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Abstract. The present paper deals with the identification of a concentrated damage in an elastic
parabolic arch through the minimization of an objective function which measures the differences between
numerical and experimental values of static displacements. The damage consists in a notch that reduces
the height of the cross section at a given abscissa and therefore causes a variation in the flexural stiffness
of the structure. The analytical values of static displacements due to applied loads are calculated by means
of the principle of virtual work for both the undamaged and damaged arch. First, pseudo-experimental
data are used to study the inverse problem and investigate whether a unique solution can occur or not.
Various damage intensities are considered to assess the reliability of the identification procedure. Then, the
identification procedure is applied to an experimental case, where displacements are measured on a
prototype arch. The identified values of damage parameters, i.e., location and intensity, are compared to
those obtained by means of a dynamic identification technique performed on the same structure.
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1. Introduction

 

The analysis of the integrity of structures and their health monitoring has been worthy of great

interest in the last few decades and has produced many studies. The presence of damage can be

detected by means of conventional methods such as simple visual inspection, radiography, thermal

analysis, ultrasonic testing, which in any case require knowledge of the damaged zone location and

its direct access. These methods are impractical when the damage search involves the whole

structure. Other techniques allow to detect the presence of damage and, in some cases, detect its

location and intensity by means of non destructive tests. These techniques are based on the analysis

of both static or dynamic variations of responses of damaged structures with respect to the

correspondent undamaged ones. In fact, damage implies a loss of structural stiffness and therefore

may strongly modify the behaviour of the structure. Different techniques have been presented in the

literature; these are based on the variation of dynamic characteristics, such as natural frequencies,

mode shapes, dynamic flexibilities, or static quantities, such as displacement induced by applied
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loads. Two recent review papers (Farrar and Worden 2007, Friswell 2007) contain a rich and up-to

date bibliography.

Response measurements obtained by performing non destructive load tests, hence, represent

crucial data for damage identification. The use of experimental data for damage detection leads to a

class of inverse problems which are often ill-conditioned and sometimes undetermined. Dynamic

load tests provide, in general, a large amount of information and a wide range of research, reported

in the literature, has been devoted to the study of dynamic identification procedures. Although less

numerous, in the literature there are studies proposing identification procedures based on

measurements by static tests which are easily executable and provide additional information to the

dynamic identification without any introduction of uncertainties due to masses and damping ratios.

(Sanayei and Onipede 1991, Banan et al. 1994, Sanayei and Saletnik 1996, Sanayei et al. 1997,

Hjelmstadt and Shin 1997, Oh and Jung 1998, Tseng 2000, Wang et al. 2001, Di Paola and Bilello

2004, Caddemi and Morassi 2005, Bakhtiari-Nejad et al. 2005, Caddemi and Greco 2006, Shenton

and Hu 2006, Buda and Caddemi 2007, Caddemi and Morassi 2007, Rucka and Wilde 2006). 

The way in which damage influences the behaviour of structural members has been mainly

studied with reference to straight beams rather than curved bars. To the authors’ knowledge,

research literature regarding experimental studies on damaged parabolic arches is quite modest.

Some contributions are those by Cerri and Ruta (2004), Viola et al. (2005), Pau et al. (2011).

A very sensitive aspect in damage identification techniques is the difficulty of damage modelling.

In many studies damage is represented by one or more fully open cracks along the axis of the

beam. In this instance, the concentrated damage may be modelled by a reduction in the rigidity of

the beam at the correspondent abscissae described by means of a rotational spring (Ostachowicz and

Krawczuk 1991). Elsewhere a weaker element in a FEM code is introduced while others present

one dimensional continuum theories (Christides and Barr 1984, Chondros and Dimarogonas 1998).

In this paper, a parabolic arch, in which a notch reduces the height of the cross section at a given

abscissa, has been studied in its undamaged and damaged states. The damage has been modelled by

means of a rotational spring of suitable rigidity (Cerri and Vestroni 2004). No crack closure

phenomenon is considered, hence linear behaviour of the damaged beam is assumed; however, no

restriction concerning the damage intensity is introduced. In the study of the direct problem

analytical vertical displacements of the undamaged and the damaged arch under concentrated loads

have been obtained by means of the principle of virtual work.

