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Abstract. The radial vibration behaviors of a circular cylindrical composite piezoelectric transducer
(CPT) are investigated. The CPT is composed of a piezoelectric ring polarized in the radial direction and
an elastic ring graded in power-law variation form along the radial direction. The governing equations for
plane stress state problem under the harmonic excitation are derived and the exact solutions for both
piezoelectric and functionally graded elastic rings are obtained. The characteristic equations for resonant
and anti-resonant frequencies are established. The presented methodology is fit to carry out the parametric
investigation for composite piezoelectric transducers (CPTs) with arbitrary thickness in radial direction.
With the aid of numerical analysis, the relationship between the radial vibration behaviors of the
cylindrical CPT and the material inhomogeneity index of the functionally graded elastic ring as well as
the geometric parameters of the CPTs are illustrated and some important features are reported.

Keywords: composite piezoelectric transducer; electromechanical coupling; cylindrical structure; radial
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1. Introduction

The electro-mechanical coupling effect makes the piezoelectric materials widely used in various

devices and systems. For the direct piezoelectric effect, the piezoelectric materials convert the

mechanical forces into electrical signals (piezoelectric sensors) or electrical energy (energy

harvesters). While for the inverse piezoelectric effect, the piezoelectric materials convert the

electrical energy into mechanical motion (piezoelectric actuators) or vibrations (ultrasonic motors).

Both the direct and inverse piezoelectric effects open up a wide range of applications in modern

industry and engineering (Irschik 2002, Yang 2006, 2007, Leinvuo et al. 2007, Rao and Narayanan

2007, Jiang and Hu 2007, Mo et al. 2010). 

In most smart devices and systems, the active element is a piezoelectric ceramic. For different

purposes, the active element can be designed in various configurations (plates, tubes, spheres, rings

or shells etc.). It is well known that when the piezoelectric element driven by different electrical or

mechanical excitations, even for the same shape and same boundary conditions, the electrical and

mechanical behaviors will be totally different. So it is always imperative to know the electrical and
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mechanical behaviors of the piezoelectric active element deeply in designing the effective intelligent

structures. 

Cylindrical structures are common components in various intelligent equipments. In the last

decades, many substantial investigations in relation to cylindrical piezoelectric structures have been

reported in different point of view. Bugdayci et al. (1983) studied the axisymmetric low frequency

responses of radially polarized piezoelectric cylinders used in ink jet printing technology. Adelman

et al. (1975) studied the axisymmetric vibrations of radially polarized piezoelectric cylinders

subjected to different boundary conditions. Kim and Lee (2007) investigated the dynamic

characteristics of piezoelectric cylindrical transducers with radial polarization. The steady state

electro-mechanical responses of a long piezoelectric tube subjected to dynamic loading was solved

by Huang et al. (2008). The investigations of transient responses in piezoelectric hollow cylinder

excited by the dynamic electrical and mechanical loads were carried out by Ding et al. (2003).

Wang et al. (2009) obtained the exact solution of a finite piezoelectric hollow cylinder under the

torsional excitation. Elmaimouni et al. (2011) investigated the frequency spectrum of a cylindrically

anisotropic piezoelectric disc resonator by using a mapped orthogonal functions technique.

To improve the electrical and mechanical behaviors (strength, stiffness, stability, radiating

efficiency, electro-mechanical coupling factor) of the piezoelectric devices, an efficient way is

combined the piezoelectric active elements with the proper elastic layers. Liu and Lin (2009)

derived the radial electro-mechanical equivalent circuit of a composite piezoelectric transducer

composed of a piezoelectric circular ring and a metal circular ring and then they analyzed the radial

vibration behavior of the CPT. In the under water sound engineering, this kind of integrated

transducers are benefit to increase their power capacity and stiffness. Lü et al. (2009) investigated

the power transmission through a CPT, which is sandwiched by two piezoelectric layers and an

elastic layer in the middle. By using the functionally graded materials, the electrical and mechanical

behaviors of the piezoelectric transducers can also be improved. Alibeigloo (2009) studied the static

responses of a functionally graded cylindrical shell with piezoelectric layers act as sensors and

actuators. In this analysis, the material properties of the piezoelectric layer are constant and the

Young’s modulus of the elastic layer varies as an exponential function along the radial direction.

