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Abstract. This paper presents an efficient version of Hilbert-Huang transform for nonlinear non-
stationary systems analyses. An ensemble empirical mode decomposition (EEMD) is introduced to
alleviate the problem of mode mixing between intrinsic mode functions (IMFs) decomposed by EMD. Yet
the problem has not been fully resolved when a signal of a similar scale resides in different IMF
components. Instead of using a trial and error method to select the “best” outcome generated by EEMD, a
hybrid algorithm based on EEMD and EMD is proposed for multi-mode signal processing. The developed
approach comprises the steps from a bandpass filter design for regrouping modes of the IMFs obtained
from EEMD, to the mode extraction using EMD, and to the assessment of each mode in the marginal
spectrum. A simulated two-mode signal is tested to demonstrate the efficiency and robustness of the
approach, showing average relative errors all equal to 1.46% for various noise levels added to the signal.
The developed approach is also applied to a real bridge structure, showing more reliable results than the
pure EMD. Discussions on the mode determination are offered to explain the connection between mode-
grouping form on the one hand, and mode-grouping performance on the other. 
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1. Introduction

Hilbert-Huang transform (HHT), i.e., empirical mode decomposition (EMD) and the Hilbert

transform (Huang et al. 1998, Huang et al. 2003), has received a wide variety of attention and

application in many fields. Applying EMD to the signal will produce intrinsic mode functions

(IMFs), each represents a physical meaning for the system. Then applying the Hilbert transform to

convert the IMFs into the frequency domain in a time-frequency-amplitude display makes the HHT

sophisticated and versatile. 

However, one of the major drawbacks of the EMD is the frequent appearance of mode mixing,

which is defined as a single IMF either consisting of signals of widely disparate scales, or a signal

of a similar scale residing in different IMF components (Wu and Huang 2009). When the problem

of mode mixing occurs, an IMF can cease to have a physical meaning by itself, suggesting falsely

that there may be different physical processes represented in a mode (Wu and Huang 2009, Lei and

Zuo 2009). This mode mixing was initially avoided by an “intermittency” test (Huang et al. 1999),
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in which a criterion based on the period length was introduced to separate the waves of different

periods into different modes. The criterion was set as the upper limit of the period that can be

included in any given IMF component, so that the intermittent small wave was separated from the

large waves. Xu et al. (2003) also used the intermittence check to avoid mode mixing for the modal

identification of Di Wang Building. This intermittence check could be accomplished by specifying a

cutoff frequency for each IMF during its sifting process, where data with frequencies lower than the

cutoff frequency would be removed from the resulting IMF, but such a check should be applied

with care due to its subjective condition added to the EMD sifting process. Later, Wu and Huang

(2009) proposed an ensemble EMD (EEMD) method to alleviate the mode mixing problem. The

EEMD defines the true IMF components as the mean of an ensemble of trials, each consisting of

the signal plus a white noise of finite amplitude. Although the new technology EEMD was

developed in recent years, it has been applied in various fields. 

For example, Li et al. (2008) used the EEMD based hybrid power load forecasting method to solve

the mode mixing problem frequently appearing in classical empirical mode decomposition and to

rectify the common-used load analyzing methods mostly relying on subjective experiences. Zhang et

al. (2008) extended the EEMD to crude oil price analysis. Yeh et al. (2008) proposed a

complementary ensemble empirical mode decomposition method (CEEMD) to solve the problems of

end effects and the phenomenon of intermittence. Chen et al. (2009) proposed that the pipeline flaw

magnetic flux leakage signal was extracted using the EEMD and the sparsity. Wu and Chung (2009)

investigated the feasibility of utilizing the hybrid method of EEMD and pure EMD to efficiently

decompose the complicated vibration signals of rotating machinery into a finite number of IMFs, so

that the fault characteristics of the misaligned shaft can be examined in the time-frequency Hilbert

spectrum as well as the marginal Hilbert spectrum. Zhou et al. (2009) utilized the EEMD to

adaptively reduce noise and remove background intensity from a two-dimensional fringe pattern.

