
Structural Engineering and Mechanics, Vol. 38, No. 5 (2011) 651-674 651

Multicut high dimensional model representation for 
reliability analysis 

Rajib Chowdhury1a and B.N. Rao*2

1School of Engineering, Swansea University, Singleton Park, Swansea, UK
2Structural Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, 

Chennai – 600 036, India

(Received July 27, 2010, Accepted March 9, 2011)

Abstract. This paper presents a novel method for predicting the failure probability of structural or
mechanical systems subjected to random loads and material properties involving multiple design points.
The method involves Multicut High Dimensional Model Representation (Multicut-HDMR) technique in
conjunction with moving least squares to approximate the original implicit limit state/performance function
with an explicit function. Depending on the order chosen sometimes truncated Cut-HDMR expansion is
unable to approximate the original implicit limit state/performance function when multiple design points
exist on the limit state/performance function or when the problem domain is large. Multicut-HDMR
addresses this problem by using multiple reference points to improve accuracy of the approximate limit
state/performance function. Numerical examples show the accuracy and efficiency of the proposed
approach in estimating the failure probability.

Keywords: structural reliability; weight function; high dimensional model representation; multiple
design points; failure probability.

1. Introduction

Structural reliability assessment requires the computation of multidimensional probability

integrals. Often, second moment reliability methods such as first- or second-order reliability method

(FORM/SORM) (Breitung 1984, Rackwitz 2001, Adhikari 2004, Nair and Keane 2002, Adhikari

2005) are employed to predict the reliability, provided that the failure function of the structural/

mechanical system can be defined in a closed form (Gavin and Yau 2008). But in reality, the failure

functions are highly nonlinear and implicit in nature. Therefore, a detailed finite element (FE)

modeling of the structure is necessary in combination with reliability analysis tools. FE methods for

linear and nonlinear structures in conjunction with FORM/SORM have been successfully applied

for structural reliability computations (Liu and Der Kiureghian 1991). But, such methods are

effective for evaluating small-scale problems and for small probabilities of failure (Impollonia and

Sofi 2003). In general, FORM/SORM provides fairly accurate estimate of reliability, if single design

point exists on the limit state/performance function and no other important regions are found on the
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limit state/performance function. The existence of multiple design points could give rise to large

errors in traditional FORM/SORM approximations (Adhikari 2004, Der Kiureghian and Dakessian

1998). In that case, multipoint FORM/SORM is required for improving the reliability analysis (Der

Kiureghian and Dakessian 1998).

The limitations of the conventional approximate methods (FORM/SORM) can be suitably

replaced by using simulation methods (Yonezawa et al. 2009, Au and Beck 2001, Melchers 1989,

Rubinstein 1981, Schuëller et al. 2004). But the main disadvantage is that, simulation methods

require tremendous computational effort due to large number of deterministic structural analysis for

different realizations of the random variables. Several issues related to the applicability of FORM/

SORM and the efficiency of simulation methods for reliability analysis have lead many researchers

to assess and improve the viability of approximate methods in the field of reliability and system

safety.

Therefore there is considerable interest to investigate alternate efficient approaches for the

reliability analysis of structural systems. Recently High Dimensional Model Representation

(HDMR) concepts have been successfully applied to find an equivalent continuous function to

replace a univariate or multivariate piece wise continuous function, rather than seeking an exact

continuous function (Chowdhury et al. 2008) and for generation of the original limit state/

performance function to predict the failure probability of structural or mechanical systems subjected

to random loads and material properties with single design point (Chowdhury and Rao 2009). 

This paper presents a novel method for predicting the failure probability of structural or mechanical

systems subjected to random loads and material properties involving multiple design points. The

method involves Multicut-HDMR technique in conjunction with Moving Least Squares (MLS)

technique to approximate the original limit state/performance function with an explicit function. In

this paper a weight function is presented to identify multiple reference points closer to the limit

surface in a rather simplistic manner. Weight function provides an idea about multiple reference

points closer to the limit surface reducing the whole sample space. After identification of reference

points closer to the limit state/performance function, individual Cut-HDMR approximations of the

original limit state/performance function are locally constructed at each of the identified reference

points and subsequently blended to form Multicut-HDMR approximation. MCS is carried out on the

approximated limit state/performance function to estimate the failure probability.

