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Abstract. This paper presents analytical solutions for skewed thick plates under transverse loading that
have previously been unreported in the literature. The thick plate solution is obtained in a framework of
an oblique coordinate system. The governing equation is first derived in the oblique coordinate system,
and the solution is obtained using deflection and rotation as partial derivatives of a potential function
developed in this research. The solution technique is applied to three illustrative application examples, and
the results are compared with numerical solutions in the literature and those derived from the commercial
finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution
may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design
or evaluation analyses, and to form special elements for finite element analysis. At the same time, the
analytical solution developed in this research could be used to develop methods to address post-buckling
and dynamic problems.

Keywords: skewed plates; thick plates; Mindlin theory; analytical functions; first order shear deformation
theory.

1. Introduction

Skewed plates are important structural elements which are used in a wide range of applications

including skewed bridges. In recent decades there have been efforts to analytically investigate the

behavior of skewed plates, in spite of the mathematical challenges involved. For example, Morley

presented the relationships between rectangular and oblique coordinate systems for load responses in

skewed plates (Morley 1962, 1963). This work began with the derivation of a governing equation

for isotropic skewed thin plates. The governing equation was analytically solved using a

trigonometric series and, numerically, the finite difference method. In deriving the governing

equation, the Kirchhoff theory was applied. This assumes that straight lines perpendicular to mid-
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surface (i.e., the transverse normals) remain straight and normal to the mid-surface after deformation

and the mid-surface does not deform. The Kirchhoff theory is widely used in plate analysis, not

only in analytical research (Ramadoss and Nagamani 2009), but also in numerical research

including the finite element method (FEM) (Dawe 1966, Monforton and Schmit 1968, Ming and

Song 1987, Razaqpur et al. 2003), the finite strip method (Tham et al. 1986, Wang and Hsu 1994,

Cheung and Tham 1998), and the finite difference method (Timoshenko and Woinowsky-Krieger

1959). However, it has the problem of under-predicting deflections when the thickness-to-side ratio

becomes large because it neglects the effect of transverse shear deformation (Reddy 2007).

To address this issue, the Mindlin theory was developed by Reissner (1945) and Mindlin (1951).

This relaxes the perpendicular restriction for transverse normals and allows them to have an

arbitrary but constant rotation to account for the effect of transverse shear deformation. In addition,

there are several other theories, such as the ones by Hencky (1947) and Veubeke and Sander (1968).

Several numerical studies on skewed plates have employed the Mindlin theory for static analysis

of bending behavior and are worth mentioning. For example, Sengupta (1991, 1995) analyzed

isotropic skewed plates using FEM based on the proposed two types of Mindlin triangular plate

elements. The paper presented numerical results for different skew angles and support conditions to

illustrate the effectiveness of the proposed elements. Ramesh et al. (2008, 2009) presented FEM

results for the thick plate problem of various shapes with skew using a higher-order triangular plate

element based on the Mindlin theory and Reddy’s theory. It was concluded that this element can

predict stress distribution better than the most commonly used lower-order plate element because

stress resultants involve higher-order derivatives of the displacements. Carstensen et al. (2010)

developed a quadrilateral FEM using the lowest order for Reissner-Mindlin plates on the basis of

the Hellinger-Reissner variational principle, which includes variables of displacements, shear

stresses and bending moments. Nguyen-Xuan et al. (2008) also developed a new type of

quadrilateral element with smoothed curvatures for Reissner-Mindlin plates. Their research

employed a stabilized conforming nodal integration technique which is used in the mesh-free

Galerkin weak form. Due to this characteristic, the element is expected to provide an appropriate

answer to the problems of large deformation and strain. Liu et al. (2008) and Nguyen-Xuan et al.

(2010) studied an edge-based smoothed finite element method (ES-FEM) using the 3-node

triangular Mindlin element. Compared to conventional FEM, the ES-FEM would offer several

advantages, including a higher convergence rate and better computational efficiency. Although the

ES-FEM should be able to solve the skewed thick plates problem, their method was only verified

by the analytical solution for skewed thin plates because no analytical solution for skewed thick

plates was available at that time. The analytical solution developed in our research is expected to

give a good benchmark to help such research. Liew and Han (1997) analyzed simply-supported

isotropic skewed thick plates using the differential quadrature method (DQM). The DQM

approximates a partial derivative of a function at a given discrete point as a weighted linear

combination of the function values at all the discrete points. Both thin and thick plates were

analyzed under several boundary conditions. 