Although the EEMD can alleviate the mode mixing problem, the problem has not been fully

resolved especially when a signal of a similar scale (frequency) resides in different IMF

components. Wu and Huang (2009) pointed out that the problem associated with the EEMD was

how to treat multi-mode distribution of the IMFs. As discussed by Gledhill (2003), the discrepancy

between a trial and its reference tended to show a bi-modal (if not multi-modal) distribution. The

true cause of the problem could be explained based on the studies of white noise using the EMD

(Flandrin et al. 2004, Wu and Huang 2004), in which the EMD was effectively a dyadic filter bank

showing some overlap in scales. Signals having a scale located in the overlapping region would

have finite probability appearing in two different modes. Lei and Zuo (2009) suggested selecting the

one generating the “best” result of EEMD after having tried noise levels (its standard deviation

values) in the range from 0 to 30% with a step size of 1%. However, such a “trial and error”

method requires a considerable amount of time to train the EEMD algorithm. On the other hand,

Wu and Huang (2009) suggested three alternative implementations of the sifting procedures to

alleviate its severity. The first alternative was to tune the noise level and used more trials to reduce

the RMS deviation. The second alternative was to sift a low but fixed number of times (e.g., 10

times) for obtaining each IMF components. The third alternative was to use rigorous check of the

each component against the definition, and divided the outcome into different groups according to

the total number of IMF generated. Furthermore, the first and second alternatives had been tried and

the consequences showed that none could avoid the multi-mode problem totally. The true solution

might have to combine the multi-mode into a single mode, and sifted it again to produce a proper

single IMF (Wu and Huang 2009).
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Based on these arguments, this study aims to (1) assess the performance of EEMD by an

orthogonality check on each resulting IMF, and (2) compare the grouping efficiency of IMFs

generated by EEMD with that of the bandpass-EMD based approach (Lin 2010) for the multi-mode

signal processing. First, a historical account of the development of EEMD is provided. Second, the

bandpass-EMD approach is applied to the combined IMFs generated by EEMD, so as to produce

proper IMFs for the mode determination. The proposed approach comprises the steps from a

bandpass filter design for regrouping modes of the new signal obtained from EEMD, to the mode

extraction using EMD, and to the accurate assessment of a single mode in the frequency spectrum.

Third, a simulated signal with two-modes is tested to demonstrate the efficiency of the proposed

approach. A linear sum of two cosine waves to form a two-mode signal possessing similar scales is

considered. To embark the EEMD process, various noise levels with a standard deviation of 0%,

5%, 10%, 20%, and 40% are added to the signal, respectively. The signal is then decomposed into a

variety of IMFs using EEMD, followed by combining the multi-mode into a single mode, and

sifting it again to produce proper IMFs one by one using the bandpass-EMD based approach, which

divides the outcome into different groups. The resulting evaluated frequencies of the two-mode

signal are compared with the real values. Application of the proposed approach to a real bridge

structure is also conducted. Finally, discussions on the determination of modes are offered to explain

the connection between mode-grouping form and type on the one hand, and mode-grouping

performance on the other. 

2. Methodology: a hybrid algorithm based on EEMD and EMD

Fig. 1 illustrates the hybrid algorithm based on EEMD and EMD (with the assistance of the

EMD/EEMD evaluation code by Wu and of the Hilbert spectrum evaluation code by Gabriel.Rilling

(at) ens-lyon.fr), which consists of (1) the EEMD to alleviate the mode mixing problem, (2) the

design of a bandpass filter to fully resolve the mode mixing problem, (3) the mode extraction using

EMD, and (4) the modal frequency estimation in the marginal spectrum. First, a historical account

of EEMD is provided. The EEMD is an improved version of EMD using an ensemble average of

IMFs decomposed by EMD. The EMD associated with the Hilbert transform comprises the Hilbert-

Huang transform (HHT) (Huang et al. 1998, Huang et al. 2003). 

2.1 Hilbert-Huang transform

The Hilbert transform for an arbitrary time series  can be defined by  as

(1)

which is the convolution of the signal  with 1/t, and the associated analytic signal  of 

is described by

(2)
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Fig. 1 The hybrid algorithm based on EEMD and EMD for multi-mode signal processing



A hybrid algorithm based on EEMD and EMD for multi-mode signal processing 817

By using these expressions, the time-frequency-amplitude relationship of the signal can be

adequately represented. Since the phase  is a function of time t, the frequency will be a

function of time by taking the derivative of  to yield the instantaneous frequency (Huang et al.

