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Abstract. It is difficult to accurately predict the flexural strength of prestressed members with unbonded
tendons, unlike that of prestressed members with bonded tendons, due to the unbonded behavior between
concrete and tendon. While there have been many studies on this subject, the flexural strength of
prestressed members with unbonded tendons is still not well understood, and different standards in various
countries often result in different estimation results for identical members. Therefore, this paper aimed to
observe existing approaches and to propose an improved model for the ultimate strength of prestressed
members with unbonded tendons. Additionally, a large number of tests results on flexural strength of
prestressed members with unbonded tendons were collected from previous studies, which entered into a
database to verify the accuracy of the proposed model. The proposed model, compared to existing
approaches, well estimated the flexural strength of prestressed members with unbonded tendons,
adequately reflecting the effects of influencing factors such as the reinforced steel ratio, the loading
patterns, and the concrete strength. The proposed model also provided a reasonably good estimation of the
ultimate strength of over-reinforced members and high-strength concrete members.
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1. Introduction

 

Prestressed concrete (hereinafter, “PSC”) members are widely used in long span structures due to

their excellent performance against cracks and deflection. Depending on the time of release, PSC

members can be divided into the pre-tensioned members and post-tensioned members, and the post-

tensioned members can be further divided into the members with bonded tendons and unbonded

tendons. When integrated construction is required as in most statically indeterminate structures, the

post-tension method is often used. In such cases, unbonded tendons are widely applied as they

require no grouting work after release, and thus offer an easy construction.

When the unbonded tendons are applied, however, as opposed to the bonded tendons, the strain

compatibility condition between concrete and tendon cannot be utilized due to the unbonding

behavior. Thus, it is difficult to accurately analyze flexural strength because the stress of unbonded

tendons is hard to obtain from the sectional strain of concrete at the tendon level (Collins and

Mitchell 1991). While there have been many studies on this issue (Janney et al. 1956, Warwaruk et al.
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1962, Bondy 1970, Tam and Pannell 1976, Du and Tao 1985, Macgregor et al. 1989, Harajli 1990,

Harajli and Kanj 1991, Campbell and Chouinard 1991, Naaman and Alkhairi 1991, Lee et al. 1999,

Chakrabarti 1995, Allouche et al. 1999, Ng 2003, Au and Du 2004, Robert-Wollmann et al. 2005,

Harajli 2006, Sivaleepunth et al. 2006, Bui and Niwa 2006, Tan and Tjandra 2007, Ozkul et al.

2005, Du et al. 2008, Ozkul et al. 2008, Au et al. 2009, Zhou and Zheng 2010), our understanding

on the flexural strength of unbonded post-tensioned (hereinafter, “UPT”) members are still very

limited and, consequently, countries adopt different standards (DIN 4227 1980, NEN 3880 1984,

BSI 8110-85 1985, CAN-A23.3-M94 1994, AASHTO 2004, ACI Committee 318 2005, 2008, KCI-

M-07 2007) resulting in quite a large difference among them (See also Appendix for various

approaches). For example, the equation for predicting the ultimate stress of UPT members presented

in ACI 318M-05 and -08 (2005, 2008), which Mojtahedi et al. (1978) first proposed in 1978, offers

a relatively safe value but a low level of accuracy.

Therefore, this study reviews existing approaches for the prediction of the ultimate strength of

UPT members and proposes a more rational and improved model. The proposed model efficiently

reflects the effects of variables such as the loading pattern, the concrete strength ( ), the amount of

tensile steel (As), the amount of compression steel ( ), the amount of tendons (Aps), the effective

prestress (fpe), and the length of the maximum moment zone. Additionally, this paper established a

database of 177 test results from previous studies, which is used to verify the accuracy of the

proposed model. 

 

 

2. Research significance

This study conducted a thorough analysis of existing methods that researchers have proposed for

the prediction of the ultimate tendon stresses of UPT members, and derived a rational method. The

flexural strength model for UPT members proposed in this paper used the simplified maximum

curvature distribution and implemented the moment distribution coefficient to reflect the loading

pattern. Also, the accuracy of the proposed method was evaluated using a database having 177 test

results from previous studies. The result showed that the proposed method well predicted the

flexural strength of UPT members adequately reflecting the effect of primary factors such as the

reinforcement ratio, the loading type, and the concrete strength.