The inverse problem has been studied for both the undamaged and damaged arch. In the former,

the Young’s modulus of the elastic material is identified, thus allowing a reliable updating of the

analytical model. For the damaged arch, the parameters assumed as characteristics of the damage,

i.e. location and intensity, are identified. Both inverse problems are solved by minimizing an

objective function which measures the differences between analytical and measured vertical

displacements at given abscissae. In order to test the reliability of the proposed procedure, the

analyses have been firstly carried out using pseudo-experimental data. The same inverse problems

are then solved by using experimental data obtained from static tests on a prototype model of the

considered arch.

The performance of the proposed procedure for the identification of damage parameters using

experimental data is compared to an analogous procedure based on the variation of natural

frequencies of the undamaged and damaged arch already applied to a similar arch by the authors

themselves in a previous paper (Pau et al. 2011).
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2. Model of the undamaged and damaged arch

A plane linear elastic double hinged parabolic arch with the following centreline equation is

considered

(1)

where f = 200 mm is the mid-span height and L = 1000 mm the horizontal length of the arch, as

shown in Fig. 1. The cross section is rectangular having width b = 40 mm and height h = 8 mm.

The values of the Young’s modulus E, Poisson ratio ν and mass density m are listed in the same

figure, which also reports the Cartesian reference system used in the following analytical

developments.

As it is well known, in structures with curved centre line, the radius of curvature r(x) =

 modifies the distribution of axial stresses in each cross section with respect to

the case of the straight beam and therefore the bending curvature under the hypothesis of linear

elastic behaviour is (Baldacci 1970)

(3)

 

where M(x) and N(x) are respectively the bending moment and the axial force in the arch. For a

generic shape of the cross section of area A and principal axis ξ and η, the reduced moment of

inertia of the cross section with respect to ξ axis, Jr is given by 

 

 (4)

 

As it can be seen from Eq. (4), the reduced moment of inertia Jr for , coincides with the

ordinary moment of inertia with respect to ξ axis (Baldacci 1970). For the considered arch, the

reduced moment of inertia Jr results almost constant in the range 0 ≤ x ≤ L and equals the ordinary

moment of inertia Iu = bh3/12 = 1706.67 mm4; therefore, Jr and Iu are assumed to be coincident in

the following calculations.

With regard to the shear deformability (Baldacci 1970), an approximate treatment of the problem

shows that in a rectangular section, the shear deformability of a curved beam equals the shear

deformability of a straight beam when h/r(x) < 0.2. In the present case, the mentioned ratio assumes

the maximum value in the middle of the arch and is h/r(L/2) = 0.013<<0.2, then the shear

deformability of the arch can be considered equal to that of a straight beam. In a simply supported

slender arch, the case considered here, the shear deformability provides an increment in transverse

displacements of 0.01%, that is hence considered negligible. However, in general, in thick curved
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Fig. 1 Geometrical and mechanical characteristics of the arch
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beams the shear contribution cannot be neglected. A full treatment of the problem for non-circular

arches is presented, for instance, in (Lee et al. 2004).

Besides the undamaged model, the case in which a concentrated notch reduces the height of the

cross section has been considered. It has been assumed that the width of the notch is such that it is

possible to neglect the reduction in the total mass of the structure. The damage determines, at a

given abscissa, a reduction in flexural and axial rigidities. However, the authors have shown in a

previous paper (Greco and Pau 2008) that the reduction in axial rigidity for the examined structure

is negligible. Consequently, only a rotational spring equivalent to the notch is introduced to model

the damage. In the literature, many different models of the stiffness of the equivalent spring are

reported. Here, this stiffness is evaluated by means of the procedure proposed by (Cerri and

Vestroni 2004), briefly described hereafter. The notch causes a perturbation in the tension state in a

damaged zone, where length Ld is greater than the effective width of the notch itself. The relative

rotation φd between the sections delimiting the damaged zone can be written as φd = φu + ∆φ, where

φu is the rotation between the two limit sections in the undamaged case and ∆φ is the increase in

rotation due to damage. Then ∆φ = MLdβ/EIu(1 − β), β = (EIu − EId)/EIu, and EIu and EId are

respectively the flexural rigidities of the undamaged and damaged cross sections. Assuming that the

notch causes an exponential decay of the stiffness and requiring that the deformability of this beam

equals the deformability of a beam with a step variation of stiffness with length Ld, resulting in Ld =

h/2. In the case of localized damage, ∆φ = M/K, therefore, the nondimensional stiffness of an

equivalent spring k = K/(EIu/L) can be written as

(2)

 

The values of this nondimensional stiffness can vary from zero, i.e., EId = 0, which means that the

transverse section is fully damaged, to infinity, i.e., EIu = EId, which happens when no damage

occurs. 