1998) as

(3)

The EMD method can decompose a signal into a collection of individual and almost

monocomponent signals called intrinsic mode functions (IMFs) (Huang et al. 1998). The EMD

process can be summarized as follows (Huang et al. 1999, Peng et al. 2005) 

(a) Initialize , and ;

(b) Extract the nth IMF (i.e., cn, ) by 

(1) Initialize , ;

(2) Connect all the local maxima of  by a cubic spline line as the upper envelope of

, and repeat the procedure for the local minima to produce the lower envelope;

(3) Calculate the local mean mnk of the upper and lower envelopes of ;

(4) Repeat the sifting up to k times, and designate ;

(5) If hnk is an IMF, set ; otherwise go to step (2) with ;

(c) Define  ( );

(d) If rn becomes a monotonic function, the EMD process is stopped; otherwise go to step (b)

with .

The EMD method is adopted to resolve the signal  into the final form as

(4)

where  ( ) are the IMFs and  is the residue of . The IMF is a mode

function characterizing: (1) in the whole data set, the number of extrema and the number of zero-

crossings must either equal or differ at most by one; and (2) at any point, the mean value of the

envelope defined by local maxima and the envelope defined by the local minima is zero (Huang et

al. 1999). An IMF represents a simple oscillatory mode embedded in the signal. With the simple

assumption that any signal consists of different simple IMFs, the EMD method is able to

decompose a signal into IMFs (Lei and Zuo 2009).

After employing the Hilbert transform on each IMF by using Eqs. (1)-(4), it is possible to express

the signal  (Huang et al. 1998) as

(5)

Using Eq. (5), one can represent the variable amplitude  on the time-frequency plane to

yield the Hilbert spectrum . Hence, the Hilbert transform with EMD is able to generate the

time-frequency-amplitude distribution to describe the signal . The Hilbert spectrum can be

integrated with respect to time to give the marginal spectrum as 

(6)
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The marginal spectrum provides a measure of total amplitude (or energy) contribution from each

frequency value (Huang et al. 1998).

2.2 Ensemble empirical mode decomposition

Because the IMFs of a signal derived from the EMD will often engender the mode mixing

problem for a relatively wide band signal, Wu and Huang (2009) proposed an EEMD to alleviate

this problem. The upper portion of Fig. 1 illustrates the flow chart of EEMD, described as follows

(Wu and Huang 2009, Lei and Zuo 2009):

(a) Add a white noise series to the targeted data. The added white noise is treated as the possible

random noise that would be encountered in the measurement process. Under such conditions, the

i-th “artificial” observation will be

(7)

in which  is the observational data,  is the true signal, and  is the noise. Thus, all

data are amalgamations of signal and noise. Although adding noise may result in smaller signal-to-

noise ratio, the added white noise will provide a relatively uniform reference scale distribution to

facilitate EMD; therefore, the low signal-noise ratio does not affect the decomposition method but

actually enhances it to avoid the mode mixing (Wu and Huang 2009).

(b) Utilize the EMD to decompose the signal with added white noise into N IMFs, 

( ), where  denotes the nth IMF of the ith trial, and N is the number of IMFs.

(c) Repeat step (a) and step (b) again and again, but with different white noise series each time.

(d) Obtain the (ensemble) means of corresponding IMFs of the decompositions as the final result.

The ensemble means yn of the M trials for each IMF is defined as

, (8)

where the mean yn ( ) of each of the N IMFs is calculated as the final IMF.

If the added noise amplitude is relatively small, it may not introduce the change of extrema that

the EMD relies on. By increasing the ensemble members, the effect of the added white noise can be

reduced to a negligibly small level. In general, an ensemble number of a few hundred will lead to a

very good result, and the remaining noise would cause less than a fraction of 1% of error if the

added noise has the amplitude that is a fraction of the standard deviation of the original data (Wu

and Huang 2009). In real-life applications, however, an appropriate noise level should be selected to

produce the best result of EEMD. For instance, Lei and Zuo (2009) tried various noise levels

ranging from 0 to 30% with a step size of 1%, and the noise level producing the best result was

selected.

2.3 Design of a bandpass-EMD filter

Although EEMD could alleviate the mode mixing problem, the EEMD appears to be less

effective when a signal contains two or more similar scales (frequencies). If the “best” result of

various trials generated by EEMD is not satisfactory, the following step can be adopted. The

criterion developed to check whether the EEMD outcomes are satisfactory or not relies on that the
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number of modes of  is equal to the number of the orthogonalization coefficient (Huang et al.

1998) between the signal  and its IMFs yn generated by EEMD being equal to 0.50 (round-off

value) while the remaining orthogonalization coefficients being equal to zero, as shown in Fig. 1.

