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Abstract. Experimental tests have shown that glass exhibits very different strengths when tested under
biaxial and uniaxial conditions. This paper presents a study on the effects of biaxial stresses on the
notional ultimate strength of glass. The study involved applying the theory of elasticity and finite element
analysis of the Griffith flaw in the micro scale. The strain intensity at the tip of the critical flaw is used
as the main criterion for defining the limit state of fracture in glass. A simple and robust relationship
between the maximum principal stress and the uniaxial stress to cause failure of the same glass specimen
has been developed. The relationship has been used for evaluating the strength values of both new and
old annealed glass panels. The characteristic strength values determined in accordance with the test results
based on 5% of exceedance are compared with provisions in the ASTM standard.
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1. Introduction

The usual practice for determining the strength of glass subjected to biaxial bending is by taking

the value of the maximum principal stress as if the glass was in uniaxial bending (Watchman et al.

2009). It is shown in this paper that the ultimate behaviour of glass depends on both the maximum

and minimum (major and minor) principal stresses surrounding the tip of the critical flaw because

of their complex interactions. The amount of stress that the tip of a flaw can sustain without

initiating further crack growth is actually dependent on the amount of stress that co-exists in the

orthogonal directions. Thus, brittle materials like glass exhibit very different strength behaviour in

the uniaxial and biaxial stress states.

The objective of this paper is to present analytical work that has been undertaken to develop a

simple and robust transformation relationship between the maximum and minimum principal

stresses (σ1 and σ2) and equivalent uniaxial stress (σu) that is estimated to cause failure of the

glazing panel (Section 3). The proposed correction relationship is illustrated with applications on

real experimental data (Section 4). The corrected data of the failure stresses has been evaluated by
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matching with various well known distribution relationships and by comparison with provisions in

the ASTM standard. 

2. Current practice for determining the strength of glass

In practice, glazing panels are typically subjected to bending when out-of-plane wind pressure is

applied. Several test methods have been developed to examine the bending strength of glass. These

test methods can be divided into uniaxial bending tests and biaxial bending tests. With uniaxial

bending tests, specimens are supported on two ends and subject to one or two concentrated line

loads causing bending in one direction (Fig. 1(a)). The advantage of this test method is that only

one principal stress is developed at all locations in the glass specimen. Hence, possible influences

by the other (minor) principal stress have been neglected. The uniaxial bending test with two

concentrated line loads is also known as four-point bending test (ASTM-C158 2002, EN-1288-3

2000).

With biaxial bending tests, specimens undergo bending in two directions. Biaxial bending tests

commonly used in practice are namely ball-on-ring tests (Oh et al. 2003, Shetty et al. 1981),

uniform pressure tests (Beason and Morgan 1984, Calderone 2000, Dalgliesh and Taylor 1990), or

coaxial double-ring tests (EN-1288-2 2000, EN-1288-5 2000). The schematics of the mentioned

biaxial bending tests are shown in Figs. 1(b)-1(d) respectively. With specimens subject to two-way

bending (i.e., biaxial stresses), the notional ultimate strength is usually taken as the maximum

(major) principal stress identified at the instance of failure of the specimen. Meanwhile,

contributions of the minimum (minor) principal stresses to the bending resistance of the specimen

have been neglected.

It is known that the strength of glass obtained from tests is dependent on the location of the

critical flaw which initiates fracture in the specimen. As the critical flaw is randomly positioned in a

specimen, the ratio of the principal stresses (σ2/σ1) at the location of the critical flaw is variable.

The effect of the value of the stress ratio on ultimate strength can be analysed by correlating the

major principal stress value at failure against the stress ratio at the location of fracture initiation.

However, the strength of the specimen is also controlled by the size of the critical flaw. Thus, the

value of the notional ultimate strength (i.e., maximum value of principal stress at failure) for any

given location can vary because of variable size of the critical flaw in the individual specimens

(Nurhuda et al. 2010). Thus, a good correlation of the maximum principal stress at failure with the

principal stress ratio could be obtained if there is an abundance of test data provided that properties

of individual microcracks including its size and fractal geometry have also been controlled. This can

be achieved experimentally by incorporating an artificial major flaw in the specimen or analytically

by incorporating pre-determined critical flaws of an ideal geometry in the finite element model.