3. Direct problem

The static response of the arch under a concentrated load has been analytically calculated by

means of the principle of virtual work and also measured in experimental tests. In particular, the

vertical displacements of the centre line of both the undamaged and damaged arch have been

evaluated in order to provide the data used in the solution of the inverse problem.

 

3.1 Vertical displacements of the undamaged arch under a concentrated load 

 

When the arch is subjected to a vertical concentrated load Q at the abscissa xQ, the horizontal

reactions of the hinges  of the present statically undetermined structure can be analytically

evaluated using the principle of virtual work and result

 (5)
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Vertical displacements of the arch centre line at the generic abscissa x*, whose origin coincides

with the origin of the Cartesian coordinate system illustrated in Fig. 1, are evaluated again by means

of the principle of virtual work. Denoting with v1(x
*) the displacements for x* ≤ xQ and with v2(x

*)

the displacements for x* ≥ xQ these turn out to be 

 

 

 (6)

 
where the bending moments, in the fictitiously balanced system are indicated by the superscript f

and those of the actual kinematically compatible system are denoted by the superscript s

;

;

 

and  is the trigonometric tangent of the angle between the geometric tangent to the centre line

and x axis. Fig. 2 shows vertical displacements for Q = 100 N, xQ = 362 mm and E = 2*105 N/mm2.

 

3.2 Vertical displacements of the damaged arch under concentrated loads 

 

In order to evaluate the vertical displacements of the cracked arch under a concentrated load, it is

necessary to distinguish the case in which the damage is located at an abscissa xd ≤ xQ or xd ≥ xQ,

respectively denoted as case (a) and (b) in Fig. 3. In each case, three different displacement

functions must be defined over regular domains that can be closed since congruence of vertical

displacements is required, as the shear deformation is neglected.

Case a) Denoting with va1 vertical displacements for 0 ≤ x* ≤ xd, va2 vertical displacements for

xd  ≤ x* ≤ xQ and va3 vertical displacements for xQ ≤ x* ≤ L these turn out to be
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Fig. 2 Vertical displacements of the undamaged arch under a concentrated load
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 (7)

Case b) Denoting with vb1 vertical displacements for 0 ≤ x* ≤ xQ, vb2 vertical displacements for

xQ ≤ x* ≤ xd and vb3 vertical displacements for xd ≤ x* ≤ L these turn out to be

 

 

(8)
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Fig. 3 Damaged arches 

Fig. 4 Vertical displacements of the damaged arch
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As expected, Eqs. (7) and (8) depend on both the damage parameters position xd and intensity kd.

Fig. 4 shows vertical displacements of the centre line of the arch for Q = 100 N, xQ = 362 mm, E =

2*105 N/mm2, kd = 30 and kd = 300.

 

4. Inverse problem

Some properties of the undamaged and damaged structure are identified using the vertical

displacements. In particular, the Young’s modulus of the elastic material is identified for the

undamaged arch, while for the damaged arch the damage parameters, i.e., position and intensity, are

evaluated. These inverse problems are both solved by minimizing a proper objective function. In the

present section, in order to test the reliability of the proposed procedure, the analyses have been

firstly carried out using pseudo-experimental data. The same inverse problems are then solved by

using experimental data obtained from static tests on a prototype model of the considered arch.

 

4.1 Identification of the Young’s modulus in the undamaged model 

With reference to the undamaged arch, the identification of the Young’s modulus of the material is

obtained minimizing the following objective function, which measures the differences between

analytical and measured vertical displacements at n chosen abscissae

(9)

In Eq. (9),  are discrete values of the deformed shape, which is a linear function of E.

Hence, no matter where the displacements are measured and even in the presence of errors, it can

be analytically shown that the minimum of this function is unique.