The paper is organized as follows. Section 2 presents a brief overview of HDMR and its

applicability to reliability analysis. Section 3 describes the concepts of Multicut-HDMR. Section 4

describes the weight function for identification of multiple reference points closer to the limit

surface. Section 5 presents approximation of the original limit state/performance function using

Multicut-HDMR. Section 6 details the proposed sampling schemes. Section 7 presents the failure

probability estimation by MCS using the approximate limit state/performance function generated by

Multicut-HDMR. Numerical examples involving elementary mathematical functions and structural

problems are presented in Section 8 to illustrate the proposed method. Comparisons have been made

with alternative approximate (FORM/SORM) and simulation method to evaluate the accuracy and

the computational efficiency of the present method.

2. Fundamentals of HDMR

The fundamental principle underlying the HDMR (Alis and Rabitz 2001, Li et al. 2001a, b, Tunga
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and Demiralp 2004, 2005, Sobol 2003, Yaman and Demiralp 2009) is that, from the perspective of

the output/response, the order of cooperative effects between the independent variables will die off

rapidly. This assertion does not eliminate strong variable dependence or even the possibility that all

the variables are important. Various sources (Alis and Rabitz 2001, Li et al. 2001a) of information

support this point of there being limited high-order correlations. First, the variables in most systems

are chosen to enter as independent entities. Second, traditional statistical analyses of system

behavior have revealed that a variance and covariance analysis of the output in relation to the input

variables often adequately describes the physics of the problem. These general observations lead to

a dramatically reduced computational scaling when one seeks to map input-output relationships of

complex systems.

Evaluating the input-output mapping of the system generates a HDMR. This is achieved by

expressing system response as a hierarchical, correlated function expansion of a mathematical

structure and evaluating each term of the expansion independently. One may show that system

response that is a function of N input variables, , can be expressed as

summands of different dimensions

(1)

where g0 is a constant term representing the mean response of . The function  describes

the independent effect of variable xi acting alone, although generally nonlinearly, upon the output

. The function  gives pair correlated effect of the variables  and  upon the

output . The last term  contains any residual correlated behavior over all of

the system variables. Usually the higher order terms in Eq. (1) are negligible (Li et al. 2001a, Tunga

and Demiralp 2004) such that HDMR with only low order correlations to second-order (Li et al.

2001a), amongst the input variables are typically adequate in describing the output behavior.

The expansion functions are determined by evaluating the input-output responses of the system

relative to the defined reference point  along associated lines, surfaces,

subvolumes, etc. (i.e., cuts) in the input variable space. This process reduces to the following

relationship for the component functions in Eq. (1)

(2)

(3)

(4)
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axis through the reference point. Each second-order term  is evaluated in a plane defined
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subtracting off the lower order expansion functions removes their dependence to assure a unique

contribution from the new expansion function.

Considering terms up to first- and second-order in Eq. (1) yields first- and second-order HDMR

approximation of  as

(5)

and

(6)

respectively. It can also be noted that, compared with FORM (which retains only linear terms) and

SORM (which retains only quadratic terms), first- and second-order HDMR respectively, provides

more accurate approximation  of the original limit state/performance function 

(Chowdhury and Rao 2009). If first-order HDMR approximation is not sufficient second-order

HDMR approximation may be adopted at the expense of additional computational cost.

3. Multicut-HDMR

The main limitation of truncated Cut-HDMR expansion is that depending on the order chosen

sometimes it is unable to accurately approximate , when multiple design points exists on the

limit state/performance function or when the problem domain is large (Li et al. 2001b). In this

section, a new technique based on Multicut-HDMR is presented for approximation of the original

limit state/performance function, when multiple design points exist. The basic principles of Cut-

HDMR may be extended to more general cases. Multicut-HDMR is one extension where several

Cut-HDMR expansions at different reference points are constructed, and the original limit state/

performance function  is approximately represented not by one but by all Cut-HDMR

expansions. In the present work, a new weight function is proposed for identification of multiple

reference points closer to the limit surface. The theme of Multicut-HDMR approximation of the

original limit state/performance function is schematically explained through Fig. 1. 
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function based on the proposed weight function presented later in Section 4. Multicut-HDMR

approximation of the original limit state/performance function is based on principles of Cut-HDMR
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 by taking one at time as reference point as follows
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The original limit state/performance function  is approximately represented not by one but by

blending all locally constructed m individual Cut-HDMR expansions as follows

(8)

The coefficients  possess the properties

(9)

and

(10)

There are a variety of choices to define . In the present study, the metric distance 

from any sample point to the reference point dk; 

(11)
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Fig. 1 Concept of Multi-Cut HDMR approximation of original limit state/performance function in conjunction
with the weight function
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where

(13)

The coefficients  determine the contribution of each locally approximated function to the

global function. The properties of the coefficients  imply that the contribution of all other Cut-