The orthogonalization coefficient ranges from 0 to 0.5 and is defined as 

(9)

where  denotes the index of orthogonality between the two signals, Cf and Cg. 

If the criterion is satisfied, the overall signal processing procedure can be stopped. Otherwise, the

bandpass-EMD filtering approach (Lin 2010) should be followed and applied to the signal

containing combined IMFs generated by EEMD. The filtering approach comprises the steps from a

bandpass filter design for separating and regrouping modes of the IMFs obtained from EEMD, to

the mode extraction using EMD, and to the accurate assessment of a single mode in the frequency

spectrum. The bandpass filter is utilized to regroup and extract the modes of the signal containing

combined IMFs (i.e., ). The bandpass filter uses a cutoff frequency that corresponds in

amplitude to 10% of the peak value for the signal in the frequency spectrum (Etter 1993). There is

no transition band between the passband and the stopband for the designed filter, i.e., the cutoff

frequency equals the rejection frequency. The signal is only allowed oscillations between the cutoff

frequencies, and amplitudes in other intervals are set to zero so as to filter out lower and higher

portions of the signal arising from measurement errors (Lin 2010). 

After the signal is undergone the bandpass filter, the wide band signal to be processed is

regrouped into a series of narrow band signals, each representing one mode. Each mode is further

processed using the orthogonalization coefficient, Eq. (9), to select a most appropriate IMF among

the IMFs obtained from the EMD of the signal’s mode. The IMF possessing the highest

orthogonalization coefficient between the signal’s mode and its IMFs (usually equal to 0.50 round-

off value) is selected to represent the modal signal. Each IMF that represents a modal signal can be

obtained sequentially according to the number of modes of .

3. Numerical examples and analyses

3.1 Evaluation of a two-mode signal

A simulated signal with two-modes is tested to demonstrate the efficiency of the proposed

approach. A linear sum of two cosine waves (Huang et al. 1998) to form a two-mode signal

containing similar scales is considered and described in Eq. (10) over t from 1-512 s, with the time

interval ∆t = 0.1 s. The real frequency values are 1/34 (0.02941) Hz and 1/30 (0.03333) Hz.

(10)

In order to understand the impact of noise on the EEMD outcome, the noise level with a standard

deviation of 0%, 5%, 10%, 20%, and 40% is added to the signal, respectively. It is noted that

adding 0% noise level to the signal to undergo the EEMD process is equivalent to the signal to

directly undergo the EMD process. The upper left portion of Fig. 2 shows the time history of the

original signal. The signal is decomposed into IMFs using EEMD, followed by combining the
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Fig. 2 The outcomes, including the Hilbert spectra and marginal spectra, of EEMD for the cases of 0% (left
portion) and 20% (right portion) noise levels, respectively (× indicate the real modal frequencies)
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multi-mode into a single mode, and sifting it again to produce a proper single IMF as a mode using

the bandpass-EMD based algorithm, which divides the outcome into different groups to find modes

one by one. The estimated frequencies of the two-mode signal are compared with the real values.

First, the EEMD is applied to the two-mode signal to result in a variety of IMFs that are the

ensemble means of 500 trials of EMD. Fig. 3 shows the decomposed IMFs using EEMD: the left

and right portions are for the signal with 0% and 20% noise level, respectively. Table 1 lists the

orthogonalization coefficients between the signal and the decomposed IMFs using EEMD with 0%,

5%, 10%, 20%, and 40% noise levels, respectively. The number of “distinguished” orthogonalization

coefficients (in bold) in each noise level (except for the 0% noise level which refers to the EMD

procedure) is two, implying that the possible mode number is two. This mode number determination

is clarified and discussed in the next section.

Fig. 2 shows the outcomes, including the Hilbert spectra and marginal spectra, of EEMD for the

cases of 0% and 20% noise levels, respectively. In particular, the upper right portion of Fig. 2

shows the Fourier spectrum of the original signal, suggesting that two modes exist in the original

signal. Hilbert spectra also suggest that two modes exist in the signal, but the spectrum becomes

noisier when the 20% noise level is added. However, the marginal spectra appear to have one

Fig. 3 The decomposed IMFs using EEMD: the left and right portions are for the signal with 0% and 20%
noise levels, respectively
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“averaged” peak of distribution, suggesting only one mode existing in the original signal. Although

there are two peaks for the case of 20% noise level, suggesting two modes existing in the original

signal, the smaller peak value is negligible and in fact only one mode can be identified. Hence, the

mode mixing problem has not been fully resolved using EEMD when a signal contains similar

scales or a signal of a similar scale (frequency) resides in different IMF components, as shown in

Fig. 3. 