Zhang et al. (2008) investigated the vibration characteristics of a functionally graded piezoelectric

cylindrical actuator. They assume the actuator is polarized in the radial direction and the

piezoelectric coefficient d31 varying linearly along the axial direction. Yu and Ma (2008) studied the

circumferential wave in functionally graded piezoelectric cylindrical curved plates. Yu et al. (2009)

studied the wave characteristics in functionally graded piezoelectric hollow cylinders.

Despite the variety of success, the investigation of the electrical and mechanical behaviors for the

CPTs integrated with a functionally graded elastic layer still remains incomplete. This paper is aim

to pursue a fundamental understanding of the electrical and mechanical behaviors of such kind of

CPTs. The radial vibration characteristics of the CPTs were analyzed quantitatively by using the

elasticity and piezoelectricity theories. The elastic layer is assumed to be graded in a power-law

variation form along the radial direction. By setting the material inhomogeneity index equal to zero,

this inhomogeneous model can be degenerated into the homogeneous one. Thus, the solution of the

CPTs integrated with homogeneous elastic layers is fully covered by the presented solution.

Numerical results produced by the present solution show good agreement with the having reported

theoretical results and experimental data. Further parametric investigations for the CPTs integrated

with functionally graded (FG) elastic layer are illustrated graphically.
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2. Governing equations and solutions of the CPT

Fig. 1 shows the schematic of a cylindrical composite piezoelectric transducer consisting of two

rings. The inner part is piezoelectric and the outer is elastic. The innermost and outermost radii are

a and c, respectively and the radius of the interface is b. The height of the CPT is l and the

piezoelectric ring is polarized in the radial direction. 

2.1 Solution for homogeneous piezoelectric ring

The ring type transducers have been widely used in underwater sound and ultrasonic technology

and quite a number of literatures can be cited (Yang 2007, Liu and Lin 2009, Ramesh and Ebenezer

2005). For ring type transducer, the outer radius of the transducers is much larger than the height

(l << c) and the upper and bottom surfaces are free from tractions. So it is reasonable to employ the

plane stress state assumption to analyze this problem. Furthermore, in underwater sound and

ultrasonic technology, the radial vibration mode has more practical applications and has been

concerned widely (Liu and Lin 2009, Lü et al. 2009, Shin et al. 2003). Considering the practical

usage, here we focus the investigation on the radial vibration of CPTs. 

In the cylindrical coordinate system , for radial vibration, all the field variables are only

the functions of radial position r and the time variable t. For harmonic motion, all the fields have

the same time dependent factor exp(jωt) (Chen et al. 2004, Kim and Lee 2007). Here we dropped it

for brevity. The notation ω is the angular frequency and j is the imaginary unit. Then for plane

stress case, the equations of motion for piezoelectric ring can be simplified as

     (1a)

  (1b)

where ρ is the mass density, ur is the radial component of the mechanical displacement, σrr and σθθ

are the radial and hoop stresses, Dr is the radial electric displacement. For radially polarized

piezoelectric media with the crystal class 2 mm, the constitutive relations  can be simplified as (Nye

1985, Ding and Chen 2001) 

  (2a)

r θ z, ,( )

dσrr

dr
----------

σrr σθθ–

r
-------------------- ρω

2
ur+ + 0=

Drd

rd
--------

Dr

r
-----+ 0=

σθθ c11εθθ c12εzz c13εrr e31Er–+ +=

σzz c12εθθ c22εzz c23εrr e32Er–+ +=

σrr c13εθθ c23εzz c33εrr e33Er–+ +=

Fig. 1 Schematic of a cylindrical composite piezoelectric transducer
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  (2b)

where , Er and Φ are the strain, electric field and electric potential, respectively. cij, e3i
and  are the elastic, piezoelectric and dielectric constants, respectively. The generalized

geometric equations can be simplified as

,      (3a)

     (3b)

Utilizing the plane stress condition , we obtained the following equation from the second

equation of Eq. (2a). 