 

 

3. Review of previous researches

 

There have been various studies on the flexural strength of UPT members in Europe and North

America since the early 1960s. Warwaruk et al. (1962) performed an experiment on UPT members

with primary test variables of the amount of bonded reinforcing bars and loading patterns (or shape

of bending moment distribution). Based on the test results, they proposed a semi-empirical equation

for ultimate tendon stresses introducing the bonded reinforcing steel coefficient and the moment

area coefficient. Particularly, they verified that the existence of bonded reinforcing steel is a key

factor in flexural strength of UPT members, and introduced the virtual strain concept to calculate

the ultimate strains of unbonded tendons. 

Cambell et al. (1991) also confirmed that the amount of the bonded reinforcing bars greatly

affected the ultimate strains of tendons, and Chakrabarti (1995) as well as Du and Tao (1985) also

fc′
As′
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proposed equations that reflect the effect of bonded reinforcing bars. Bondy (1970) observed that

the vertical displacement of members directly causes stress changes in tendons. Thus, he proposed

an empirical equation for estimation of tendon stresses based on the assumption that tendon stresses

increase linearly as elastic deflection of UPT member increases. 

Allouche et al. (1999) proposed the numerical model using the finite element program, which is

capable of predicting response of continuous UPT members from service load to ultimate. Based on

the analysis results, a design equation was proposed considering loading patterns, member

continuity and confine effect of concrete.

Harajli (1990) proposed the concept of equivalent plastic hinges with idealized curvature

distribution, as shown in Fig. 1, which were estimated to be at least larger than the length of the

maximum moment zone by over half of the member depth. Au and Du (2004) also applied the

concept of equivalent plastic hinges to continuous beams. Based on the equivalent plastic hinge

model, Bui and Niwa (2006) and Lee et al. (1999) performed a regression analysis of ultimate

tendon stresses (fps) and proposed a strength prediction model and a design equation.

Macgregor et al. (1989) presented the rigid body model, wherein all plastic deformations at

ultimate state are concentrated on a particular section in the plastic hinge region as shown in Fig. 2.

Later, Robert-Wollmann et al. (2005) and Harajli (2006) also complemented this rigid body model

in their research.

Naaman and Alkhairi (1991a, b) proposed a design equation that considers not only the sectional

properties but also the tendon profile, in which loading patterns and the reduction of bond

Fig. 1 Plastic hinge model (Harajli 1990, Campbell and Chouinard 1991, Lee et al. 1999, Ozkul et al. 2008)

Fig. 2 Rigid-body model (Macgregor et al. 1989, Harajli 2006, Robert-Wollmann et al. 2005) 
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Fig. 3 Experimental test results by Warwaruk et al. (1962)
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characteristics between concrete and tendons are also considered. Later, Ng (2003) proposed

modified bond coefficients to reflect the second-order effects based on Naaman and Alkhairi

(1991b)’s model for the evaluation of the flexural strength of externally prestressed beams. 

The common feature among many of these models for UPT members that have been developed so

far is that the plastic hinge length is considered as a key factor in determining the increase of the

ultimate tendon stresses. Particularly, the models based on the rigid body model assume that all

deformations are concentrated on the particular section in the plastic hinge region, and, therefore,

the stress increase of tendons at ultimate is determined by the plastic rotation angle (θ) and the

depth of the neutral axis (c). 

Fig. 3(a) shows a test result presented by Warwaruk et al. (1962), and provides the measured concrete

compressive strain at ultimate in a UPT member without bonded reinforcing steel subjected to a

concentrated load. It shows that all deformations are concentrated on a section, which supports the

afore-mentioned assumption of the rigid body model. Fig. 3(b), however, which is another test result

performed by Warwaruk et al. (1962), is different from Fig. 3(a)—that is, the measured concrete

compressive strains of extreme top fiber shown in Fig. 3(b) are equally distributed within the maximum

moment zone, which means that the length of the plastic region significantly differs from that in

Fig. 3(a). There are two reasons for this: first, the specimen shown in Fig. 3(b) had reinforcing steel bars

while that in Fig. 3(a) did not, and second, it was subjected to two-points loading while that that in

Fig. 3(a) was under a concentrated load. In the case of the specimen in Fig. 3(b), it is considered that

tensile cracks were distributed in a wide region and well controlled due to the bonded reinforcing steel,

which eventually affected the length of the plastic hinge over the length of the maximum moment zone.