HDMR expansions vanish except one when x is located on any cut line, plane, or higher

dimensional (≤ l) sub-volumes through that reference point, and then the Multicut-HDMR expansion

reduces to single point Cut-HDMR expansion. As mentioned above, the l-th order Cut-HDMR

approximation does not have error when x is located on these sub-volumes. When m Cut-HDMR

expansions are used to construct a Multicut-HDMR expansion, the error free region in input x space

is m times that for a single reference point Cut-HDMR expansion. Therefore, the accuracy will be

improved. 
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performance function  with m reference points can expressed as 
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respectively.
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performance function, for a function having one variable (x) and two variables (x1 and x2) is shown

in Figs. 2(a) and 2(b) respectively. Initial reference point is taken as mean value of the random

variables; (b) The limit state/performance function is evaluated at each sample point; (c) Using the

limit state/performance function responses at all sample points, the weight corresponding to each

sample point is evaluated using the following weight function 

(16)

Second-order method of identification of reference points closer to the limit state/performance

function, proceeds as follows: (a) A regular grid is formed by taking  equally

spaced sample points , , …, , …, ,

 along  axis with mean  and standard deviation , and 

equally spaced sample points , , …, , …, ,

 along  axis with mean  and standard deviation , through an initial

reference point. Second-order method for identification of multiple reference points closer to the

limit state/performance function, for a function having two variables (x1 and x2) is shown in Fig. 3.

Initial reference point is taken as mean value of the random variables; (b) The limit state/

performance function is evaluated at each sample point; (c) Using the limit state/performance

function responses at all sample points, the weight corresponding to each sample point is evaluated
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(17)

Sample points  with maximum weight are selected as reference points closer to the

limit state/performance function, for construction of m individual Cut-HDMR approximations of the

original limit state/performance function locally. 

5. Limit state/performance function generation

Multicut-HDMR in Eq. (8) is exact along any of the cuts through m reference points

, and the output response  at a point x off of the cuts can be obtained as follows:

Step 1: Interpolate each of the low dimensional individual Cut-HDMR expansion terms with

respect to the input values of the point x. For example, consider the first-order component function

 for k-th reference point. If for , n function values 
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where

(20)

Similarly, consider the second-order component function. 

. If for , and , n2 function values 
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reference points closer to the limit state/performance function as

(24)

and

   (25)

respectively.

In contrast to FORM (which retains only linear terms) and SORM (which retains only quadratic

terms), first- and second-order Multicut-HDMR respectively, provides more accurate approximation

 of the original limit state/performance function . If first-order Multicut-HDMR

approximation is not sufficient second-order Multicut-HDMR approximation may be adopted at the

expense of additional computational cost. 
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locally constructed individual first-order HDMR approximations of the original limit state/

performance function (adopting sampling scheme shown in Figs. 2(a) or 2(b)) at different identified

reference points  using the coefficients  to form Multicut-HDMR approximation

 of  using Eq. (24). Fig. 4(b) shows FS sampling scheme involving first-order method of
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identification of reference points closer to the limit state/performance function (adopting sampling

scheme shown in Figs. 2(a) or 2(b)) and blending of locally constructed individual second-order

HDMR approximations of the original limit state/performance function (adopting sampling scheme

shown in Fig. 3) at different identified reference points  using the coefficients  to

form Multicut-HDMR approximation  of  using Eq. (25). Fig. 5(a) SF sampling scheme

involving second-order method of identification of reference points closer to the limit state/

performance function (adopting sampling scheme shown in Fig. 3) and blending of locally

constructed individual first-order HDMR approximations of the original limit state/performance

function (adopting sampling scheme shown in Figs. 2(a) or 2(b)) at different identified reference

points  using the coefficients  to form Multicut-HDMR approximation  of

d
1
d
2 … d

m, , , λk x( )
g̃ x( ) g x( )

d
1
d
2 … d

m, , , λk x( ) g̃ x( )

Fig. 4 Multi-Cut HDMR approximation of original
limit state/performance function; with (a) FF
sampling scheme and (b) FS sampling scheme

Fig. 5 Multi-Cut HDMR approximation of original
limit state/performance function; with (a) SF
sampling scheme and (b) SS sampling scheme
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 using Eq. (24). Fig. 5(b) SS sampling scheme involving second-order method of identification

of reference points closer to the limit state/performance function (adopting sampling scheme shown

in Fig. 3) and blending of locally constructed individual second -order HDMR approximations of

the original limit state/performance function (adopting sampling scheme shown in Fig. 3) at

different identified reference points  using the coefficients  to form Multicut-

HDMR approximation  of  using Eq. (25).