Although it might happen to select the one with the noise level generating the “best” result of

EEMD (Lei and Zuo 2009) through a rigorous check of the orthogonalization coefficient described

in section 2.3, the chance is relatively small. The true solution might have to combine the multi-

mode into a single mode, and sifted it again to produce a proper single IMF (Wu and Huang 2009).

Thus, the IMFs generated by EEMD have been regrouped. Fig. 4 shows the Hilbert spectra and

marginal spectra of the signal containing combined all IMFs generated by EEMD with 20% noise

level (left portion) and the correspondingly filtered signal after the bandpass-EMD filter (right

portion), respectively. Fig. 5 shows the decomposed IMFs of the signal containing combined all

IMFs, which is different from the one in Fig. 3. However, the condition that a signal of a similar

scale (frequency) resides in different IMF components has not yet improved. Such a mode mixing

condition also reflects on the orthogonalization coefficients between the signal containing combined

all IMFs generated by EEMD with 0%, 5%, 10%, 20%, and 40% noise levels, respectively, and the

decomposed IMFs, as listed in Table 2. 

The problem of mode mixing is not yet resolved until the bandpass-EMD filter is adopted. The

bandwidth (0.0098 Hz for mode 1 and 0.0037 Hz for mode 2) of the bandpass filter is very small

compared to the sampling frequency (1/∆t = 10 Hz), indicating that the filter is a narrowband design
for extracting modes of the signal. Such a narrow bandwidth is automatically determined and is

dependent on the input signal and the cutoff frequency design. Table 3 presents the

orthogonalization coefficients between the signal undergone the bandpass-EMD filter after

combining all IMFs generated by EEMD with 0%, 5%, 10%, 20%, and 40% noise levels,

Table 1 Orthogonalization coefficients between the signal and the decomposed IMFs using EEMD with 0%,
5%, 10%, 20%, and 40% noise levels, respectively

 0% Noise 5% Noise 10% Noise 20% Noise 40% Noise

Self 0.5 0.5 0.5 0.5 0.5

IMF1 0.4995 0.0000 0.0000 0.0000 0.0000 

IMF2 0.0046 0.0000 0.0000 0.0001 0.0001 

IMF3 -0.0009 0.0000 0.0000 0.0000 0.0001 

IMF4 -0.0004 0.2589 0.0136 0.0000 0.0000 

IMF5 -0.0002 0.4511 0.4919 0.4334 0.1179 

IMF6 0.0000 0.0077 0.0605 0.3017 0.4859 

IMF7 0.0000 -0.0001 0.0045 0.0068 0.0200 

IMF8 0.0000 -0.0004 -0.0004 -0.0010 0.0024 

IMF9 0.0000 0.0000 0.0000 -0.0003 0.0004 

IMF10 0.0000 0.0000 0.0000 0.0000 0.0002 

IMF11 0.0000 0.0000 0.0000 0.0000 0.0000 

Residual -0.0002 -0.0003 -0.0004 -0.0001 0.0006 
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Fig. 4 The Hilbert spectra and marginal spectra of the signal containing combined all IMFs generated by
EEMD with 20% noise level (left portion) and the correspondingly filtered signal after the bandpass-
EMD filter (right portion), respectively (× indicate the real modal frequencies)
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respectively, and the decomposed IMFs, for mode 1 and mode 2 evaluation. The bandpass-EMD

filter has successfully solved the mode mixing problem to produce two distinguished modes, with

the orthogonalization coefficients of the selected IMF1 equal to 0.4995 and 0.5000 (highest value)

for mode 1 and mode 2, respectively, as listed in Table 3, thereby indicating that IMF1 best

represents the modal signal.