Considering, however, the pattern of the cracks at failure in the UPT member without bonded

reinforcing bars under two-points loading, as Fig. 3(c) shows, bared another difference. The cracks

on the beam without bonded reinforcing steel shown in Fig. 3(c) are not concentrated in one

section, though few, but are distributed within the maximum moment region. The cracks were

neither well distributed, as they were on the beam with bonded reinforcing steel shown in Fig. 4,

nor were they concentrated in a section, as they were on the beam without bonded reinforcing steel

shown in Fig. 3(a). The difference between the specimens shown in Fig. 3(c) and Fig. 3(a) is the

loading pattern. This means that, although the existence of bonded reinforcing steel affect the extent

Fig. 4 Failure of a prestressed test beam with unbonded tendons and bonded reinforcement (Warwaruk et al.
1962)
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of deformation concentration or the length of plastic hinge, the loading pattern, which determines

the length of the maximum moment zone, may affect more.

Table 1 shows representative examples of the equivalent plastic hinge lengths proposed in

previous researches, and Fig. 5 shows the value Lp/Lm
, wherein the length of the plastic hinge (Lp

)

that was calculated from the these equations is divided by the length of the maximum moment zone

(Lm
). Eq. (1), shown in Table 1, was proposed by Harajli (1990) and Ozkul et al. (2008) wherein

the plastic hinge length is always expressed larger than the maximum moment zone by

(0.5dp + 0.05Z). Most of the Lp /Lm
 values based on Eq. (1), as Fig. 5 shows, are distributed between

1.0 and 1.7. While this means that Eq. (1) reflects the plastic hinge length for the members with

Table 1 Estimation of plastic hinge lengths proposed in the previous studies

Researcher Equation Eq. No.

Ozkul et al. (2008) and Harajli (1990)
where, Z: the shear span length,  for 1 point 
loading, f = 3 for 2 points loading, f = 6 for uniform 

loading.

(1)

Harajli (2006)
where, cy : neutral axis depth at yielding.

(2)

Robert-Wollmann et al. (2005)
where, cy : neutral axis depth at yielding.

(3)

Bui and Niwa (2006)
where  n : n=1  for 1 point loading,

n=2 for 2 or uniform loading.

(4)

*Notations that are not specifically mentioned can be found in notation part.

Lp L f 0.5dp 0.05Z+( )+⁄=
f ∞=

Lp 20.7 f 10.5+⁄( )cy=

Lp 10.3cy=

Lp

1 ωs+

β1L dp⁄
------------------⎝ ⎠
⎛ ⎞ ωs 0.05 1–( )n+ + L=

Fig. 5 Comparison of plastic hinge lengths by different approaches (Lp/Lm vs. cy/h) 
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bonded reinforcing steel, it may not properly consider the plastic hinge length for members without

bonded reinforcing steel where cracks are either concentrated at a section or distributed within the

maximum moment zone. Meanwhile, Eqs. (2) and (3) in Table 1 imply that the plastic hinge lengths

tend to increase linearly in proportion to the neutral axis depth ratio (cy /h) as shown in Fig. 5.

While the plastic hinge length is less than the length of maximum moment zone (Lp /Lm≤ 1) in some
specimens, it is greater than the length of maximum moment zone (Lp /Lm

> 1) in many others. The
specimens expressed with dotted circles are those without the bonded reinforcing steel; and even

with these members, Eqs. (2) and (3) estimated the plastic hinge length greater than the length of

maximum moment zone (Lp /Lm
> 1). This reveals that these equations do not well consider the type

of failure in members without bonded reinforcing steel where the plastic hinge is more likely

developed within the maximum moment zone. Fig. 5 also shows that the values of Lp /Lm
 from

Eq. (4) are mostly distributed between 0.2 and 0.7, which means that the plastic hinge zone is much

shorter than the central maximum moment zone. Therefore, Eq. (4) may only adequately estimate

the plastic hinge length of the members without bonded reinforcing steel where cracks are either

heavily concentrated in a section or ranged within the maximum moment zone; however, it may not

reflect the cases that the cracks and deformations are widely distributed and the plastic hinge zone

forms throughout the entire maximum moment zone.