Well known principles based on the maximum normal stress criterion has been supported by

experimental data under the conditions of plane stress state (Lebedev et al. 2001). However, the

effects of biaxial stresses on the strength of glass is very complex and warrant further studies given

that so many factors are involved in controlling real behaviour (Lebedev et al. 2001, Liebowitz

1968, Rodichev and Tregubov 2009, Veer et al. 2008). The critical (at failure) Stress Intensity value

(KI) as defined by Eq. (1) may be sensitive to the conditions of biaxial tension mainly because the

effects of biaxial actions is not well represented by stresses alone. Notwithstanding, the effects of

biaxial stress on the strength of glass have been acknowledged in the literature (Bao et al. 2005,
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Beason and Morgan 1984, Danzer et al. 2006, Oh et al. 2003, Shetty et al. 1981). For example,

Beason (1984) formulated the effect of biaxial stress based on the probability of the orientation of

the critical flaws. Beason’s theory is adopted in the ASTM provision E1300 for determining the

strength of glass.

(1)

where KI is stress intensity, σ1 is uniaxial stress applied normal to the axis of the flaw, Y is shape

factor, and a is half the flaw dimension. 

Whilst the orientation of the critical flaw has been considered in Beason’s model, the significant

of the stress parallel to the crack has not been considered. Experimental studies by Naumenko and

Atkins (2006) showed the significant contribution of the tensile stress parallel to the crack in

resisting crack extension. This finding confirms results of previous studies which revealed that

biaxial stress ratios affect the velocity of crack propagation (Kitaoka and Mikuriya 1996). This

paper is concerned with a theoretical aspect of the contribution of the principal stress which is

parallel to a crack to the strength of glass (which is not well represented by the stress intensity

approach). 

Moreover, researchers have discovered that during loading a critical flaw grows from its initial

size to the final size (Porter and Houlsby 2001, Wiederhorn et al. 1982). The orientation of the

critical flaw as well as its shape and size are important modelling parameters which need to be

considered in modelling crack growth (Liebowitz 1968, Rodichev and Tregubov 2009). It has also

been suggested that critical flaws undergoing sub-critical crack growth before reaching its final size

tends to propagate perpendicular to the direction of the maximum principal stress (Doremus 1994,

Khan and Khraisheh 2000, Nurhuda et al. 2010, Yates et al. 2008). The orientation of the newly

grown cracks may accordingly be taken as deterministic which simplifies the calculation of the

KI σ1 Y π a⋅⋅ ⋅=

Fig. 1 Test methods for investigating bending strength of glass
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strength of the specimen. However, this latest proposition is controversial.

The following section presents an analytical investigation into the effects the minimum (minor)

principal stress has upon the notional ultimate strength of glass. A simple and robust transformation

relationship is then proposed to model the important influences of the principal stress ratio.

3. Proposed correction relationship

In fracture mechanics, the stress intensity in a brittle material to cause crack growth from the

critical flaw leading to fracture is related to the size and shape of the flaw and the applied notional

uniaxial stresses as defined by Eq. (1). However, the critical stress intensity initiating fracture has

been found to be dependent on the biaxial stress condition (Bao et al. 2005).

In theory, a brittle material will have lost all its strength if the atoms are separated to a certain

critical distance. Thus, what actually matters to the ultimate behaviour of the material is strains

(which controls the separation of particles and hence affecting their inter-atomic bonding). Eq. (2)

has been proposed by Bao and Steinbrech (1997) for analysing failure based on the strain intensity

at the tip of the critical flaw, and is the strain analogy of Eq. (1) for defining the condition of

fracture initiation from the critical flaw (Guz et al. 2004).

(2)

where SI is strain intensity, ε1 is strain normal to the axis of the flaw, Y is shape factor, and a is half

the flaw dimension. 

In conditions of biaxial stresses, it is assumed that the maximum principal stress (σ1), and strain

(ε1), is applied in the direction that is normal to the axis of the critical flaw. Eq. (3) from elementary

theory of elasticity defines the relationship between the principal stresses (and strains) and the

Poisson’s ratio. By substituting Eq. (3) into Eq. (2), the strain intensity is expressed in terms of both

principal stresses (σ1 and σ2) as shown by Eq. (4).