     (4)

Substituting Eq. (4) into the expressions of  and Dr in Eqs. (2a,b), we obtain 

    (5a)

   (5b)

where

, ,

, ,    (6)

The solution of Eq. (1b) takes the form as

    (7)

where A1 is a unknown constant. Subsequently, Eq. (5b) can be rewritten as

   (8)

With the aid of Eq. (8), Eq. (5a) becomes

  (9)
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33

Φd
rd

-------+ +=

Dr ẽ
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where

,   (10)

The substitution of Eq. (9) into Eq. (1a) derives

     (11)

where

, , ,  (12)

The solution of Eq. (11) is

(13)

where  and  are Bessel functions of the first and second kinds of order µp and 

is the particular solution of Eq. (11) which can be expressed by Lommel function as (Erdelyi 1953,

Lü et al. 2009)

(14)

Essentially,  can be expressed by the Bessel functions as

(15)

Integrating Eq. (8) at the spatial interval [a, r] and utilizing Eq. (13), we obtain

   (16)

where Φa is the electric potential at the internal surface of the piezoelectric ring and 

   (17)

Substituting Eq. (13) into the second equation in Eq. (9), gives 

   (18)
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where

,    (19)

2.2 Solution for functionally graded elastic ring

Consider the elastic ring is made of functionally graded materials (FGMs). Assume the elastic

ring is graded as a power-law variation form along the radial direction (Horgan and Chan 1999,

Jabbari et al. 2002, Abd-alla and Farhan 2008, Khoshgoftar et al. 2009)

,   (20)

where β is the material inhomogeneity index, B and Cij are constants.

The governing equations for orthotropic functionally graded (FG) elastic ring under plane stress

state can also be obtained by following the similar procedure for piezoelectric ring and are listed

here as 

   (21)

  (22)

where

, ,  (23)

The substitution of Eq. (22) into Eq. (21) gives 

      (24)

The solution of Eq. (24) is
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Substituting Eq. (25) into the second equation in Eq. (22), the expression of σrr in FG elastic ring

can be obtained as

  (27)

where

  (28)

3. Resonant and anti-resonant frequencies

Suppose the CPT is traction free at the internal and external surfaces and is electrically shorted at

the internal surface of the piezoelectric ring ( ). At the external surface of the piezoelectric

ring, the CPT is driven by harmonic electric potential excitation Φ0exp(jωt). As mentioned above,

the time dependent factor exp(jωt) is dropped for the sake of brevity. So the boundary conditions

are prescribed mathematically as

   (29)

Consider the CPT is perfectly bonded at the interface. That is

,   (30)

where the symbol  denotes the discontinuity of the corresponding field at the interface.

Utilizing the having obtained solutions of the piezoelectric and FG elastic rings and applying the

boundary conditions (29) and interfacial conditions (30), yields
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It should be mentioned here that we have four boundary conditions and two continuity conditions,

see Eqs. (29) and (30), while only five unknown constants  need to be determined. This

is because the electric boundary condition at the inner surface is satisfied automatically by using the

definite integral for Eq. (8). Ultimately, we have five equations to determine all five unknown

constants , see Eq. (31). 

Consider the homogeneous boundary conditions, i.e., . The existence of nontrivial solution

of Eq. (31) leads to

 (33)

Eq. (33) is the characteristic equation from which the resonant frequency  can be

obtained. Also, from Eq. (31), the constant A1 can be determined as 

  (34)

where

(35)

According to the electricity theory, the charge Q, current I and electric displacement Dr obey the

following relations

,  (36)

Recall Eq. (7). Clearly, if , we have . Subsequently, we have  and .

From Eq. (34), we know that  requires

(37)

Eq. (37) shows that although the CPTs are driven by the external harmonic electric potential

excitation, the current response always keeps zero. This case is known as electric anti-resonant

phenomenon (Adelman et al. 1975). So essentially, Eq. (37) is the characteristic equations to

determine the anti-resonant frequency .