Therefore, from the observations based on the aforementioned representative equations, it can be

considered that it is very difficult to accurately estimate the plastic hinge length, which is known as

a key factor in the flexural strength of UPT members. To more directly check the effect of the

plastic hinge length in relation to the magnitude ratio of increase in the ultimate tendon stress to

effective prestress ( ),  is plotted versus Lp /Lm
 in Fig. 6, as calculated by Eqs. (1) to

(4). It seems very difficult to ultimately find a clear or direct relationship between the two factors,

 and Lp /Lm
. While this may result from the effect of various factors other than the Lp /Lm

value, it still supports the argument that it is very difficult to accurately estimate the plastic hinge

length.

fps/fpe∆ fps/fpe∆

fps/fpe∆

Fig. 6 Relation between Lp/Lm and ∆fps/fpe
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 Fig. 7 Flexural behavior of a UPT member 
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 4. Proposed ultimate strength model

 

4.1 Ultimate stresses in unbonded tendons

Fig. 7(a) shows a UPT member under two-points loading, and the strain of the concrete at the

tendon height occurs in proportion to the moment as shown in Figs. 7(b) and (c). Therefore, at any

arbitrary location in the longitudinal direction, the strain increase of the concrete ( ) at the

tendon height after the loading can be expressed, as Fig. 7(d) shows, as

 

 (5)

 

where φx, cx, and dp refer to the beam curvature, the depth of the neutral axis, and the distance

from extreme compression fiber to centroid of prestressing tendon at an arbitrary location x,

respectively. The strain of the tendons, however, as shown in Figs. 7(d) and (e), differs

significantly from that in Eq. (5) due to the unbonded behavior between concrete and tendons. In

other words, the strain compatibility condition between concrete and tendons implemented for

bonded tendons cannot be applied to UPT members. The total magnitude, however, of the change

in the length of the tendons between anchorages ( ) should be identical to the sum of the

concrete strain in longitudinal direction at the height of tendon. Thus, the following relationship is

established 

 

 (6)

 

The curvature distribution of the UPT members at ultimate can be in various shapes, as Fig. 8(a)

shows, depending on loading patterns, amount of bonded reinforcing steel, and other characteristics

of sectional properties. In general, most of the structural design standards (ACI Committee 318

2005, KCI-M-07 2007) require the minimum amount of bonded reinforcing steel that will prevent

brittle failure due to the concentration of cracks for the members with unbonded tendons, which

lead cracks to be distributed over the maximum moment region. Therefore, the curvature also tends

to be similarly distributed widely over the maximum moment region, and the concrete compressive

strain increases significantly in the location with a marked increase in the curvature. The concrete

compressive strain on the UPT member in Fig. 8(b), as Campbell and Chouinard (1991) reported,

peaked at around the maximum moment zone (that is, the zone between the loading points) at the

ultimate load (Pu
). In this regard, the curvature distribution of UPT members at ultimate shown in

Fig. 8(a) can be represented by the solid line in Fig. 9, noted as original curvature. Additionally, to

simplify the calculation, since the curvature outside of the maximum moment zone is considerably

smaller than that in the maximum moment zone, the curvature distribution can be idealized as

having been concentrated within the maximum moment zone, as the dotted line shows. In other

words, this idealization shows that the curvature outside the maximum moment zone is ignored and

the curvature within the maximum moment zone is deemed to have a uniform curvature at the

maximum moment (φm). Therefore, using the idealized curvature distribution, the total amount of

concrete strain at the tendon level (∆L) can be expressed as
 

 (7)

εpc∆

εpc∆ φx dp cx–( )=

L∆

εpc∆ xd
0

L

∫ L∆=

L∆ φm dp cm–( )kL
εcu
cm
------ dp cm–( )kL= =
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where φm, cm, and εcu refer to the curvature, the neutral axis depth, the ultimate strain of the

concrete in maximum moment region, respectively, and k is the ratio of the maximum moment zone

length to the member length.

The average strain increase of the tendon ( ) after loading can be calculated by dividing the

total amount of the tendon elongation (∆L) in Eq. (7) by the initial length of the tendon (L), i.e. 
 

 (8)

 

εps∆

εps∆
L∆
L
------- k

εcu
cm
------ dp cm–( )= =

Fig. 9 Idealized curvature for UPT members in this study

 Fig. 8 Deformation of UPT members 
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In other words, both the neutral axis and the coefficient of the maximum moment zone (k)

determine average strain increase of the tendon ( ) in the proposed method.

The equilibrium of sectional forces at ultimate in the maximum moment zone, as shown in

Fig. 7(d), can be derived 

 

  (9a)

 (9b)

 (9c)

 

where cm and Aps refer to the depth of the neutral axis at ultimate in the maximum moment zone

and the area of unbounded prestressing steel, respectively. Other notations that are not mentioned

here can be found in the notation part of this paper. 