(3)

(4)

where v is Poisson ratio and α is the principal stress ratio (σ2/σ1) and E is Young’s modulus.

It can be seen from Eq. (4) that a material subject to biaxial tensile stresses (σ1 > 0; σ2 > 0)

would actually sustain a higher stress level without failure than that subject to uniaxial tensile

stresses (σ1 > 0; σ2 = 0). To identify the equivalent uniaxial tensile stress for checking against the

characteristic strength of the material, Eq. (2) and Eq. (4) are combined to give Eq. (5). 

(5a)

(5b)

where σU is failure stress in uniaxial conditions.

SI ε1 Y π a⋅⋅ ⋅=

ε1

σ1

E
----- 1 v α⋅–( )=

S1

σ1

E
----- 1 v α⋅–( ) Y π a⋅⋅ ⋅=

σU

E
------ Y π a⋅⋅ ⋅

σ1

E
----- 1 v α⋅–( ) Y π a⋅⋅ ⋅=

σ1

σU

------
1

1 v α⋅–
------------------=
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It is noted that Eqs. (3)-(5) would only be valid for homogenous materials given that complex

conditions surrounding the tip of the critical flaw have not been taken into account. An analytical

investigation based on the use of the finite element method (FEM) was conducted to analyse

stresses and strains surrounding the critical flaw. FEM analyses employing program ANSYS were

used for modelling a square element of the glass pane of 1mm in dimension. This minute element

which contains the critical flaw was reduced further to a quarter element (with zero shear

boundaries) to minimize computational time and memory usages (Kundu 2008). The quarter

element has been divided into a fine mesh of over 10,000 finite elements. The flaw being modelled

was a straight-through flaw (Y = 1) of size 80 µm. Singular stress conditions surrounding the tip of

the flaw (which has a zero radius of curvature) were simulated in the model under plane stress

conditions. Uniform biaxial tensile stresses were applied from the sides of the element that were

normal to the axis of the flaw (Fig. 2). 

Whilst conditions for further crack growth leading to fracture is most critical at the tip of the

crack where r = 0 (Fig. 3(a)), it is difficult to have the crack tip conditions modelled accurately by

finite element analysis because of conditions of singularity. This difficulty with modelling has been

circumvented by an extrapolation procedure which involves calculating the strain intensity values

(SI
*) at various points along an axis which is extended from the tip of the crack (Banks-Sills and

Sherman 1986, Chan et al. 1970, Kundu 2008). This can be accomplished by the use of Eq. (6) and

strain values (ε) obtained from FEM analyses. The strain intensity value at the crack tip (SI) could

then be obtained by linear regression and back extrapolation to the tip of the crack (where r = 0) as

shown by Figs. 3(a) and 3(b). The strain intensity at r = 0 is effectively the limit of SI
* as the value

of r approaches zero (as shown by Eq. (7)).

(6)

(7)

where ε is strain normal to the axis of the flaw and r is distance measured along the axis (Fig. 3(a)). 

This extrapolation procedure was first verified by undertaking a control analysis in which uniform

uniaxial stresses were applied to the glass pane in the direction normal to the axis of the flaw. The

level of stress to cause fracture was first estimated using Eq. (1) assuming a fracture toughness (KIC)

SI

*
ε 2 π r⋅ ⋅⋅=

SI SI
*

r 0→

lim=

Fig. 2 Structure models 
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value of 0.78 MPa.m1/2, Y = 1 (for straight-through flaw under plane stress) and flaw dimension

(2a) of 80 µm. The uniaxial failure stress (σU) so calculated was 70 MPa approximately. FEM

analysis of the model was then undertaken to calculate strains at various points along the axis of the

flaw for this pre-determined applied uniaxial stress (70 MPa), a Young’s modulus of 68500 MPa

and Poisson’s ratio of 0.23. Values of SI
* that were obtained for the seven points along the axis of

the flaw were linearly regressed (Fig. 3(b)) and the strain intensity at the crack tip to initiate

fracture (SI) was then estimated at 1.1323 × 10−5 m1/2. Importantly, this value of SI as calculated

from the extrapolation procedure was highly consistent with the value that could be obtained readily

by the classical method: based on dividing the fracture toughness of glass by the Young’s modulus

(i.e., SIC = KIC /E = 1.1387 × 10−5 m1/2). The extrapolation procedure based on the use of Eq. (6) and

Eq. (7) has therefore been verified by this control analysis.