7. Failure probability estimation

The failure probability PF can be easily estimated by performing MCS on first- or second-order

Multicut-HDMR approximation  of the original limit state/performance function 

(obtained by using Eqs. (24) and (25) and adopting any of four types of sampling schemes

discussed above) and is given by 

g x( )

d
1
d
2 … d

m, , , λk x( )
g̃ x( ) g x( )

g̃ x( ) g x( )

Fig. 6 Flowchart of failure probability PF estimation using first-order Multi-Cut HDMR approximation of
original limit state/performance function 
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(26)

where xi is ith realization of X, NS is the sampling size,  is a deciding function of fail or safe

state such that , if  otherwise zero. A flow diagram for the limit state/performance

function generation using first-order Multicut-HDMR approximation with multiple reference points

closer to the limit state/performance function and the failure probability PF estimation by MCS is

shown in Fig. 6. Likewise, computational flow for the limit state/performance function generation

using second-order Multicut-HDMR approximation with multiple reference points closer to the limit

PF
1

Ns

----- I g̃ x
i( ) 0<[ ]

i 1=

N
s

∑=

I ·[ ]
I 1= g̃ x

i( ) 0<

Fig. 7 Flowchart of failure probability PF estimation using second-order Multi-Cut HDMR approximation of
original limit state/performance function 
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state/performance function and the failure probability PF estimation by MCS is shown in Fig. 7. The

reliability index β corresponding to the failure probability PF can be obtained by

(27)

where  is the cumulative distribution function of a standard Gaussian random variable.

8. Numerical examples

Three numerical examples involving explicit performance functions from mathematical problems

(Examples 1 and 2) and performance functions from structural or solid-mechanics problems

(Example 3) are presented to illustrate the proposed method. To evaluate the accuracy and the

efficiency of the present method, comparisons of the estimated failure probability PF using Multicut-

HDMR (given by Eqs. (24) and (25) and adopting any of four types of sampling schemes discussed

above) based and second-order HDMR (given by Eq. (6)) approximation of the original limit state/

performance function, have been made with FORM/SORM and direct MCS. The coefficient of

variation δ of the estimated failure probability PF by direct MCS for the sampling size NS

considered, is computed using

(28)

When comparing computational efforts by various methods in evaluating the failure probability

PF, the number of original limit state/performance function evaluations is chosen as the primary

comparison tool in this paper. This is because of the fact that, number of function evaluations

indirectly indicates the CPU time usage. For direct MCS, number of original function evaluations is

same as the sampling size. While evaluating the failure probability PF through direct MCS, CPU

time is more because it involves number of repeated actual finite-element analysis. However, in the

present method MCS is conducted in conjunction with the proposed approximation of the original

limit state/performance function based on Multicut-HDMR. Here, although the same sampling size

as in direct MCS is considered, the number of original function evaluation is very less. Hence, the

computational effort expressed in terms of function evaluations alone should be carefully interpreted

for problems involving explicit functions. In all the sampling schemes the initial reference point c is

taken as mean values of the random variables. In all the numerical examples presented same value

of n is used for identification of multiple reference points closer to the limit state/performance

function and subsequently for construction of local individual Cut-HDMR expansions, even though

different values of n could be adopted. 

8.1 Example 1: parabolic performance function

The limit state/performance function considered is a parabola of the form

(29)

with two independent standard normal variables x1 and x2. As shown in Fig. 8 the limit state

β Φ 1–
PF( )–=

Φ •( )

δ
1 PF–( )
NSPF

------------------=

g x( ) 7 x1
2

– x2–=
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function given by Eq. (29) is symmetric about x2 and has two design points. The two actual design

points obtained using recursive quadratic programming (RQP) algorithm (Arora 2004) are (2.54,

0.49) and (−2.54, 0.49) with reliability indices .

Table 1 illustrates computational details and identification of reference points  using

FF sampling scheme with five equally spaced sample points (n = 5) along each of the variable axis.

Table 1 shows two reference points (2, 0) and (−2, 0) closer to the limit state/performance function
producing maximum weight (obtained using Eq. (16)). After identification of the two reference points

(2, 0) and (−2, 0), local individual first-order HDMR approximations of the original limit state/

performance function are constructed at the two reference points by deploying five equally spaced

sample points (n = 5) along each of the variable axis. Local approximations of the original limit state/

performance function are blended together (using Eq. (24)) to form global approximation. Comparison

of the failure probability estimation by different methods is presented in Table 2. A sampling size

 is considered in direct MCS to evaluate the failure probability PF and the coefficient of

variation (COV) of PF corresponding to this sampling size is 0.01 (computed using Eq. (28)). 