In the following analyses, four pseudo-experimental values of the vertical displacements vi
e due to

a load of 100N applied at the abscissa xQ = 362 mm are calculated for a nominal value of the

elasticity modulus E = 2*105 N/mm2 by means of Eq. (6). Choosing four evenly scattered abscissae

x1 = 128 mm, x2 = 376 mm, x3 = 594 mm, x4 = 847 mm, the values of the displacements turn out to

be  = −0.15 mm,  = −0.26 mm,  = 0.16 mm,  = 0.28 mm. Fig. 5 shows the corresponding
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Fig. 5 Objective function G(E) with experimental and pseudo-experimental data
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objective function, defined in Eq. (9), with a bold line. G(E) has a unique global minimum which is

equal to zero, in the absence of errors, and confirms the reliability of the proposed algorithm. The

abscissa of this global minimum provides the value of E which corresponds to the exact solution to

the inverse problem.

An experimental investigation was performed on a prototype arch in the Laboratory of the

Department of Structural and Geotechnical Engineering of La Sapienza University of Rome on the

structure of Fig. 6. The static tests were carried out according to the setup represented in Fig. 7. The

vertical displacements due to a load applied at the abscissa xQ = 362 mm were measured at four

points, whose abscissae are the mentioned x1, x2, x3, x4. The load was applied in steps and different

cycles were made increasing and decreasing the load; each cycle was repeated 10 times in order to

have statistical significance of the measurements. The values of the Young’s modulus of the

material identified using different values of the applied load showed an irrelevant coefficient of

variation, then in the following results, for the sake of brevity, only the data related to the

concentrated load of 100N are reported.

The mean values of the vertical displacements recorded in the four measurement points are

reported in Table 1 and provide the objective function reported in Fig. 5 with the thin line. The

shape of the objective function is close to the analytical one, however, the minimum is less sharp

because of the presence of errors and the value of the function at the minimum is greater than zero.

The value of the Young’s modulus which corresponds to the minimum of the objective function is E

Fig. 6 Experimental setup

Fig. 7 Static test setup
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= 196363 N/mm2. The identified value of Young’s modulus allows to update the model of the arch

and therefore will be used when detecting damage parameters.

4.2 Identification of damage parameters by means of pseudo-experimental data

Given a damaged configuration, the vertical displacement vi at a point xi is a function of both

damage position xd, and stiffness kd of the spring equivalent to the notch. Inversely, it is possible to

evaluate a continuous function kid(xd) that provides the stiffness that a spring located at xd should

have in order to provide a given displacement vi at xi. For each given value vi at a point xi, a

continuous curve kd(xd) can be plotted. The inverse problem of determining xd and kd, based on the

measurement of i displacements vi, can then be solved finding the intersection between at least two

curves. In the absence of errors, the coordinates of the intersection identify the correct values of xd

and kd. 

The minimum number i of curves kid(xd) necessary to identify two parameters is 2, however it can

be greater since these curves can show multiple intersections This statement is proved by means of

the following example, where an arbitrary number of displacements greater than 2 is taken. It is

assumed to measure displacements at the same four abscissae in the arch with a concentrated

damage at xd = 430 mm with depth 2 mm height. The stiffness of the equivalent spring, calculated

by means of Eq. (2), is kd = 182.43; the concentrated load Q = 100 N, applied at xQ = 362 mm,

provides at the abscissae  = 128 mm,  = 376 mm,  = 594 mm,  = 847 mm the following

pseudo-experimental displacements: v1 = −0.157 mm, v2 = −0.281 mm, v3 = 0.146 mm, v4 =

0.277 mm for E = 196363 N/mm2, obtained by the formulae (7)-(8).

x1

* x2

* x3

* x4

*

Table 1 Mean values of experimental vertical displacements 

Q [N] x1 = 128 mm x2 = 376 mm x3 = 594 mm x4 = 847 mm

100 -0.1561 -0.2830 0.1534 0.2807

Fig. 8 Curves kd (xd)
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Fig. 8(a) reports the four curves kd(xd), which show multiple intersections. However, by using

three values of the displacements, the exact damage parameters can be determined univocally, as it

can be seen in Fig. 8(b), which represents an enlargement of the intersection area. It must be noted

that in the diagrams there are points where different couples of curves intersect, which indicate

critical situations. In fact, in experimental cases, where errors occur, these points can provide

solutions not corresponding to the actual values of damage parameters.