The verified procedure was then used for analysing biaxial stress conditions in a parametric study.

The objective of the study was to correlate the ratio of the two principal stresses (α =σ2 /σ1) and the

normalised major principal stress (σ1/σU) at failure. The parametric study involved varying the value

of α and Poisson’s ratio (v). Failure was identified as the point when the strain intensity value

reaches the critical value (SIC) of 1.14 × 10−5 m1/2. To capture this condition, stresses were applied

with a gradual increase in magnitude and at least 3 pairs of results for σ1 and SI were identified.

The limiting value of σ1 which corresponds to SI = SIC was identified by linear interpolation. Fig. 4

Fig. 3(a) Strain along the crack axis Fig. 3(b) Extrapolation of the strain intensity 

Fig. 4 Interpolation of the failure stress
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shows an example of such an interpolation in which the limiting value of σ1 was identified as 72.5

MPa (for v = 0.23 and α = 0.25). Similar analyses and interpolations were repeated for every

combination of α and v in order that the limiting values of σ1 to cause failure (i.e., 1.14 × 10−5 m1/2)

could be identified.

The parametric studies involved analysing every combination of the three Poisson’s ratio values

(v = 0.20, 0.23, 0.25) and five α values (α = 0, 0.25, 0.5, 0.75, and 1). The corresponding values of

the limiting maximum principal stress at failure are shown in Fig. 5 in the normalised form (σ1/σU).

For the above example of v = 0.23 and α = 0.25), the value of σ1/σU from finite element analysis is

estimated to be at 72.5/70 = 1.03. Significant discrepancies between results obtained from the FEM

analyses and those from Eq. (5b) based on elementary theory of elasticity are clearly shown by the

comparison. Interestingly, the two sets of estimates can be brought into very close agreement by

applying a simple modification to Eq. (5b): incorporating factor φ into Eq. (8). 

(8)

The factor φ in Eq. (8) was calibrated using the least square curve-fit technique in which the

goodness of fit was determined by the coefficient of determination (R2) which is defined by Eq. (9).

The closer the value of R2 to 1, the better the calibrated model matches with the referenced data.

Using this approach, an optimal value of φ was identified to be 0.69. For all cases analysed, the

value of R2 was equal to 0.999 which is indicative of almost exact agreement.

(9)

where dr is the referenced data,  is the average of the data, and x is the estimated value.

(10)

σ1

σU

------
1

1 v α φ⋅ ⋅–( )
-----------------------------=

R
2

1

dr x–( )2

i 1=

N

∑

dr d r–( )
2

i 1=

N

∑

----------------------------–=

d r

σ1

σU

------
1

1 0.69v α⋅–( )
---------------------------------=

Fig. 5 Comparison between FEM and Eq. (5b)
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Fig. 6 shows literally no discrepancies between results obtained from the FEM analyses and those

from Eq. (10) which has incorporated an optimal calibrated value of φ = 0.69 into the

transformation expression. Furthermore, Fig. 6 shows that the strength of glass specimens subjected

to biaxial stresses with the principal stress ratio of 1 can be some 20% higher than that of uniaxial

stress conditions for the same critical flaw size.

4. Application of the correction relationship 

Eq. (10) has been used to transform experimental data of biaxial stress values (σ1 and σ2)

recorded at failure of the glass panels to equivalent uniaxial stress values (σu). There were 160 test

data investigated in this research. The specimens represented by the test data were divided into 4

groups based on their size and age. The first group consisted of ninety-three specimens of new glass

panels of variable size and subjected to uniform out of plane pressure. Only those specimens that

did not fail by crack initiation from their edges were included in the analysis. All specimens had a

length of 2000 mm and a nominal thickness of 6 mm (Table 1). The specimens were simply

supported on four sides and were subject to hydrostatic pressure with three different durations of

load application. Results associated with different load durations have been corrected to the

reference duration of 3 seconds. Full details of the experiments can be found in Calderone (2000). 