Then, the average strain increase of the tendon ( ) can be expressed from Eqs. (8) and (9) as

 

 (10)

 

Additionally, substituting Eq. (10) into Eq. (8), the quadratic equation for cm can be expressed as

follows

 

 (11)

 

Thus, cm is calculated as follows 

 

  (12a)

 

where A, B, and C are

 

  (12b)

 

 (12c)

  (12d)

 

Therefore, the strain increase of unbonded tendon at ultimate state ( ) can be calculated by

substituting cm from Eq. (12a) into Eq. (8) or (10).

 

4.2 Consideration of loading patterns

As aforementioned, the tendon strain is determined by the change in the total member length,

which depends on the loading pattern, i.e., the moment shape. The proposed Eqs. (8) to (12) were

derived, however, from the assumption of two-points loading condition, and therefore, other loading

patterns should be considered. This can be done by considering the moment distribution patterns,

εps∆

C T=

C 0.85fc′bβ1cm fs′As′+=

T fsAs fpsAps+=

 fsAs EpAps+ εpe εps∆+( )=

εps∆

εps∆
0.85fc′bβ1cm fs′As′ fsAs–+

EpsAps

-------------------------------------------------------------- εpe–=

0.85fc′bβ1cm
2

fsAs fs′As′– kεcuEpAps– εpeEpAps+( )cm– kεcuEpApsdp– 0=

cm
B ± B

2
4AC––

2A
----------------------------------------=

A 0.85fc′bβ1=

B fsAs fs′As′– kεcuEpAps– εpeEpAps+( )–=

C kεcuEpApsdp–=

εps∆
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for which this study implemented the coefficient of moment shape (α). The coefficient of moment

shape (α) can be determined based on its relationship to the area ratio of the bending moment

diagram, as Fig. 10 shows, which is 0.75 in the case of the concentrated loading, and 1.0 for the

uniformly distributed loading and two-points loading condition. In the case of the two-points

loading, however, it should be noted that the coefficient of moment shape (α) was based on the

loading points located at the one-third of the member length. In other cases, a more detailed

coefficient of moment shape (α) can be estimated and applied using the area ratio of the moment

diagram relative to the case of α = 1.0. 

Thus, introducing the coefficient of moment shape (α) into Eq. (11), it yields 

 (13)

Then, cm is also obtained by solving the Eq. (13), which is identical to Eq. (12a), except that the

value of α is inserted to the Eqs. (12c) and (12d), and the values of B and C are expressed as

follows

 (14a)

  (14b)

Then, the average strain increase of the tendon (∆εps) can be calculated as follows 

  (15)

Additionally, if the tendon stress is limited to or less than the yield stress (fpy) for the conservative

estimation of the strength of UPT members, the increase of tendon stress (∆fps) becomes 

   (16)

where εpe and fpe refer to the effective prestrain and prestress in prestressing tendon. The increase of

tendon stress at ultimate (∆fps) can be calculated from the tendon strain (∆εps) in Eq. (15), but
should be limited to the ∆fps value specified in Eq. (16). Finally, the ultimate tendon stress (fps) and
strain (εps) can be calculated as follows 

  (17a)

 (17b)

0.85fc′bβ1cm
2

fsAs fs′As′– αkεcuEpAps– εpeEpAps+( )cm– αkεcuEpApsdp– 0=

B fsAs fs′As′– αkεcuEpAps– εpeEpAps+( )–=

C αkεcuEpApsdp–=

εps∆ αk
εcu
cm
------ dp cm–( )=

fps∆ fpy≤ fpe– fpy Epεpe–=

fps fpe fps∆+=

εps εpe εps∆+=

Fig. 10 Coefficients of moment shape (α) for different loading types
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4.3 Flexural strength of prestressed members with unbonded tendons

The sectional forces in compression and tension side can be calculated by applying the

equilibrium equation (Eq. (9)), considering the ultimate tendon stress (fps) from Eq. (17a) and the

ultimate concrete strain on the extreme compression fiber of section (εcu) as well as the compressive

and tensile stresses of bonded reinforcing steel. Then, the flexural strength of UPT members can be

calculated as 

(18)

Mn Cc cm
β1cm
2

-----------–⎝ ⎠
⎛ ⎞ Cs′ cm d′–( ) Ts d cm–( ) Tps dp cm–( )+ + +=

 0.85fc′bβ1cm cm
β1cm

2
-----------–⎝ ⎠

⎛ ⎞ fs′As′ cm d′–( ) fsAs d cm–( ) fpsAps dp cm–( )+ + +=

Fig. 11 Flow chart for the calculation of flexural strength of UPT members
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where  and , refer to the compression forces of concrete and bonded reinforcing bars,

respectively, and  and  are the tension forces of bonded reinforcing bars and unbonded

tendons, respectively. Fig. 11 shows the flow chart to obtain the flexural strength of UPT members

including the ultimate tendon stress ( ) and strain ( ) based on the proposed method. 

