and the rigidity of the elements.

The bending moments in the conjugate segment represent the displacement components of
the actual structure. Considering the conjugate segments shown in Fig. 6, the displacement compo-
nents at node i/ of element i can be evaluated from

k
L et Z [(y, 1y, I_J’i)é—l"'(yj'i"%y}_yi)é]le
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Fig. 6 Conjugate segments for (a) displacement v and (b) displacement u
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which can be expressed collectively for all k& nodes as
{ul=[G,] {p}+[Gu] IM}+[Gs] {81+ Gy (N} 22)

in which [G(p], [Gyl, [Gs] and [Gy] are functions of geometry of the structure and the rigidity
of the elements.

5. Time marching scheme
Discrete time integration is carried out using Newmark-8 method (Newmark 1959). In the

present study, the method comprises essentially the time discrete equations of motion, Egs. (8)
and (9), which can be expressed respectively at (n+1)* time step as

(Z. M up s }+LE] M} =D, 1+ [Z2,] )= [CT 0,1} (23)
[Zh] {un+ 1} +[G] {Mn+ 1} = {Nn+1} = {qn+ 1} + I:Zh:] {xn} - [Ch] {Vn} (24)
where

b=+ ol +2| i @5
b=l + 191 {u,} (26)

1 A

__L v
(2,)= 50 U1+ [C)) 28)

t is the time step and f and y the parameters defining the time marching scheme. The acceleration
{u} and velocity {u} at the (n+1)y* time step are determined from

{fzn+l}:7}ra Lot} — bl (29)

{ifnﬂ}:{vn}"' tY{&n+l} (30)

Compatibility equations, Eq. (19) and displacement components, Eq. (22) are enforced at each
time step.

Equations of motion, Eqgs. (23), (24) and the time discrete form of compatibility equations,
Eqg. (19), supplemented by Eq. (22) constitute the discretized form of governing equations to
the problem.

6. Yield surface

The interaction diagram of each element, a typical of which is shown in Fig. 7, is adopted
as the yield surface for that element. The diagram is a convex surface of the form
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Fig. 7 A typical yield surface

SM N)=0 (1)

The materials behave elastically if /<0 or f=0 and f<0. Plastic flow occurs when f=0 and
f=0. The state of stress for which

S N)>0 (32)

is not permitted.

7. Actual and plastic hinges

If the structure is in the elastic regime and no actual hinge is present, all ¢ and & vanish
and M; and N,, the nodal bending moments and element axial forces are the unknown parameters
to be determined. If an actual hinge exists at node j, M; vanishes and ¢ the rotation at that
node becomes the unknown variable. When plastic hinge forms just on the right of node /,
the bending moment at that node and axial force in element / must satisfy the yield condi-
tion

JM,N)=0 (33)

and the associated flow rule

§—¢ tan A=0 (34
where tan A, is the slope of the outward normal to the yield surface at point (M, N).

The two extra unknowns, ¢ and & introduced by the formation of plastic hinge just on the
right of node / can be taken care of by the above two, Eqgs. (33) and (34). If the corresponding
yield point is at the corner of the yield surface, Eq. (34) is undefined but the values of M,
and N, at that point are available from the diagram. The supplementary variables, ¢ and &,
are the only two new unknowns.
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Fig. 8 Elasto-plastic phase change
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Fig. 9 Admissible strain rate vector at corner of yield surface

8. Transient phase changes

During the time marching process, the possibility of the phase change transitions, ie. from
elastic to plastic and vice versa is carefully monitored at each time step. If the results at the
(n+1)y" time step show that the state of stress is such that f(M, N)>0 which is impossible, the
marching process is backtracked to the n” time step and Egs. (33) and (34) enforced as marching
path on to the yield surface as illustrated schematically in Fig. 8. As plastic flow occurs, the
direction of the strain rate vector, {e}"="[¢ &] must satisfy the flow rule and is methodically
handled. The violation of the associated flow rule, Eq. (34), signals a plastic-elastic transition.
The marching is retreated by one step and the set of equations appropriate for elastic regime
is reactivated. However, the permanent deformations ¢ and & attained prior to the transition
must be frozen and considered in the subsequent time steps.

When the yield point is at or in the neighbourhood of the corner of the yield surface, the
monitoring of the stress path and the directon of the strain rate vector becomes more involved.
The position of the yield point must be carefully traced and the appropriate marching scheme
implemented accordingly. A special case arises when the yield point is at the corner where
M, and N, become the known quantities but Eq. (34) is undefined. In this case, the strain rate
vector must lie within the acute angle between or on the normal vectors to the two adjoining
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intersection of two

crease resulting from
yield planes

Fig. 10 A three dimensional stress space (a) yield surface and
(b) admissible strain rate vector at corner A

yield planes, {n;} and {n,} as shown in Fig. 9. Mathematically, it should be possible to exp-
ress

{;9}:/11 {’ll}""/lz {’12} 39)

such that, A, and A, are both nonnegative real numbers. Inability to satisfy Eq. (35) indicates
that the stress point starts to move away from the corner either along a yield plane (A4,=0
or A4,=0) or into the elastic domain (4;<0 and A,<0). The time marching scheme should be
adjusted accordingly.