The effectiveness of the bandpass-EMD filter can be illustrated by comparing the 3 Hilbert

spectra obtained: (1) from the signal containing combined all IMFs generated by EEMD with 20%

noise level to result in the Hilbert spectrum (middle left of Fig. 4), (2) and the correspondingly

filtered signal after the bandpass-EMD filter to result in the two Hilbert spectra of mode 1 (upper

Fig. 5 The decomposed IMFs of the signal containing combined all IMFs generated by EEMD with 20%
noise level
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Table 2 Orthogonalization coefficients between the signal containing combined all IMFs generated by EEMD
with 0%, 5%, 10%, 20%, and 40% noise levels, respectively, and the decomposed IMFs

0% Noise 5% Noise 10% Noise 20% Noise 40% Noise

Self 0.5 0.5 0.5 0.5 0.5

IMF1 0.4995 0.0000 0.0000 0.0000 0.0003 

IMF2 0.0046 0.0036 0.0000 0.0000 0.0001 

IMF3 -0.0009 0.4916 0.3430 0.0630 0.0000 

IMF4 -0.0004 0.0304 0.1140 0.4885 0.4890 

IMF5 -0.0002 -0.0083 -0.0190 0.0186 0.0048 

IMF6 0.0000 -0.0073 -0.0037 -0.0083 0.0248 

IMF7 0.0000 -0.0030 -0.0010 -0.0030 -0.0021 

IMF8 0.0000 0.0000 0.0000 -0.0005 -0.0017 

IMF9 0.0000 -0.0013 0.0000 0.0000 0.0000 

IMF10 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF11 0.0000 -0.0006 0.0000 -0.0001 0.0000 

Residual -0.0002 -0.0026 -0.0008 -0.0010 -0.0023 

Fig. 6 The decomposed IMFs of mode 1 (left portion) and mode 2 (right portion), respectively, for the signal
undergone the bandpass-EMD filter after combining all IMFs generated by EEMD with 20% noise
level
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right of Fig. 4) and mode 2 (middle right of Fig. 4). Either the outcome of the original signal using

EEMD (middle right of Fig. 2) or the outcome of the signal containing combined all IMFs

generated by EEMD (middle left of Fig. 4) appears to be contaminated with noise and difficult to

determine the embedded two modes as shown in their corresponding marginal spectra. After the

bandpass-EMD filtering, the real modes can be identified in the marginal spectrum. Fig. 6 shows

the consequently decomposed IMFs (using EMD) of mode 1 (left portion) and mode 2 (right

portion), respectively, for the signal undergone the bandpass filter after combining all IMFs

generated by EEMD with 20% noise level. The IMF1 is selected for both modes when checking its

orthogonalization coefficient as listed in Table 3 and shown in Fig. 6. Such a selected IMF

Table 3 Orthogonalization coefficients between the signal undergone the bandpass-EMD filter after combining
all IMFs generated by EEMD with 0%, 5%, 10%, 20%, and 40% noise levels, respectively, and the
decomposed IMFs, for mode 1 and mode 2 evaluation

Mode 1 0% Noise 5% Noise 10% Noise 20% Noise 40% Noise

Self 0.5 0.5 0.5 0.5 0.5

IMF1 0.4995 0.4995 0.4995 0.4995 0.4995 

IMF2 0.0002 0.0002 0.0002 0.0002 0.0002 

IMF3 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 

IMF4 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 

IMF5 0.0000 0.0000 0.0000 0.0000 -0.0006 

IMF6 -0.0006 0.0000 0.0000 -0.0006 -0.0003 

IMF7 0.0000 -0.0006 0.0000 -0.0003 -0.0001 

IMF8 0.0000 0.0000 0.0000 0.0000 -0.0001 

IMF9 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF10 0.0000 0.0000 -0.0006 -0.0001 0.0000 

IMF11 0.0000 -0.0003 0.0000 -0.0001 0.0000 

Residual -0.0012 -0.0009 -0.0012 -0.0007 -0.0007 

Mode 2 0% Noise 5% Noise 10% Noise 20% Noise 40% Noise

Self 0.5 0.5 0.5 0.5 0.5

IMF1 0.5000 0.5000 0.5000 0.5000 0.5000 

IMF2 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF3 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF4 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF5 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF6 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF7 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF8 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF9 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF10 0.0000 0.0000 0.0000 0.0000 0.0000 

IMF11 0.0000 0.0000 0.0000 0.0000 0.0000 

Residual 0.0000 0.0000 0.0000 0.0000 0.0000 
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represents a simple oscillatory mode embedded in the signal (Huang et al. 1999, Lei and Zuo 2009).