5. Verification of the proposed method

 

To verify the proposed method on the flexural strength of UPT members, 177 test results were

collected from previous researches (Janney et al. 1956, Warwaruk et al. 1962, Du and Tao 1985,

Harajli and Kanj 1991, Campbell and Chouinard 1991, Chakrabarti 1995, Moon et al. 2002, Ozkul

et al. 2005, Ozkul et al. 2008) and entered into a database. Table 2 shows the characteristics of the

collected data. Over 75% of the data were two-points loaded specimens, and the remaining 25%

were one-point or four-points loaded specimens. About 79% of the specimens had bonded

reinforcing bars, and the remaining 21% did not have them. The proposed model is considered to

perform better for members with bonded reinforcing bars due to the assumption on the curvature at

ultimate, but test data on the members without bonded reinforcing bars were also included in the

verification to evaluate the applicability of the proposed method with respect to these members as

well.

Cc Cs′
Ts Tps

fps εps

Table 2 Characteristics of test data in the database established in this study

b (mm) h (mm) fpe (MPa)

range 1 pt. 2 pt. 4 pt. range 1 pt. 2 pt. 4 pt. range 1 pt. 2 pt. 4 pt.

120~160 23 107 0 100~175 0 12 2 750~900 19 54 0

200~470 10 22 9 225~280 10 76 1 900~1050 4 25 1

480~600 0 3 3 300~350 23 44 9 1050~1320 10 53 11

Total 33 132 12 - 33 132 12 - 33 132 12

ρs (%) ρp (%) Reinforcement index*

range 1 pt. 2 pt. 4 pt. range 1 pt. 2 pt. 4 pt. range 1 pt. 2 pt. 4 pt.

0 10 27 0 0.1> 4 8 0 0.03~0.2 11 59 3

0.1~0.5 10 49 12 0.1~0.4 19 69 12 0.2~0.4 16 45 9

0.5~1 9 31 0 0.4~0.7 7 40 0 0.4~0.5 2 12 0

1~2.5 4 25 0 0.7~1.0 3 15 0 0.5~1.0 4 16 0

Total 33 132 12 - 33 132 12 - 33 132 12

*Reinforcing index (R) =

where, 

*Notations that are not specifically mentioned can be found in notation part.

ωp
d

dp

----- ωs ω ′s–( ) 0.36β1≤+

ωp ρp

fpu
f ′c
----- ωs, ρs

fy
f ′c
----- ω ′s, ρ′s

fy
f ′c
-----= = =
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Figs. 12(a) and (b) compare the test results and the proposed approach of the increase of tendon

stress ( ) and the total tendon stress at ultimate ( ), respectively. It is shown that both 

and  calculated by the proposed approach well match test results. For  values,

the mean average (mean), the standard deviation (SD), and the coefficient of variation (COV) were

1.06, 0.37, and 0.35, respectively; and for  values, the mean, SD, and COV were

1.01, 0.09, and 0.09, respectively. It should be noted that, not only for the members with bonded

reinforcing bars, but also for those without bonded reinforcing bars, the proposed approach provided

 and  very close to the test results. Table 3 shows that the proposed equation is more

accurate than the various existing equations that are summarized in Appendix. This implies that the

assumption of idealized curvature distribution at ultimate within the maximum moment zone used in

the proposed approach works well in most cases.

Fig. 13 compares the test results and the  and  values calculated by the proposed

method for 44 UPT members cast with high strength concrete (HSC), over 40 MPa of

compressive concrete strength. In addition, Fig. 13 also shows the resulting values from the

approach by Ozkul et al. (2008), especially proposed for HSC members based on the test results

of specimens with concrete compressive strengths of 77 ~ 90 MPa. From this approach, the values

of mean, SD, and COV of the  ratios were 0.67, 0.28, and 0.43, respectively,

which were 0.91, 0.20, and 0.22, for the proposed method in this study, respectively. This means

that the proposed approach yields more accurate results than the equation of Ozkul et al. (2008)

for the stress increase of tendon at ultimate, which specifically targeted high-strength concrete

members.