Therefore, to obtain an overdetermined system, in the following analyses, four values of static

displacements are considered as pseudo-experimental data in order to minimize the effect of

experimental and modelling errors. Damage parameters can be identified by a procedure analogous

to that used to evaluate the Young’s modulus in the undamaged arch. In the case of the damaged

arch, the objective function is defined as the sum of the squares of the differences between the

analytical ∆vi
a(xd, kd) and experimental ∆vi

e values of the variation of displacements between the

undamaged and the damaged state, and normalized with respect to the experimental displacements

of the undamaged arch. Assuming as pseudo-experimental data the variations of static displacements

measured in the four abovementioned points, the objective function is 

 

 

(10)

 
The measurement points and load position define 6 intervals along the arch span, as shown in

Fig. 7. Within each interval, a different objective function is defined according to the analytical

values of displacements at the measurement points, easily recognizable between the previous cases

a) or b). 

The damage parameters can be determined by successively seeking two distinct minima. For each

objective function and for each possible xd within the interval in which the functions is defined, the

minimum with respect to the spring stiffness is determined
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Assuming the same data used in Fig. 8, the objective function  for the pseudo-experimental

case is shown in Fig. 9. As it can be seen, the global minimum is well defined and gives a zero

value of the objective function at the exact damage abscissa (xd = 430 mm), nevertheless another

local minimum appears. This can cause difficulties in the solution to the inverse problem in

presence of experimental errors.

4.3 Identification of damage parameters by means of experimental data

 

The static test setup for the damaged arch is the same as that used for the identification of

Young’s modulus of the undamaged structure. An asymmetric notch 1 mm in width was made with

a cutting device composed by an inclinable rotating disk mounted on a system of two adjustable

slides, as shown in Fig. 6. Four increasing intensities of damage at the abscissa xd = 430 mm were

considered, as reported in Table 2, each one related to a different height of the damaged section hd. 

Table 3 reports the analytical displacements calculated in the measurements points by means of

the principle of virtual work in each damage configuration. A comparison between the values of the

displacements in the undamaged and damaged configurations shows that, apart from the values

calculated in x1 = 128 mm, the static displacements increase with the depth of the notch. The reason

of the different trend of behaviour observed in x1 is due to the fact that the local decrease of

flexural stiffness caused by damage, modifies the deformed shape of the arch and, depending on the

damage location, may result in a reduction in the rotation near the hinges.

Moreover in the experimental test on the damaged arch, in each damage configuration, many load

cycles have been performed but in the following analyses only the results for Q = 100 N are

reported for the sake of brevity. Table 4 reports the mean values of the experimental static

displacements measured in the four considered abscissae for each damage configuration. As it can

be noticed, due to experimental errors, the illustrated increase of the displacements with the

intensity of the damage does not always occur. 

The damage parameters for each damage configuration are again determined by seeking first the

minimum with respect to the spring stiffness for each possible damage location and then evaluating

G̃ xd( )

Table 2 Mechanical characteristics of the notch

h − hd [mm] δ = (h − hd)/h kd

D1 1 0.125 507.40

D2 2 0.250 182.43

D3 3 0.375 80.75

D4 4 0.500 35.71

Table 3 Analytical  values of the static displacements (in mm) for Q = 100 N

x1 = 128 mm x2 = 376 mm x3 = 594 mm x4 = 847 mm

U -0.1575 -0.2791 0.1456 0.2759

D1 -0.1574 -0.2798 0.1457 0.2763

D2 -0.1573 -0.2811 0.1460 0.2772

D3 -0.1570 -0.2835 0.1465 0.2787

D4 -0.1565 -0.2887 0.1476 0.2822
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the global minimum with respect to kd. The four objective functions  related to the damage

configurations considered are reported in Fig. 10. These functions show one global minimum

together with other local minima. The values of the identified parameters, reported in Table 5, show

that the errors may be in general large, but the position is detected with a smaller error than

G̃ xd( )

Table 4 Experimental values of the mean static displacements (in mm) for Q = 100 N

x1 = 128 mm x2 = 376 mm x3 = 594 mm x4 = 847 mm

U -0.1561 -0.2830 0.1534 0.2807

D1 -01552 -0.2746 0.1596 0.2841

D2 -0.1586 -0.2776 0.1329 0.2813

D3 -0.1513 -0.2843 0.1557 0.2914

D4 -0.1487 -0.2875 0.1628 0.2943

Fig. 10 Experimental objective functions for damage configurations D1 (a), D2 (b), D3 (c), D4 (d)  

Table 5 Identified damage parameters by means of static tests and related errors

D1 D2 D3 D4

Ident. val err Ident. val err Ident. val err Ident. val err

kd 93.12 81.6% 48.53 73.4% 39.41 51.2% 24.14 32.4%

xd 590 37.2% 500 16.3% 460 7% 430 0%
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stiffness. Furthermore the errors decrease with the intensity of damage.