As described above, there are a number of numerical solutions. However, they are quite different

to each other and thus it is difficult to judge which of them is valid. Meanwhile, despite these

numerical solutions, no analytical or exact solutions have been reported in the literature for skewed

thick plates. This paper will report such a solution and is expected to resolve the issue of variation

in numerical solutions. First, a governing differential equation based on the Mindlin theory in the

oblique coordinate system is developed below, and then it is solved using a sum of polynomial and
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trigonometric functions. The present method allows consideration of anisotropic materials, various

loading conditions, and different boundary conditions. 

The governing equation and analytical solution presented in this paper are expected to be further

developed in studies including post-buckling analysis and dynamic analysis of skewed thick plates,

which have received attention in recent years. For example, Liao and Huang (2008) analyzed post-

buckling behavior by the Ritz method, and Garcea (2009) employed FEM to analyze it. Meanwhile,

in the vibration analysis, the spline method (Mizusawa and Kondo 2001, Mizusawa et al. 2007), the

DQM (Liew et al. 2003, Malekzadeh 2005, 2008), and the discrete singular convolution method

(Gürses et al. 2009, Civalek 2009) have been studied. However, although, as shown above, there are

a number of numerical solutions, as with the static bending problem, no analytical solution exists at

present. Our solution may provide the possibility to develop such an analytical solution.

2. Governing equation in an oblique coordinate system

2.1 Oblique coordinate system

When a plate’s boundary profile is a parallelogram, the oblique Cartesian coordinate system can

be advantageous. We first present the concept of an oblique coordinate system and then derive the

governing differential equation of skewed thick plates based on the Mindlin theory. Fig. 1 shows an

oblique coordinate system spanned by the X and Y axes, along with the reference rectangular system

by x and y, with angle XOY denoted as skew angle α. Parallelogram ABCD in Fig. 1 represents the

skewed plate of interest, and the edge lengths CD and AD are 2a and 2b, respectively. 

The relationship between the rectangular and oblique coordinate systems can be written as follows

(Morley 1963, Liew and Han 1997, Szilard 2004)

Fig. 1 A skewed plate in an oblique coordinate system
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(1)

(2)

(3)

where φX and φY are respectively the rotations normal to the X and Y axes. The corresponding

relationships for strain, moment, and shear force under the two coordinate systems are also available

as follows

(4)

(5)

(6)

The moment-strain relationship of the rectangular and oblique coordinate system can be described

as in the following Eqs. (7) and (8), respectively (Reddy 2007).

(7)

(8)

where [Dr] and [Do] are flexural stiffness matrices of the rectangular and oblique coordinate system.

The flexural stiffness matrices relate the moments to the curvatures in the respective coordinate

systems. For example, [Dr] in the rectangular coordinate system for isotropic material is

(Timoshenko and Woinowsky-Krieger 1959) 
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(9)

where E is Young’s modulus, ν is Poisson’s ratio, and t is the thickness of the plate.

Since the Mindlin theory assumes that the transverse normals do not experience elongation,

Eqs. (7) and (8) are changed into the following Eqs. (10) and (11).

(10)

(11)

From the following calculation (12) based on Eqs. (4), (5), (7), and (8), the flexural stiffness matrix

in the oblique coordinate system [Do] is related to that of the rectangular system [Dr] as in Eq. (13).

(12)

 

 

 

 



554 Pang-jo Chun, Gongkang Fu and Yun Mook Lim

(13)

Note that Eq. (13) is also applicable for other more complex situations, such as orthotropic or

anisotropic materials. In addition, it is pointed out that [Do] in Eq. (13) is a symmetric matrix when

[Dr] is symmetric. The relationships between the shear force and the deflection and rotation angles

are described as in Eqs. (14) and (15). 