With the obtained resonant and anti-resonant frequencies in hand, another important parameter

named as effective electro-mechanical coupling factor keff for evaluating the vibration performance

of the CPT can be determined as

(38)
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4. Numerical results and analysis

To illustrate the dynamics behavior of the cylindrical CPTs specifically, numerical computations

are carried out based on the above-mentioned theoretical formula. The piezoelectric material is

chosen as PZT4 (Dunn and Taya 1994): , c12 = 77.8 GPa, c13 = c23 = 74.3 GPa,

c33 = 115.0 GPa, e31 = e32 = −5.2 C/m2, e33 = 15.1 C/m2, F/m, kg/m3.

The validation of the presented solution is first evaluated. Setting  in Eq. (20), the elastic

constants and mass density of the elastic ring then become constant. In other words, the elastic ring

is homogeneous. In fact, this case has been studied by Liu and Lin (2009) by means of the

equivalent circuit method and experiment method. The comparison of the resonant and anti-resonant

frequencies obtained by three different methods is shown in Table 1. In the calculation, we suppose

the elastic ring is made of Aluminum: The Young’s modulus and poisson ratio are E = 71.5 GPa and

υ = 0.34, respectively and the density is kg/m3. The inner and outer radii of the

piezoelectric ring are fixed at a = 21 mm and b = 26mm, respectively. Three different values of the

thickness of the elastic ring are considered, say = 3.9, 6.5 and 9.1, respectively. 

Table 1 shows that the results obtained by three different methods have good agreement. The

validity of the present method is thus verified in this respect. 

By employing the present solution, the parametric investigations for CPTs will further be

demonstrated. In the following analysis, the material parameters for functionally graded elastic ring

are adopted as: C11 = C22 = C33 = 110.05GPa, C12 = C13 = C23 = 56.69 GPa and kg/m3. 

In the first example, the geometric parameters for PZT4 ring are fixed at a = 20 mm and

b = 25 mm (i.e., the thickness of the piezoelectric ring mm) while those for the

elastic ring are changeable. Figs. 2-4 show the effect of material inhomogeneity index on the

fundamental resonant and anti-resonant frequencies, the effective electro-mechanical coupling factor

and the fundamental mode shape of the CPTs. Several features can be observed from Fig. 2. (I) For

all three values of β, a peak value for both the fundamental resonant and anti-resonant frequencies

can be reached with the increase of the thickness of the FG elastic ring ( ).

(II) For mm, the fundamental resonant and anti-resonant frequencies increase with the

increase of β. While it is contrary for mm. (III) The fundamental anti-resonant frequency

is always larger than the fundamental resonant frequency. (IV) The inhomogeneity index has little

effect on the fundamental resonant and anti-resonant frequencies when the FG elastic ring is thin.

But for the CPTs with thick FG elastic ring, the inhomogeneity index has significant effect on the

fundamental resonant and anti-resonant frequencies. From Fig. 3, we find that for each β, the

effective electro-mechanical coupling factor decrease monotonically with the increase of the

thickness of the FG elastic ring. Another important aspect is observed that the effective electro-

mechanical coupling factor increases with the decrease of β. For the CPTs with mm, the non-

c11 c22 139.0 GPa= =

∈33 5.62 10
9–×= ρ 7.5 10

3×=

β 0=

ρ 2.7 10
3×=

he c b–=

B 2.7 10
3×=

hp b a– 5= =

0.5 mm he 15.0 mm< <
he 9.5<

he 13.0>

he 5=

Table 1 The comparison of the resonant and anti-resonant frequencies obtained by three different methods

he
(mm)

The present method
The equivalent circuit method 

(Liu and Lin 2009)
The experiment method
(Liu and Lin 2009)

fr (kHz) fa (kHz) fr (kHz) fa (kHz) fr (kHz) fa (kHz)

3.9 24.132 25.144 24.699 25.284 23.765 24.405

6.5 24.429 25.303 24.952 25.448 24.571 24.943

9.1 24.407 25.173 24.799 25.215 24.453 24.811
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dimensional radial displacements (the radial displacements normalized by the radial displacement at

the inner surface) under the excitation with fundamental resonant and anti-resonant frequencies, also

named as fundamental mode shape of CPT are depicted in Fig. 4. Clearly, the fundamental mode

shape of the CPTs for resonant vibration is different from that for anti-resonant vibration. Also, we

can see that the inhomogeneity index β has very little effect on the fundamental mode shape.