Figs. 14(a) to (f) show the ratios of the test results to the predicted values ( ),

from which the performance of the proposed method for the ultimate tendon stress ( ) with

regard to the primary influencing parameters can be examined in more detail. Fig. 14(a) shows the

effect of the maximum moment zone length to the member length as well as loading patterns,

which reveals that  is well predicted by the proposed method without any biased tendency. It

means that the assumption on the curvature and the consideration on the loading pattern introduced

fps∆ fps fps∆
fps fps test,

fps pred,
∆⁄∆

fps test,
fps pred,

∆⁄∆

fps∆ fps

fps∆ fps

fps test,
fps pred,

∆⁄∆

fps test,
fps pred,

∆⁄∆
fps

fps

 Fig. 12 Performance of the proposed method
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in the proposed approach are reasonable and supportive. Fig. 14(b) shows the effect of span-depth

ratio ( ), which reveals that the estimated values well match to the test results in all range of

, approximately between 8 and 48. This implies that the proposed method works well up to

relatively long span members.

Fig. 14(c) shows how well the effect of the amount of the bonded reinforcing bars on ,

including for the cases without any bonded reinforcing bar, was reflected in the proposed approach.

It shows that the effect of bonded reinforcing bars were well considered from the cases without any

bonded reinforcing bar and up to about 2.5% of the ratio of the bonded reinforcing bars, which

coincides with the previous observation in Fig. 12. Fig. 14(d) shows the effect of the reinforcing

index (R) on the performance of the proposed method. Indeed, the values by the proposed method

L dp⁄
L dp⁄

fps

Table 3 Performance of various approaches for predicting ultimate tendon stresses

- Proposed Approach (a) ACI 318 (2008) (b) AASHTO-LRFD (2004)

Mean 1.06 1.01 0.61 0.85 0.65 0.90

SD 0.37 0.09 0.36 0.08 0.46 0.10

COV 0.35 0.09 0.59 0.10 0.70 0.11

(c) Bui and Niwa (2006) (d) Naaman and Alkhairi (1991b) (e) Lee et al. (1999)

Mean 1.03 0.96 0.82 0.91 0.72 0.9

SD 0.87 0.15 0.60 0.09 0.51 0.11

COV 0.84 0.16 0.74 0.10 0.71 0.13

(f) Harajli and Kanj (1991) (g) Warwaruk et al. (1962) (h) Tam and Pannell (1976)

Mean 0.71 0.90 0.41 0.83 0.79 0.94

SD 0.38 0.09 0.22 0.08 0.52 0.13

COV 0.54 0.10 0.54 0.10 0.65 0.13

(i) Robert-Wollmann et al. (2005) (j) Ozkul et al. (2008) (k) Du and Tao (1985)

Mean 0.68 0.90 1.12 0.97 1.17 1.01

SD 0.48 0.11 0.62 0.09 0.71 0.12

COV 0.70 0.13 0.55 0.10 0.60 0.12
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are very close to the test values in all the reinforcing indices. This particularly shows that the

proposed equation accurately predicts the strength of specimens whose reinforcing index exceeds

the limited value,  that the 1999 and earlier edition of ACI code (1995) presented to assure

ductile tension failure. It is considered that this result is due to the proper consideration of the effect

of the amount of tendons and the amount of reinforcing bars in the calculation of the neutral axis

and the tendon stress in Eqs. (11) to (15). Therefore, this demonstrates that the proposed equation

can also be applied to over-reinforced members, which can often occur during repairs and

reinforcing works by external post-tension in construction fields.

Fig. 14(e) examines the effect of the relative stress ratio of the increase of tendon stress due to

loading to the initial prestress ( ) on the estimation of , in which the larger values of

 mean the larger the stress increase due to the applied loading compared to the

initial prestress. It also demonstrates that, in the full range of the  values, the

estimated values of  from the proposed method agree well with the test results.

Fig. 14(f) shows the predicted values of  versus the depths of the neutral axis, which was

calculated by substituting the  from the test results into Eq. (9). The predicted values of  in

all ranges of neutral axis depths are very close to the test results, which means that the average

strain increase of tendons at ultimate ( ) from Eq. (15), as proposed in this study, adequately

reflects the effect of the neutral axis.