β1 β2 2.588= =

d
1
d
2 … d

m, , ,

NS 10
6

=

Fig. 8 Limit state function of Example 1 

Table 1 Identification of multiple design points for Example 1 with FF sampling

Sample points Response Minimum response
wI

x1 x2

−2.00 0.00 3.00

3

1.00

−1.00 0.00 6.00 0.37

0.00 0.00 7.00 0.26

1.00 0.00 6.00 0.37

2.00 0.00 3.00 1.00

0.00 −2.00 9.00 0.14

0.00 −1.00 8.00 0.19

0.00 0.00 7.00 0.26

0.00 1.00 6.00 0.37

0.00 2.00 5.00 0.51

g x( ) g x( )
min
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Table 2 Estimation of failure probability for parabolic function in Example 1 

Method Failure probability Number of function evaluation(a)

FORM 0.004823 41

SORM (Adhikari 2004) 0.004926 116

Direct Monte Carlo simulation 0.009747 106

Multicut-HDMR Approximation: FF sampling 0.009747 21

Multicut-HDMR Approximation: FS sampling 0.009747 45

Multicut-HDMR Approximation: SF sampling 0.009747 33

Multicut-HDMR Approximation: SS sampling 0.009747 45

Second-order HDMR 0.009747 25

(a)Total number of times the original performance function is calculated.
(b)Curvature fitting method is used to approximate the required curvatures of the limit-state surface.

Table 3 Identification of multiple design points for Example 1 with SF sampling

Sample points Response Minimum response
wII

x1 x2

−2 −2 5 1 0.02

−1 −2 8 0.00

0 −2 9 0.00

1 −2 8 0.00

2 −2 5 0.02

−2 −1 4 0.05

−1 −1 7 0.00

0 −1 8 0.00

1 −1 7 0.00

2 −1 4 0.05

−2 0 3 0.14

−1 0 6 0.01

0 0 7 0.00

1 0 6 0.01

2 0 3 0.14

−2 1 2 0.37

−1 1 5 0.02

0 1 6 0.01

1 1 5 0.02

2 1 2 0.37

−2 2 1 1.00

−1 2 4 0.05

0 2 5 0.02

1 2 4 0.05

2 2 1 1.00

g x( ) g x( )
min
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Effect of FS sampling scheme on the estimated failure probability PF is studied by constructing

local individual second-order HDMR approximations of the original limit state/performance function

at the two reference points (2, 0) and (−2, 0) by forming a regular grid around the two reference
points with five equally spaced sample points (n = 5) along each of the variable axis. Local

approximations of the original limit state/performance function constructed at the two reference

points are blended together (using Eq. (25)) to make a global approximation. Table 2 also shows the

failure probability PF estimate obtained by the proposed method based on FS sampling scheme. 

Table 3 presents computational details and identification of reference points closer to the limit

state/performance function using SF sampling scheme. Five equally spaced sample points n = 5

along each of the variable axis are deployed to form a regular grid through the initial reference

point c. Table 3 shows two reference points (2, 2) and (−2, 2) closer to the limit state/performance
function producing maximum weight (obtained using Eq. (17)). After identification of the two

reference points (2, 2) and (−2, 2), local individual first-order HDMR approximations of the original

limit state/performance function are constructed at the two reference points by deploying five

equally spaced sample points (n = 5) along each of the variable axis. Local approximations of the

original limit state/performance function are blended together (using Eq. (24)) to form global

approximation. The failure probability PF estimate obtained by the proposed method based on SF

sampling scheme is shown in Table 2. 

In addition, effect of SS sampling scheme on the estimated failure probability PF is studied by

constructing local individual second-order HDMR approximations of the original limit state/

performance function at the two reference points (2, 2) and (−2, 2) by forming a regular grid around
the two reference points with five equally spaced sample points (n = 5) along each of the variable

axis. Local approximations of the original limit state/performance function constructed at the two

reference points are blended together (using Eq. (25)) to make a global approximation. Table 2 also

shows the failure probability PF estimate obtained by the proposed method based on SS sampling

scheme. 