Fig. 2 Fundamental resonant and anti-resonant
frequencies versus thickness of the FG elastic
ring for different inhomogeneity index

Fig. 3 Effective electro-mechanical coupling factor
versus thickness of the FG elastic ring for
different inhomogeneity index 

Fig. 4 Fundamental mode shape of CPT for different
inhomogeneity index (he= 5 mm)

Fig. 5 Effective electro-mechanical coupling factor
versus inner radius of the CPTs for different
inhomogeneity index 
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In the second example, we consider the dynamic behaviors of the CPTs with different inner

radius. To complete this analysis, the thickness of the piezoelectric and elastic rings is set as

mm. Table 2 shows the fundamental resonant and anti-resonant frequencies of the

CPTs with different inner radius for , 0 and 1. It can be seen that the fundamental resonant

and anti-resonant frequencies decrease monotonically with the increase of the inner radius of the

CPTs. For small inner radius, e.g., mm, the fundamental resonant and anti-resonant

frequencies decrease with the increase of β. While for large inner radius ( mm), the

fundamental resonant and anti-resonant frequencies increase a little bit with the increase of β.

The variation of the effective electro-mechanical coupling factor with the inner radius is depicted

in Fig. 5. When the inner radius is small, e.g., mm, the effective electro-mechanical coupling

factor increases with the increase of the inner radius. But when the inner radius is large enough,

e.g., mm, the effective electro-mechanical coupling factor becomes insensitive with the

change of the inner radius. Also, we find the effective electro-mechanical coupling factor increase

with the decrease of β.

5. Conclusions

The dynamic behaviors of CPTs, such as the fundamental resonant and anti-resonant frequencies,

the mode shape as well as effective electro-mechanical coupling factor have been investigated.

Numerical results revealed that the material inhomogeneity index and the geometric parameters

have important effects on the dynamic behaviors of the CPTs. Based on the above analysis, the

following conclusions can be obtained:

(1) Due to acting effect of the inhomogeneity index on the dynamic behaviors, it is an adoptable

way to improve the dynamic behaviors of the CPTs by employing the FG elastic ring with proper

material inhomogeneity index. Generally speaking, the negative inhomogeneity index is benefit to

improve the effective electro-mechanical coupling factor of the CPTs. The inhomogeneity index has

little effect on the mode shape.

(2) The effective electro-mechanical coupling factor of the CPTs can be improved by using a large

inner radius. While, if we want to increase the fundamental resonant and anti-resonant frequencies,

small inner radius will be better. 

(3) The presented method can be easily extended to analyze the dynamic behavior of the CPTs

with other boundary conditions, such as both the inner and outer surfaces of the CPTs are

hp he 5= =

β 1–=

a 5=

a 10>

a 10<

a 15>

Table 2 The fundamental resonant and anti-resonant frequencies of the CPTs integrated with FG elastic ring
(hp = he = 5 mm)

a
(mm)

resonant frequencies (kHz) anti-resonant frequencies (kHz)

β = −1 β = 0 β = 1 β = −1 β = 0 β = 1

5 72.2417 71.3318 69.9320 74.5816 73.3522 71.5440

10 43.8035 43.9039 43.9896 45.6623 45.6277 45.5443

15 31.8138 32.0196 32.2486 33.2041 33.3330 33.4700

20 25.0825 25.2770 25.4930 26.1744 26.3180 26.4753

25 20.7393 20.9054 21.0882 21.6335 21.7632 21.9049

30 17.6931 17.8326 17.9843 18.4494 18.5611 18.6823
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mechanical clamped, the inner surface is traction free while the outer surface is mechanical

clamped, etc.

In general, the present solution provides a useful methodology to estimate, design and optimize

the dynamic behaviors of the CPTs.
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