A more complicated case arises when the plastic hinges form either at both sides of a node
or both ends of a member or combinations of both. Part of a typical three-dimensional stress
space resulting from the composition of the two yield surfaces for the first case is shown in
Fig. 10a. A similar yield surface in M-M,-N space may be employed for the second and that
of the multidimensional stress space for the combined case. As the yield point moves to the
intersected corner of several planes eg point 4 or B in Fig. 10a, the direction of the strain
rate vector is carefully traced and ensured to be on the surfaces of or within the polygonal
pyramid surrounded by the normal vectors to all the yield planes meeting at that juncture.
A typical admissible strain rate vector for point A of Fig. 10a is illustrated in Fig. 10b. If /
yield planes meet at the corner, it should be possible to show that

{:‘J}:/h {nl}‘*‘lz {n2}+"' /11{’11} (36)

while A; are all nonnegative real numbers. Violation of Eq. (36) implies the stress point moving
away from the corner either along a crease or on a yield plane or into the elastic regime. The
time marching scheme must be adjusted accordingly. Details on computational aspect of the
method implemented in the programme are given in Lee er al (1988b).
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Fig. 11 Example 1 (a) model of steel arch (b) linearly decaying impact load, P
(c) yield surface of each element and (d) material properties for finite element analysis
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Fig. 12 Time history of the bending moment at node 4

9. Numerical examples
9.1. Example 1

A steel arch fabricated from six pieces of 305X 165X40 kg/m Universal Beams as shown
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Fig. 13 Time history of the vertical deflection at node 4
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Fig. 14 Time histories of the bending moments at nodes 1 to 4

in Fig. 1la is analysed by the proposed method. The arch is subjected to a combination of
dead load of 10 kN at each node and a triangular decaying vertical impact load at node 4.
The variation and intensity of the impact load are illustrated in Fig. 11b. A lumped mass of
0.05 kN-sec¥/m is attached to each free node. An elastic-perfectly plastic moment-curvature relatio-
nship, the yield surface of which, is given in Fig. 1lc is assumed in the present study.

The results from the analysis are compared with the finite element solutions obtained from
the computer package “ANSYS”. In the latter analysis, the elasto-plastic 2D beam clement, STIF-
23 is used to model the stiffness of the member while the lumped mass is represented by the
general nodal mass element, STIF21. Material properties for the finite element analysis perfectly
equivalent to the adopted yield surface shown in Fig. 1lc are not available as perfectly plastic



Dynamic response of elasto-plastic planar arches 21

Table 1 Details of blast load, Example 2

Node No Arrival time End time Nodal forces at arrival time
(X103 sec) (X107%sec) Horizontal Vertical
P.(MN) P,(MN)
2 0 4 1.0 0.5
3 1 6 04 0.3
4 3 10 02 02
5 6 15 —0.1 0.1
6 10 30 -02 0.1

Axial force
{MN)

{000, 130}

= i if:«"fim (015, 020)
w i Bending moment
i (MN -m)
‘1-01 16 ] 2.5 l 25 15 Iw
[ et 1 o L -

(b)
Fig. 15 Example 2 (a) geometry of the arch and (b) yield surface of each element
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Fig. 16 Time history of lateral displacement at node 4

materials are not allowed in ANSYS and ii) elastic-perfectly plastic moment-curvature relationship
is achieved only when the stress distribution over the whole section becomes at once fully plastic.
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Fig. 17 Time history of bending moment at node 4

Closely equivalent material properties for the latter analysis adopted herein are given in Fig.
11d. The time step of 0.1 m sec is employed in both analyses.

Figs 12 and 13 show the time histories of the bending moment and the vertical deflection
at node 4 resulting from both the proposed and finite element analyses. The results are well
correlated. Minor differences in the variation of the bending moment especially at the earlier
stage are most likely due to the discrepancies in the models for the material properties adopted
in the two approaches as discussed earlier. The variation of bending moments at nodes 1 to
4 from the proposed analysis is shown in Fig. 14.

9.2. Example 2

The effects of axial deformation on the response of deep arches subject to dynamic loads
are studied in the present example. The arch shown in Fig. 15a is subject to the blast loads,
the details of which are given in Table 1. The flexural rigidity, EI, of each element is 17 MN-
m* while the lump mass at each node is 005 MN-sec’/m. The interaction diagram of each
element is given in Fig. 15b. Various values of EA4 of 100, 1,000 and 10,000 MN for each element
are considered.

The study based on a time step of 0.1 m.sec was carried out. The time histories of the horizontal
displacement and bending moment at node 4 are illustrated in Figs. 16 and 17. The results
show that the structures with less value of axial rigidity, E4, as expected deform larger than
the stiffer ones. The formers have to resist more of the applied loads through their bending
actions as demonstrated in Fig. 17.

10. Conclusions

The dynamic response of elasto-plastic planar arches is presented. The governing equations
are formulated based on the equations of motion and supplemented by the compatibility condi-
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tions established through the conjugate segment analogy. Since the bending moments at the
nodes and axial forces in the members are chosen as primary variables, the monitoring of
the stress path in and on the yield surface is direct, straight forward and more accurate. The
state of stress at each time step is closely monitored while the associated flow rule is observed
when plastic flow occurs. The time histories of the response of the arches are established using
Newmark-f time marching scheme. The results obtained from the proposed method as compared
with finite element solutions show reasonably good agreement. The structures with smaller values
of axial rigidity have larger deflection and carry more loads through the bending actions. Small
core storage and relatively very short computer time are required enabling the method to be
easily implemented on small computer which is now available in most engineering offices.
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