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Abstract. In the famous equivalent elasticity modulus method proposed by Ernst for the geometrical
nonlinear analysis of stay cables, the cable shape was assumed as a parabolic curve, and only a part of
the gravity load normal to the chord was taken into account with the other part of gravity load parallel to
the chord being ignored. Using the actual catenary curve and considering the entire gravity load of stay
cables, the present study has derived the equivalent stiffness method to analyze the sag effect of stay
cables in cable-stayed bridges. The derived equivalent stiffness can be degenerated into Ernst’s equivalent
elasticity modulus method with some approximations. Therefore, the Ernst’s method is a special and
approximate formulation of the present method. The derived equivalent stiffness provides a theoretical
explanation for the famous Ernst’s formula. 
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1. Introduction

Sag effect of stay cables is an important source of nonlinearity, which must be included in

structural analysis of cable-stayed bridges with long cables (Calcada et al. 2005, Wu et al. 2007,

Wang et al. 2010). In the past decades, many methods were proposed and documented in the

literature. Ernst (1965) presented the famous equivalent elasticity modulus method for the geometric

nonlinear analysis of stay cables, in which the cable shape was assumed as a parabolic curve, and

only part of the gravity load normal to the chord was taken into account with the other part of

gravity load parallel to the chord being ignored. Therefore, Ernst’s formula has been generally used

in highly stressed cables with small sag effects (Wu and Cai 2009, 2010). Based on the same

assumptions, the secant elasticity modulus method was suggested (Gimsing 1997). Jayaraman and

Knudson (1981) presented a kind of curved elements for the analysis of cable structures in

suspension bridges with small strains. In the analyses of net structures, Tang et al. (1995) used
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isoparametric elements of five-nodes to consider the geometric nonlinearity of cables. In essence,

these methods did not fully capture the sag effect, and the accuracy depended on the iteration

procedures. Yang and Chen (2003a, b) presented a two-node catenary element to analyze cable

structures, for which the Modified Lagrangian interpolating function was constructed. This method

adopted analytical solutions into the interpolating function for the cable sag. Yang and Tsay (2008)

also used catenary elements in the cable analysis. 

In the present study, to overcome the shortcomings of Ernst’s formula and extend the application

limit of the equivalent elasticity modulus method, an equivalent stiffness method is developed to

fully reflect the sag effect of cable structures, in which a catenary curve is used to describe the

actual cable shape instead of using a parabolic curve, and the entire gravity load effect of cables is

taken into account instead of just the partial gravity load normal to the chord of cables. The derived

equivalent stiffness provides a theoretical explanation for the famous Ernst’s formula. 

2. Catenary equation for flexible cables

For stay cables of cable-stayed bridges, only tension force can be loaded, and the flexural stiffness

is usually ignored. As shown in Fig. 1, the catenary equation of the cable shape can be expressed

using ch(x) function as

(1)

where  is the ratio of horizontal force H and distributed force q along the cable (such as the

gravity load);  is an integral constant; L is the horizontal projection length

of cable; and h is the vertical projection length of cable.

At the end points of A and B, the tangent values can be written as

(2)

(3)

By integration, we can obtain the arc length along the axial line of cable from Eq. (1) as

(4)

3. Equivalent stiffness of stay cables

To derive the equivalent stiffness method for geometric nonlinear analysis of cables, a hinged end

at point A and a roller end at point B are assumed, as shown in Fig. 1. When an incremental

y a ch
x

a
--- c+⎝ ⎠
⎛ ⎞ ch c( )–=

a H/q=

c sh
1– h

2a sh
L

2a
------⎝ ⎠
⎛ ⎞⋅

---------------------------

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

L

2a
------–=

y′ x 0=
tanθA sh c( )= =

y′ X L=
tanθB sh

L

a
--- c+⎝ ⎠
⎛ ⎞= =

S 1 y′( )2+ xd
0

L

∫ h
2

4a
2
sh

2 L

2a
------⎝ ⎠
⎛ ⎞+= =



Equivalent stiffness method for nonlinear analysis of stay cables 663

tension force is applied to the cable, there is an elastic elongation along the initial shape and the sag

decreases between points A and B, which results in the cable sliding toward the point B slightly. In

this study, the elastic stiffness and gravity stiffness are introduced to describe these deformations.