The second group of twenty new glass panel specimens of size 350 mm × 350 mm × 5 mm were

subject to a point load applied at the centre point of the glass panels (each of which was supported

on four sides by a wooden frame). A rubber seal was provided between the glass pane and the

wooden frame to accurately simulate the conditions of contact. Loads and displacements were

recorded at the centre position of the specimen. It was found from the tests that all specimens had

the crack initiated from the point of contact with the load.

The third group of thirty seven specimens was from 15 year old glass panels which were simply

supported on four sides and subjected to out of plane pressure (Dalgliesh and Taylor 1990). The

applied pressure at failure had been converted into equivalent 60 seconds uniform pressure whilst

current standards specify the strength of glass based on 3 second uniform pressure. Hence, strength

transformations were required for comparing the notional strength values recorded from this test

Fig. 6 Comparison between FEM and Eq. (10)
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with values specified by the standards. The conversion of strength was conducted using Eq. (11)

based on the load duration theory (Brown 1972).

(11)

where tf is time to breakage (60 s), S3 is equivalent constant stress causing breakage in 3 s, and n is

16.

The fourth group of specimens was made up of ten 35-year-old glass specimens taken from

Calderone (2000). The ten specimens were of size 2045 mm × 958 mm × 6 mm and were subjected

to a hydrostatic pressure. Table 1 shows summary of the specimens studied in this paper. 

5. Evaluation of the corrected failure stresses 

The uncorrected and corrected test results of the specimens in Section 4 were sorted in ascending

order in order that the cumulative probability distribution could be calculated by Eq. (12). Three

theoretical statistical distribution functions of Weibull, Normal, and Log-Normal were used for

matching the transformed data. The goodness of fit identified for the distribution functions were

evaluated and expressed in terms of the coefficient of determination (R2) which is defined by

Eq. (9). Values of the goodness of fit (R2) associated with each of the distribution functions and

panel size are summarized in Table 2. The cumulative probability distribution based on data that

have been transformed (using Eq. (10)) is shown in Fig. 7, 8 along with data that have not been

transformed.

(12)

where i is rank of data, CDFi is cumulative probability distribution value for the i
th ranked data, N

is number of sample. 

S3 Stf
tf

3
---⎝ ⎠

⎛ ⎞
1/n

⋅=

CDFi

i 0.5–

N
--------------=

Table 1 Summary of the specimens

Size
(mm)

Thickness 
(mm)

Number of specimens 
analysed

Type of loadings Age

2000 × 400 6 15 uniform pressures new

2000 × 500 6 18 uniform pressures new

2000 × 670 6 15 uniform pressures new

2000 × 1000 6 13 uniform pressures new

2000 × 1335 6 10 uniform pressures new

2000 × 1600 6 11 uniform pressures new

2000 × 2000 6 11 uniform pressures new

350 × 350 5 20 point loads new

1300 × 900 - 1358 × 1300 4 37 uniform pressures old

2045 × 958 6 10 uniform pressures old
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Fig. 7 Cumulative probability distribution of the equivalent uniaxial failure stress of new glass specimen 
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It can be seen from the R2 values listed in Table 2 that the Log-Normal distribution function fits

with the corrected data better than the Normal or the Weibull distribution function in six out of the

ten cases presented. The estimated strength of glass at low probability of failure in particular was

very sensitive to the choice of the distribution function. Hence, it is important that the Log-Normal

distribution function is used in determining the characteristic strength of the glass panels which is

based on 5% of exceedance (i.e., 1 out of 20 specimens fails at a stress level lower than the

characteristic strength value). The characteristic strength values evaluated in this study for 160

specimens covering both new and old glass panels are summarised in Table 3. Results from new

glass panels are constrained within the range: 36 MPa-52 MPa. However, strength values obtained

Fig. 8 Cumulative probability distribution of the equivalent uniaxial failure stress of old glass specimens