In an effort to reduce the computational effort in FF, FS, SF and SS sampling schemes without

compromising on the accuracy of the failure probability estimate second-order HDMR

approximation of the original limit state/performance function (refer Eq. (6)) is constructed using a

regular grid formed with five equally spaced sample points (n = 5) along each of the variable axis

with reference point taken as the mean value of the random variables. Table 2 also shows the failure

probability PF value obtained using second-order HDMR approximation (refer Eq. (60) and the

associated computational effort in terms of number of function evaluations. Interestingly, second-

order HDMR approximation does not require any knowledge of existence of multiple reference

points  closer to the limit state/performance function. This is mainly due to the

sampling performed on a plane through the reference point and thus existence of multiple reference

points closer to the limit state/performance function, are taken care inherently. The estimated failure

probability PF using second-order HDMR approximation is also in good agreement with direct

MCS estimate. 

The effect of number of sample points used for multipoint approximation of the original limit

state/performance function using FF, FS sampling schemes and second-order HDMR approximation

on the reliability estimation is examined by carrying a similar analysis varying n form 3 to 9.

Fig. 9(a) and Fig. 9(b) presents respectively, the variation of the reliability index β and the estimated

failure probability PF with respect to number of sample points. 

d
1
d
2 … d

m, , ,
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8.2 Example 2: two mathematical functions

The limit state/performance function of the following form with two independent standard normal

variables x1 and x2 is considered

(30)

 are real valued parameters and r is an integer valued parameter. 

Case I: C1 = 5, C2 = 0.5, C3 = 2, C4 = 1.5, r = 3:

Fig. 10(a) shows the limit state/performance function. This function has two design points (0, 3)

and (1.62, 3.06), with two reliability indices , and with , which are obtained

using RQP algorithm (Arora 2004). The proposed method in conjunction with all the four sampling

schemes i.e., FF, FS, SF and SS is studied by taking n = 7. Using FF sampling scheme, sample

point (0, 3) is identified as reference point closer to the limit state/performance function producing

g x( ) C1 C2 x1 C3+( )r C4 x1 C3+( )2– x2–+=

C1 C2 C3 C4, , ,

β1 3= β2 3.462=

Fig. 9 Variation of reliability estimation (Example 1) (a) reliability index, β and (b) probability of failure, PF

Fig. 10 Limit state function of Example 2 (a) Case I, (b) Case II
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maximum weight (obtained using Eq. (16)). Table 4 compares the failure probability estimation by

different methods and associated computational efforts. A sampling size  is considered in

direct MCS to evaluate the failure probability PF and the COV of PF corresponding to this sampling

size is 0.038 (computed using Eq. (28)). In this example one of the design points is located along x2
coordinate axis and the second design point is located at disparate distance (difference between two

reliability indices is 0.462) from the origin. Therefore, the contribution to the failure probability

estimate from the second design point is very less. The failure probability estimate by the proposed

Multicut-HDMR approximation with FF sampling scheme is more accurate and efficient than either

FORM or SORM and requires significantly less computational effort than direct MCS for the same

accuracy. Table 4 also shows the failure probability PF value obtained using Multicut-HDMR

approximation of the original limit state/performance function with FS, SF, and SS sampling

schemes and second-order HDMR approximation with n = 7. 

Case II: C1 = 3, C2 = 2, C3 = −0.1, C4 = 1.0, r = 4:

Fig. 10(b) shows the limit state/performance function. For this function RQP algorithm (Arora

2004) results in two design points (0.5355, 2.9202) and (−0.2742, 2.8763), with two reliability
indices , and with . Again the proposed method in conjunction with all the

four sampling schemes i.e., FF, FS, SF and SS is studied by taking n = 7. Using FF sampling

scheme, one sample point (0, 3) is identified as reference point closer to the limit state/performance

function producing maximum weight (obtained using Eq. (16)). FF sampling scheme identifies only

one sample point as reference point, due to the reason that the sample points are positioned along

the coordinate axes and the limit state/performance function is almost flat along the coordinate axis

x1. Comparison of the failure probability estimation by different methods and associated

computational efforts are listed in Table 5. Compared with the benchmark result of direct MCS with

COV = 0.032, the present method using FF sampling scheme provides significant accuracy to the

failure probability estimation (error ≅ 0.093%) than FORM or SORM. 