 

 

5. Comparison with the experimental results of dynamic tests

 

The performance of the proposed procedure for the identification of damage parameters using

experimental data is compared to an analogous procedure based on the variation of natural

frequencies of the undamaged and damaged arch. This procedure is experimentally applied to the

same arch and damage configurations considered in the present paper. The full details of the method

and experimental tests are reported in a recent research paper (Pau et al. 2011).

Analogously to the static case, it is important to know the minimum number of frequencies

necessary to provide a unique solution. In a damaged configuration characterized by the parameters

xd, kd the values of the natural frequencies ωi can be calculated, for instance, by a finite element

code. On the contrary, when ωi is known for the damaged arch, for each possible damage position

xd, a stiffness kid(xd) exists, which corresponds to a value of the i-th natural frequency equal to ωi.

Therefore, by taking into account all the possible positions of the damage, a curve kid(xd) can be

obtained for each frequency i. Analogously to what is found in the static tests regarding the

minimum i, it can be shown that, for the geometric ratios of the arch considered, a unique solution

to the inverse problem is found using at least three frequencies.

The optimal estimate of xd, kd is obtained by minimizing an objective function which measures

the difference between numerical (FE model)  and experimental variations  of

natural frequencies in the undamaged and damaged states, normalized to their undamaged

counterparts  and 

(12)

In order to evaluate the experimental natural frequencies, the structure has been excited by an

instrumented hammer and its response measured by means of accelerometers at seven locations.

Each test was repeated 10 times. Table 6 reports the values of the equivalent stiffness and damage

location, obtained by means of the procedure based on the frequency comparison and for the

damage configurations described. Satisfactory results are obtained with a mean error of 15.9% on

the equivalent spring stiffness, and 2.2% on the location. The errors decrease with increasing

damage, where the systematic errors are less important. 

The comparison between the two identification techniques performed on this structure allows to

conclude that the errors on the identified damage parameters using static identification are much

higher than the corresponding errors obtained through dynamic identification even for the strongest

damage scenario which is the one with the best performance.

ω i xd kd,( )∆ ωei∆

ω i

U
ωei

U

G xd kd,( )
ω i xd kd,( )∆

ω i

U
-------------------------

ωei∆
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⎛ ⎞
2

i 1=

n

∑=

Table 6 Identified, damage parameters by means of dynamic tests and related errors

D1 D2 D3 D4

Ident. val err Ident. val err Ident. val err Ident. val err

kd 393.0 29.1% 158.2 15.3% 72.4 11.6% 33.2 7.5%

xd 396 8.5% 429 2.1% 430 0.0% 430 0.0%



764  Annalisa Greco and Annamaria Pau

6. Conclusions

In this paper, the static response of a parabolic arch, in which a notch reduces the height of the

cross section at a given abscissa, has been studied in its undamaged and damaged states. The

damage has been modelled by means of a rotational spring of suitable rigidity. The damage

parameters are hence location and stiffness of the equivalent spring. The direct problem of static

response and inverse problem of damage identification have been studied. The damage parameters

are identified by minimizing an objective function which measures the differences between

analytical vertical displacements and measured ones. In order to test the reliability of the proposed

procedure, the analyses have been firstly carried out using pseudo-experimental data and then by

experimental data. The objective functions obtained using pseudo-experimental data provide as

expected a unique global minimum correspondent to the exact solution, while the experimental ones

provide errors in the identified damage parameters. The errors decrease with the intensity of the

damage. In the objective functions, together with the global minimum, other local minima occur,

sometimes close to the global one, causing difficulties in the solution to the inverse problem. The

performance of the proposed procedure for the identification of damage parameters using

experimental data is compared to an analogous procedure based on the measurements of natural

frequencies of the undamaged and damaged arch. The comparison allows to conclude that, for the

considered case, the errors on the identified damage parameters using static identification is much

higher than the corresponding error obtained through dynamic identification even for the strongest

damage scenario which is the one with the best performance.
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