In conclusion, as explained by Figs. 13 and 14, the predicted  and  values proposed in this

study adequately consider all the important influencing factors on ultimate tendon stress. Fig. 15

compares the flexural strengths of UPT members predicted by Eq. (18) (  Predicted), based on

the proposed model for , and the test results (  Predicted) reported in the existing literature

(Janney et al. 1956, Warwaruk et al. 1962, Du and Tao 1985, Harajli and Kanj 1991, Campbell and

Chouinard 1991, Chakrabarti 1995, Moon et al. 2002, Ozkul et al. 2005, Ozkul et al. 2008). The

ratios of the analysis results (  Predicted) to the test values (  Tested) yield a mean of 1.07, SD

0.36β1

fpe test,
fps

fps test,
fpe test,

∆⁄∆
fps test,

fpe test,
∆⁄∆

fps
fps

fps fps

εps∆

fps∆ fps

Mn

fps Mn

Mn Mn

 Fig. 13 Estimation of ∆fps and fps for UPT members cast with high strength concrete
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of 0.15, and COV of 0.14, which verifies the good accuracy of the proposed approach for

estimation of the flexural strengths of UPT members. 

 Fig. 14 Performance of the proposed method versus primary influencing parameters
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6. Conclusions

 

In this study, the existing approaches for the estimation of ultimate tendon stresses and the

flexural strengths of UPT members were examined, and a improved approach was proposed. Also,

the accuracy of existing equations and of the proposed equation were evaluated using the database

of 177 test results established in this study, from which the following conclusions are made:

1. The proposed method for the estimation of the ultimate stresses of unbonded tendons and the

flexural strengths of UPT members showed very good agreement with test results reflecting well

the effect of primary influencing parameters, and provided better performance than the existing

approaches examined in this study.

2. The assumption of the ultimate curvature in UPT members subjected to two-point loading, in

which the ultimate curvature is simplified to be distributed equally within the maximum moment

region, and the coefficient of moment shape introduced to consider other loading types are

considered to be reasonable from the analysis results. It was also shown that the proposed method

can also be applied to the UPT members without bonded reinforcement providing a reasonable

estimation of their flexural strengths as well.

3. The approach used in this research of considering the area ratio of moment diagram to account

for the effect of various loading patterns allowed the simple and reasonable estimation of the

flexural strength of UPT members.

4. The proposed method also provided reasonably good estimation of the flexural strengths of the

over-reinforced members, which can often occur when repairing or retrofitting existing structural

members.

5. The proposed approach well predicted the flexural strengths of the UPT members cast with not

only normal-strength concrete but also high-strength concrete.

 

 Fig. 15 Estimation of flexural strength of UPT members
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Notations

 
 α : coefficient of moment shape
 β1 : factor of equivalent rectangular compressive stress block to neutral axis depth
 cm : neutral axis depth in the maximum moment zone at ultimate
 cy : neutral axis depth assuming fps = fpy
 εcu : ultimate concrete strain
 εpe : effective prestrain in prestressing steel = fpe/Eps

∆εpc : strain increase of concrete at the level of tendon after loading
 fc' : specified compressive strength of concrete
 fps : ultimate stress of prestressing tendon
 fpe : effective prestress in prestressing steel
 fpu : tensile strength of prestressing steel
 fpy : yield stress of prestressing steel
 fs : stress of tensile reinforcement
 fs' : stress of comporessive reinforcement 
 fy : yield stress of reinforcing steel
φx : beam curvature
φm : beam curvature at maximum moment zone at ultimate
Ep : modulus of elasticity of prestressing tendon
Es : modulus of elasticity of reinforcing bars
b : flange width
d : distance from extrem compression fiber to centroid of tension reinforcement 
d' : distance from extrem compression fiber to centroid of compression reinforcement
dp : distance from extrem compression fiber to centroid of prestressing tendon
h : height of section
Lm : length of maximum moment region
Lp : plastic hinge length
Aps : area of unbonded prestressing tendon
As : area of tensile reinforcing bars

: area of compressive reinforcing bars
εps : strain of prestressing tendons at ultimate state
ρp : ratio of prestressing tendons = Aps /bp
ρs : ratio of bonded reinforcing bars = As/bd
ωs : tension reinforcement index

: compression reinforcement index
ωp : prestressing steel index
R : reinforcement index
k : ratio of maximum moment region to beam length

: compression force of concrete 
: compression force of reinforcing bar 
: tension force of reinforcing bar
: tension force of prestressing tendon

Mn : ultimate moment capacity

A′s

ω ′s

Cc

C′s
Ts

Tps