Table 4 lists the final estimated frequencies of the two-mode signal using FFT for the original

signal, EEMD for the original signal, EMD for the signal containing combined all IMFs generated

by EEMD, and bandpass-EMD for the signal containing combined all IMFs generated by EEMD,

respectively. Obviously, the bandpass-EMD has solved the mode mixing problem. In fact, directly

applying EEMD or EMD will produce one “averaged” modal frequency with a higher average

relative error of either 6.05% or 6.25%, when compared to that of 1.46% and 1.47% using the

bandpass-EMD and FFT, respectively. Regardless of the signal with 0%, 5%, 10%, 20%, or 40%

noise level, the bandpass-EMD algorithm is able to achieve accurate and stable results in modal

frequency estimation, which is characteristic of a robust filter.

3.2 Evaluation of a real bridge structure

The proposed approach is also applied to a real bridge structure (e.g., Mao-Luo-Hsi Bridge in

Table 4 Estimated frequencies of the two-mode signal using FFT for the original signal, EEMD for the
original signal, EMD for combined all IMFs generated by EEMD, and bandpass-EMD for combined
all IMFs generated by EEMD, respectively

Noise

Frequency (Hz) Relative Error Average
Relative ErrorMode 1 Mode 2 Mode 1 Mode 2

Real 0.02941 0.03333 

0%

FFT 0.02930 0.03419 0.37% 2.56% 1.47%

EEMD 0.03125 0.03125 6.25% 6.25% 6.25%

EMD 0.03125 0.03125 6.25% 6.25% 6.25%

Bandpass-EMD 0.02930 0.03418 0.39% 2.54% 1.46%

5%

FFT 0.02930 0.03419 0.37% 2.56% 1.47%

EEMD 0.03027 0.03027 2.93% 9.18% 6.05%

EMD 0.03125 0.03125 6.25% 6.25% 6.25%

Bandpass-EMD 0.02930 0.03418 0.39% 2.54% 1.46%

10%

FFT 0.02930 0.03419 0.37% 2.56% 1.47%

EEMD 0.03125 0.03125 6.25% 6.25% 6.25%

EMD 0.03027 0.03027 2.93% 9.18% 6.05%

Bandpass-EMD 0.02930 0.03418 0.39% 2.54% 1.46%

20%

FFT 0.02930 0.03419 0.37% 2.56% 1.47%

EEMD 0.03027 0.03027 2.93% 9.18% 6.05%

EMD 0.03125 0.03125 6.25% 6.25% 6.25%

Bandpass-EMD 0.02930 0.03418 0.39% 2.54% 1.46%

40%

FFT 0.02930 0.03419 0.37% 2.56% 1.47%

EEMD 0.03125 0.03125 6.25% 6.25% 6.25%

EMD 0.00195 0.00195 93.36% 94.14% 93.75%

Bandpass-EMD 0.02930 0.03418 0.39% 2.54% 1.46%
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Nantou county of Taiwan) to evaluate the principal frequency of the bridge in the longitudinal

direction. Three sections of the bridge deck (Fig. 7) are chosen and subjected to ambient vibrations,

with the sampling time interval ∆t = 0.005 s. As the ambient vibration test is easily influenced by

Fig. 7 Location of ambient vibration test on Mao-Luo-Hsi Bridge

Fig. 8 Marginal spectrum vs. Fourier spectrum of Mao-Luo-Hsi Bridge (from top to bottom refers to the
indicated section 1, section 2, and section 3 of the bridge, respectively) 
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the surrounding environment resulting from a slight vibration force, the measured signals are

susceptible to interference, such as vehicles passing through during measurement, and thus

contaminated by noise. Hence, it is beneficial to directly adopt the bandpass-EMD approach to

preprocess the contaminated signals by the bandpass filter, followed by the mode extraction using

EMD and evaluation of the mode in the marginal spectrum. It is noted that the EEMD process is

omitted in this case since the optimal noise level producing the best outcomes of EEMD is usually

not available and requires a considerable amount of time to properly train the algorithm. 

Fig. 8 shows the marginal spectrum vs. Fourier spectrum of Mao-Luo-Hsi Bridge (from top to

bottom refers to the indicated section 1, section 2, and section 3 of the bridge, respectively). It is

clear to see that there are a few local peaks in amplitude representing possible modes in each

frequency spectrum. However, these local peaks can be attributed to vehicles passing through during

measurement, and thus only the global peak is selected to represent its principal frequency. Table 5

lists the estimated principal frequencies of Mao-Luo-Hsi Bridge in sections 1-3 using the FFT,

EMD, and bandpass-EMD, respectively. The results of the bandpass-EMD are quite close to those

of FFT while the outcomes of the pure EMD demonstrate some deviations, implying that the

bandpass-EMD approach is able to acquire more reliable results than the pure EMD. 