When the force increment ∆F of F parallel to the chord is applied, the incremental axial force ∆N

of cable at any arbitrary point can be written as

(5)

Using the moment-area method, the flexibility, namely the deformation due to a unit force, of the

cable is written as

(6)

where S is the arc length of the cable shown in Eq. (4), , and  are the angles shown in

Fig. 1. EA is the tension stiffness, i.e., elasticity modulus, of stay cables. Based on the relationship

between the flexibility and stiffness, one can obtain the elasticity stiffness from Eq. (6) as 

(7)

Under the condition of initial shape of cables, one can obtain the difference S between the arc

length and chord length from Eq. (4) as

(8)

where T is the chord length.
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Fig. 1 Catenary curve for stay cable
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Because the horizontal component H is constant, we can determine it at any arbitrary point such

as . When the tension force of cable increases, the arc length decreases. The gravity

stiffness is used to establish the relationship between F and ∆S as

(9)

4. Proposed equivalent stiffness

From Eqs. (7) and (9), we can obtain the total cable deformations under a unit force increment

(∆F = 1) as 

(10)

and the combined total equivalent stiffness can be written as

(11)

For the convenience of finite element analysis, we can obtain the stiffness matrix of cable element

from Eq. (11) as 

(12)

5. Approximation and relationship to Ernest’ formula

When the cable structures are simulated using finite elements, the Ernst’s equivalent elasticity

modulus is commonly used to form the element stiffness. As shown in Fig. 1, the chord length is

assumed as T between points A and B. The Ernst’s formula can be re-written in the following

stiffness format as (Ernst 1965) 

(13)

where the elastic stiffness , and the gravity stiffness .
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When some approximations are introduced to Eqs. (7) and (9), we can degenerate Eq. (11) into

Eq. (13). In other words, the equivalent elasticity modulus formula, i.e., the Ernst’s formula, is a

special and approximated formulation of the equivalent elasticity stiffness derived in the present

study. These approximations are summarized as follows

(1) 

(2) 

(3) 

(4) 

(5) 

Substituting approximations (1) and (2) into Eq. (7), the elasticity stiffness  can be

degenerated into ; substituting approximations (3), (4) and (5) into Eq. (9), the gravity

stiffness  can be degenerated into . As a result, Eq. (11) becomes the same as the Ernst’s

formula, Eq. (13).

6. Examples

For the structural analyses of cable-stayed bridges, the Ernst’s equivalent elasticity modulus

method is often used. In the first example, the Ernst’s method and the present method are compared.

For this cable, the gravity load is q = 0.987 kN/m, horizontal projection length is L = 127.506 m,

vertical projection length is h = 75.977 m, and tension stiffness is EA = 2.409 × 106 kN. The
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horizontal forces, along with the corresponding elasticity stiffness, gravity stiffness, and equivalent

elastic stiffness are listed and compared in Table 1.

From the results shown in Table 1, we can conclude that the Ernst’s equivalent elasticity modulus

 slightly overestimates the stiffness of stay cable for this particular example. For cables with

high stress, the results of two methods are nearly identical.

In the second example shown in Fig. 2, the initial arc length with zero stress is S0 = 100 m, the

tension stiffness is EA = 3 × 107 kN, the gravity load along x-axis line is q = 1 kN/m, and the

coefficient of thermal expansion is α = 6.5 × 10−6. When the cable is heated to 100oC, the bottom

point of the cable is moved to points A, B, C, D, E and F, which are 0 m, 20 m, 40 m, 60 m, 80 m

and 100 m apart from the starting point A, respectively. The horizontal and vertical forces are

predicted and listed in Table 2.

We can see from Table 2 that the results of the present method agree well with those reported in

the literature except for point F where the present method predicts about 7.8% higher vertical and

horizontal forces than the other methods.

The comparison with available methods reveals that there is some difference between the present

method and the other methods in some cases. The present method is based on rational derivations

and can be deemed correct. The proposed equivalent stiffness method can be used to analyze the

sag effect of stay cables, especially for the long stays in long-span cable-stayed bridges. It can also

Keg

Ernst

Fig. 2 Example 2

Table 2 Comparison of vertical and horizontal forces

Position

Vertical force Q (kN) Horizontal force H (kN)

Jayaraman
(1981)

Tang
(2003)

Yang
(2003)

Present
results

Jayaraman
(1981)

Tang
(2003)

Yang
(2003)

Present
Results

Point A 20.02 20.02 20.02 20.02 0.00 0.00 0.00 0.00

Point B 19.93 19.93 19.93 19.94 3.06 3.06 3.06 3.06

Point C 19.24 19.24 19.24 19.25 9.17 9.17 9.17 9.18

Point D 15.73 15.73 15.73 15.74 22.15 22.15 22.15 22.16

Point E -328.80 -328.80 -328.87 -330.61 504.00 504.00 504.10 506.48

Point F -2511000 -2511000 -2553385 -2751172 4170000 4170000 4255724 4585190
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be used for static analysis of transmission lines. 

7. Conclusions

This paper presents an equivalent stiffness method to analyze the sag effect for stay cables in

cable-stayed bridges, which eliminates the Ernst’s assumptions for equivalent elasticity modulus

method. The cable shape is modeled with the actual catenary curve, and the whole gravity load is

considered, instead of only the partial gravity load normal to the chord. With some approximations,

this method can be degenerated to the Ernst’s equivalent elasticity modulus method. From this point

of view, Ernst’s formula is an approximated and special formulation of the present method. The

derived equivalent stiffness provides a theoretical explanation for the famous Ernst formula.
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