Table 2 R2 from different statistical functions

Specimen’s size (mm)
R2

Normal Log-Normal Weibull

2000 × 400 × 6 0.90 0.94 0.87

2000 × 500 × 6 0.97 0.96 0.96

2000 × 670 × 6 0.94 0.87 0.96

2000 × 1000 × 6 0.86 0.88 0.76

2000 × 1335 × 6 0.94 0.95 0.90

2000 × 1600 × 6 0.93 0.93 0.92

2000 × 2000 × 6 0.95 0.95 0.96

350 × 350 × 5 0.90 0.94 0.94

1300 × 1358 × 4 0.97 0.99 0.94

2045 × 958 × 5 0.82 0.70 0.79

Table 3 Characteristic strength values derived from the corrected test results

Specimen size (mm) 2000 × 400 2000 × 500 2000 × 670 2000 × 1000 2000 × 1335

Strength (MPa) 50 50 44 42 52

Specimen size (mm) 2000 × 1600 2000 × 2000 350 × 350 1300 × 900 (old) 2045 × 958 (old)

Strength (MPa) 45 36 39 14 16



314 Ilham Nurhuda, Nelson T.K. Lam, Emad F. Gad and Ignatius Calderone

from old glass panels have been constrained to the much narrower range: 14 MPa-16 MPa (which is

about 2.5 times lower than the strength obtained from new glass panels).

Modelling size effects has been written in a separate paper (Nurhuda et al. 2010) and is beyond

the scope of this paper. However, it is clear from Table 3 that there is a general trend of decreasing

strength of the panel with increasing size. An interesting result is shown by the point load tests,

which were applied to specimens of size 350 mm × 350 mm. Individual test results recorded from

these tests varied very widely, from 39 MPa to 238 MPa as presented in Fig. 7. The phenomenon

of high variability with the “point load” tests can be explained by the localised nature of the

contact area between the load and the glass pane (where crack growth leading to fracture is

initiated). 

Fig. 9 shows the characteristic strength values listed in Table 3 in comparison with stipulations by

the ASTM standard (ASTM-E1300 2007) based on Eq. (13) and (14) at two different levels of

probability of failure. The probability of failure of 0.05 is consistent with the definition of the

characteristic strength values in accordance with test results. The probability of failure of 0.008 is

the basis of the allowable design strength specified by the ASTM standard. 

(13)

A =b * l (14)

where σ is stress, Pb is probability of breakage, d is the duration of the loading, n is 16 for annealed

glass, k is a surface flaw parameter (2.86 × 10−53N−7m12), A is the surface area of the glass panel, b

and l are the width and the length of the glass panel respectively.

It can be seen from Fig. 9 that the notional ultimate strength as defined by Eq. (13) with Pb =

0.05 is very conservative for estimating the strength of new glass specimens. With old glass

specimens, the strength predictions from ASTM are slightly higher than that observed from the test

results. However, the allowable design strength as defined by Eq. (13) with Pb = 0.008 is found to

be in good agreement with strength values observed from the testing of old glass specimens.

σ
Pb

k d/3( )7/n*A⋅[ ]
------------------------------------⎝ ⎠
⎛ ⎞ 1/7=

Fig. 9 Strengths of glass from different calculation methods
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6. Conclusions

1. In the analysis of biaxial actions, the presented alternative approach based on the strain

intensity criteria is practical and prospective for subsequent study and for more fundamental

justifications. 

2. A simple closed form expression based on the elementary theory of elasticity was modified by

the incorporation of the φ factor to make allowance for the complex interactions of the orthogonal

stresses without any significant loss of accuracies. This expression can be used to transform

maximum principal stress values in a biaxial stress condition to equivalent uniaxial stress values

to cause failure in glass panels.

3. The cumulative probability distribution of the corrected strength values was found to match

reasonably well with a calibrated Log-Normal probabilistic distribution relationship as opposed to

a Normal or Weibull distribution relationship.

4. Characteristic strength values which correspond to 5% of exceedance have been identified for

glass of different dimensions, load conditions and age. Results are compared with stipulations by

the ASTM standard. Strength values estimated from the ASTM standard for the same level of

probability of failure are shown to be much lower than that inferred from the test results of new

specimens but are in good agreement with test results of old specimens.
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