The present method using FS sampling scheme predicts the failure probability more accurately

(error ≅ 0.062%) than the present method using FF sampling scheme at the expense of the

additional computational effort. Using SF sampling scheme, one sample point (0, 3) is identified as

the reference point closer to the limit state/performance function producing maximum weight

NS 10
6

=

β1 2.932= β2 2.912=

Table 4 Estimation of failure probability of Example 2 (Case I) 

Method Failure probability Number of function evaluation(a)

FORM 0.001349 21

SORM (Adhikari 2004) 0.000409 188

Direct Monte Carlo simulation 0.000698 106

Multicut-HDMR Approximation: FF sampling 0.000672 22

Multicut-HDMR Approximation: FS sampling 0.000689 52

Multicut-HDMR Approximation: SF sampling 0.000692 58

Multicut-HDMR Approximation: SS sampling 0.000698 100

Second-order HDMR 0.000696 49

(a)Total number of times the original performance function is calculated.
(b)Curvature fitting method is used to approximate the required curvatures of the limit-state surface.
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(obtained using Eq. (16)). Inability of properly identifying the two reference point closer to the limit

state/performance function, even with grid based sampling (i.e., SF sampling scheme) is due to the

following reason. The x1 coordinates of actual design points (0.5355, 2.9202) and (−0.2742, 2.8763)
obtained using RQP algorithm (Arora 2004) are 0.5355 and −0.2742. The sampling schemes
adopted in this study involves equally spaced sample points along each of the variable axis, or a

regular grid formed by taking equally spaced sample points along each of the variable axis, The

position of the sample points depends on the standard deviations σi of each of the random variables.

In the present case, standard deviation of both the random variable is 1 and the initial reference

point c is taken as mean values of the random variables, which is zero. Therefore, using any of the

sampling schemes, the sample points are always positioned at a minimum distance of 1 unit from

each other. As x1 coordinates of the two design points are 0.5355 and −0.2742, these two design
points are within a unit distance from x2 coordinate axis the weight functions presented in Eqs. (16)

and (17) are producing only one point (0, 3) having maximum weight.

8.3 Example 3: 10-storey building with vibration absorber

Consider a 10-story shear building with a vibration absorber (VA) at the roof. The building is

modelled in SAP2000 (Computers and Structures 2004) by a 10-DOF multi-linear plastic link

system and the VA is modelled by a SDOF mass-spring-damper attached to the roof of the building,

as shown in Fig. 11. The system is excited by random harmonic base accelerations. This problem is

first studied by Der Kiureghian and Dakessian (1998) and subsequently by Gupta and Manohar

(2004) in the context of illustrating the treatment of multiple design points in reliability analysis. In

their study VA was modelled in such a way that, natural frequency of the system and VA coincides.

But due to randomness of material and structural properties a perfect tuning would not occur in all

sample realizations of the problem. Thus, depending on the relative values of the VA frequency and

building frequency, the entire system could be either overtuned or undertuned. Therefore, it leads to

two regions of importance in reliability estimation. The building has each floor masses mi,
, storey stiffnesses ki,  and modal damping ratios ξi, .

The VA has mass m0 and stiffness k0. In the present study, all the structural parameters

 have been considered to be uncertain parameters along with the

i 1 … 10, ,=( ) i 1 … 10, ,=( ) i 1 … 10, ,=( )

m0 … m10 k0 … k10 ξ0 … ξ10, , , , , , , ,

Table 5 Estimation of failure probability of Example 2 (Case II)

Method Failure probability Number of function evaluation(a)

FORM 0.001687 21

SORM (Adhikari 2004) 0.000552 188

Direct Monte Carlo simulation 0.000968 106

Multicut-HDMR Approximation: FF sampling 0.000967 22

Multicut-HDMR Approximation: FS sampling 0.000967 52

Multicut-HDMR Approximation: SF sampling 0.000967 52

Multicut-HDMR Approximation: SS sampling 0.000967 63

Second-order HDMR 0.000948 49

(a)Total number of times the original performance function is calculated.
(b)Curvature fitting method is used to approximate the required curvatures of the limit-state surface.
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frequency ω of the ground acceleration . Therefore, total 34 random variables are

considered in the formulation of reliability problem. All the random variables are taken as

independent. Statistical properties of the random variables and their distributions are presented in

Table 6.

For reliability analysis we consider the limit state/performance function expressed in terms of base

shear and is given by 

(31)

For the mean values listed in the Table 6, the first mode frequency of the structure and the VA are

identical and equal to 1.16 Hz. We also assume that threshold quantity of the base shear

.