4. Discussions on the determination of mode number

The bandpass filter for the signal in Eq. (10) is designed to allow two zones of oscillations (pass-

bands), as the signal contains two remarkable peaks in the frequency spectrum. The Fourier

spectrum of the original signal in Fig. 2 tells that there are two peaks, indicating two modes for the

two-mode signal that represents a stationary system. Hence, the Fourier spectrum components can

assist in determining the mode number for a stationary process. For non-stationary systems, the

local spectrum components are not corresponding to the true frequencies. In such cases, a criterion

to determine the possible number of modes for the signal of interest is developed that springs from

the works by Peng et al. (2005) and Bao et al. (2009), who presented a selection criterion for IMFs

decomposed from the signal based on the correlation coefficient, µn ( ; N is the

number of IMFs), between each IMF and the signal to be processed. A threshold ρ is defined as

, (11)

where η is a factor lager than 1.0 and is usually decided empirically. The criterion is to keep the nth

IMF as the mode if , while eliminate the remaining IMFs. By using the η equal to 10 (Peng

et al. 2005) and substituting the correlation coefficient with the orthogonalization coefficient used in

this study, Eq. (11) becomes

n 1 2 … N, , ,=

ρ
max µn( )

η
--------------------= n 1 2 … N, , ,=

µn ρ≥

Table 5 Estimated principal frequencies of Mao-Luo-Hsi Bridge in sections 1-3 using FFT, EMD, and
bandpass-EMD, respectively 

Section 1 Section 2 Section 3

FFT 2.0269 3.2479 2.3443 

EMD 7.9038 1.0934 5.9981 

Bandpass-EMD 2.0306 3.4364 2.3118 
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, (12)

The IMFs decomposed using EEMD tells that there are two “distinguished” modes available for

the cases of the signal adding 5%, 10%, 20%, and 40% noise levels as listed in Table 1 (in bold).

However, such results for determining the mode number cannot be confirmed in each of their

corresponding marginal spectra, only showing one “averaged” mode, as shown in Fig. 2 for the case

of 20% noise level for instance. This condition cannot be improved until the bandpass-EMD filter is

adopted to extract the true modes of the signal.

5. Conclusions

A hybrid algorithm based on EEMD and bandpass-EMD has been developed to interpret the

possibility of multi-mode distribution of the IMFs decomposed using EEMD. A simulated signal

with two-modes is tested to demonstrate the efficiency of the hybrid algorithm. The noise level with

a standard deviation of 0%, 5%, 10%, 20%, and 40% relative to the original signal is first added to

the signal, respectively. The signal is then decomposed into IMFs using the EEMD, followed by

combining the multi-mode into a single mode, and sifting it again to produce proper IMFs, each

representing a mode using the bandpass-EMD filter that divides the outcome of EEMD into

different groups for mode evaluation. The estimated frequencies of the two-mode signal are

compared with the real values. Comparisons of the estimated frequencies are made between the

algorithms using (1) FFT for the original signal, (2) EEMD for the original signal, (3) EMD for the

signal containing combined all IMFs generated by EEMD, and (4) bandpass-EMD for the signal

containing combined all IMFs generated by EEMD, respectively. It has proven that the bandpass-

EMD filter is capable of solving the mode mixing problem: directly applying EEMD or EMD will

produce one “averaged” modal frequency with a higher average relative error of either 6.05% or

6.25%, when compared to that of 1.46% and 1.47% using the bandpass-EMD and FFT, respectively.

Regardless of the noise level added to the signal, the bandpass-EMD algorithm is able to achieve

accurate and stable results in modal frequency estimation, which is characteristic of a robust filter.

The bandpass-EMD filter has also demonstrated the grouping efficiency for the combined IMFs

generated by EEMD and for the signal when the EMD is directly adopted, and thereby the

efficiency of mode determination for multi-mode signals. On the other hand, the EEMD algorithm

cannot reach satisfactory results until the “best” one is selected after several trials of noise levels

have been conducted. Discussions on the determination of modes, for both stationary and non-

stationary systems, are offered to explain the connection between mode-grouping form and type on

the one hand, and mode-grouping performance on the other. Furthermore, a real bridge structure

subjected to ambient vibrations whose responses are easily contaminated with noise is tested to

verify the efficiency of the bandpass-EMD algorithm, showing its ability to acquire more reliable

results than the pure EMD. 
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