Asin ωt( )

g x( ) V0 VBase x( )–=

V0 2
5×10 kN=

Fig. 11 10-storey building with vibration absorber 

Table 6 Statistical properties of the random variables of Example 3

Random 
variable

m0 k0 ω

Distribution LN LN LN LN LN Uniform

Mean 0.05 [5.39-7.79] 
rad/sC.O.V. 0.2 0.2 0.2 0.2 0.3

m1 … m10, , k1 … k10, , ξ0 … ξ10, ,

8.75
4

×10 kg 2.1
8

×10 N/m 7.16
4

×10 kg 3.85
6

×10 N/m
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To study the applicability of weight function present in this study for identification of multiple

reference points closer to the limit state/performance function, FF sampling scheme is used with

seven equally spaced sample points (n = 7) along each of the variable axis. Two sample points are

identified as reference points closer to the limit state/performance function producing maximum

weight (obtained using Eq. (16)). The weights of two identified points are 1.0 and 0.98. Eigenvalue

analysis of 11-DOF system with the structural properties at sample point with the weight equal to

1.0 reveals the fundamental frequency of the building as 0.80 Hz and that of VA as 1.09 Hz. This

situation indicates the case where VA is overtuned. Similarly, eigenvalue analysis with the structural

properties at sample point with the weight equal to 0.98 reveals the fundamental frequency of the

building as 1.02 Hz and that of VA as 0.68 Hz. This situation indicates the case where VA is

undertuned. After identification of the two reference points closer to the limit state/performance

function, local individual first-order HDMR approximations of the original limit state/performance

function are constructed at the two reference points by deploying seven equally spaced sample

points (n = 7) along each of the variable axis. Local approximations of the original limit state/

performance function are blended together (using Eq. (24)) to form global approximation of the

original limit state/performance function. Comparison of the estimated failure probabilities is shown

in Fig. 12, for A varying from 0.2 m/s2-0.5 m/s2. The results are obtained using FORM, SORM

(Adhikari 2004), Multicut-HDMR approximation of the original limit state/performance function

using FF sampling scheme, and direct MCS using 5000 samples. Compared with actual simulation

result of MCS, the present method consistently provides accurate estimation to the failure

probability, while FORM/SORM results fluctuate with the variation of A. To study the performance

of the proposed method, comparative study is carried out with improved response surface method

(Gupta and Manohar 2004), at m/s2. Compared with benchmark solution (PF = 0.1748),

FORM and SORM overestimates the failure probability by around 24.31% (PF = 0.2173) and 7.15%

(PF = 0.1873), respectively. Multicut-HDMR approximation and improved response surface method

(Gupta and Manohar 2004) underestimates the failure probability by about 4.41% (PF = 0.1671) and

10.29% (PF = 0.1568), respectively. However, the present method needs only 615 function

evaluations, while improved response surface method (Gupta and Manohar 2004) and direct MCS

A 0.4=

Fig. 12 Probability of failure for Example 3
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requires 14317 and 5000 number of original function evaluations, respectively. This shows the

accuracy and the efficiency (in terms of original function calculations) of the multicut-HDMR

approximation, over existing methods and direct MCS. 

9. Conclusions

This paper presented a novel method for predicting the failure probability of structural/mechanical

systems involving multiple design points. The method involves multicut-HDMR technique using

multiple reference points and MLS as interpolation scheme. A new weight function is proposed for

identification of multiple reference points closer to the limit surface. The failure probability is

estimated by constructing multicut-HDMR approximation of the original limit state/performance

function around the identified reference points. 

Three numerical examples are illustrated to show the performance of the present method.

Numerical examples show that the proposed method not only yields more accurate estimate of the

failure probability than the alternative approximate methods (FORM/SORM) for highly nonlinear

problems, but also reduces the computational effort significantly over direct MCS. Four types of

sampling schemes, namely FF, FS, SF, and SS, are adopted in this study for multicut-HDMR

approximation of the original limit state/performance function construction. Multicut-HDMR

approximation using FF and FS sampling scheme provides desired accuracy to the predicted failure

probability with least number of function evaluations. In order to reduce the approximation error

further, SF and SS sampling based multicut-HDMR approximation of the original limit state/

performance function could be used in reliability analysis, but the number of function evaluations

increases significantly compared to FF and FS sampling. It is also observed that, second-order

HDMR approximation of the original limit state/performance function does not require any

knowledge of existence of multiple reference points closer to the limit state/performance function.

This is mainly due to the sampling performed on a plane through the reference point and thus

existence of multiple reference points closer to the limit state/performance function, are taken care

inherently. A parametric study is conducted with respect to the number of sample points n used in

FF and FS sampling based multicut-HDMR approximation and its effect on the estimated failure

probability is investigated. An optimum number of sample points n must be chosen in

approximation of the original limit state/performance function. It can be observed from the reported

results in this manuscript, that n = 5 or 7 works well for all problems.
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