(14)

(15)

where w is the transverse deformation perpendicular to the plane of the plate, Ks is the shear

correction factor to account for non-uniform transverse shear distribution, and [Ar] and [Ao] are the

extensional stiffness matrices in the rectangular and oblique coordinate system, respectively. The

extensional stiffness matrix relates the shear forces to the shear strains. For example, [Ar] for

isotropic material is 

(16)

From the following calculation (17) based on Eqs. (3), (6), (14), and (15), the extensional stiffness

matrix in the oblique coordinate system [Ao] is related to that of the rectangular system [Ar] as in

Eq. (18).
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(17)

(18)

Similar to the flexural stiffness matrix, [Ao] is a symmetric matrix and also applicable not only for

isotropic material, but also other more complex materials. From the relationships derived in this

section, the governing equation of skewed thick plate bending is developed in the next section.

2.2 Governing equation of skewed thick plate bending

Hereafter, the components in [Do] and [Ao] are referred to using their respective elements D11 to

D33 and A44 to A55 as follows

(19)

where the diagonal components of [Do] relate the moments to the curvatures in the same directions.

The off-diagonal terms relate the same moments to the curvatures in other directions due to the

Poisson's effect and coordinate system obliquity. Similarly, the diagonal components of [Ao] relate

the shear forces to the shear strains in the same directions, and off-diagonal terms to the shear

strains in other directions due to obliquity.

The following Eqs. (20) to (22) are equilibrium conditions of the skewed plates shown in Fig. 1.

Equilibrium of force in the z direction

(20)

Equilibrium of moments along the X axis

(21)

Equilibrium of moments along the Y axis

(22)

where Q in Eq. (20) is the load normal to the upper surface of the plate.

By substituting Eqs. (12), (13), (17) and (18) into (20) to (22), the following Eqs. (23) to (25) are

obtained in the oblique system.

(23)
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(24)

(25)

To make the solution process simpler, a new function ψ is introduced below to represent the

condition of the skewed thick plate. We assume that w consists of terms up to the 4th derivative and

φX and φY up to the 3rd derivative of ψ, with respect to the spatial variables X and Y. The following

relations in Eqs. (26) to (28) are obtained to satisfy Eqs. (24) and (25).

 (26)

 (27)

(28)

By substituting these relations into Eq. (23), the governing equation of the Mindlin skewed thick

plate is then formulated as a 6th order partial differential equation as follows

 (29)

where L is a linear differential operator in the oblique coordinate system 

 

 

 

 

 

L ψ( ) Q–=
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(30)

3. Analytical solution in series form

In this section, a general solution to the governing differential equation Eq. (29) is developed as

the sum of a fundamental (homogeneous) and a particular (non-homogeneous) solution, detailed

separately next.

3.1 Homogeneous solution

The homogeneous solution øh is the solution to Eq. (29) for Q = 0, obtained as a sum of

polynomials ψhp in Eq. (31) and trigonometric series ψht in Eq. (32) below. 

(31)

 (32)

Where  is the imaginary unit, and CeXf, CeYf, SeXf, and SeYf are trigonometric functions as

follows

 

 

 

 

i 1–=
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 (33)

where the bar on λ denotes the conjugate of λ. λ1X, λ2X, λ3X, λ1Y, λ2Y, and λ3Y are the eigenvalues to

be obtained by satisfying L(ψht) = 0. For example, λeX is derived by solving the following equation. 

(34)

The polynomial function ψhp in Eq. (31) has 12 unknowns Z1 to Z12, and the trigonometric

function ψht in Eq. (32) has 24l unknowns Ah, Bh, Ch, …, and Xh (h = 1, 2, 3,…, l) with l being the

number of the trigonometric terms needed for convergence. Therefore, the homogeneous solution ψh

has 24l+12 unknowns and they will be determined according to the boundary conditions discussed

below.

3.2 Particular solution

For a particular solution in the series form, the transverse load Q in Eq. (29) is expanded to a

trigonometric series as in the following Eqs. (35) and (36) to express a uniform distributed load and

a concentrated load, respectively.

(35)

(36)

where q0 is the uniformly distributed load, Q0 is the concentrated load at point (X0, Y0).

Parenthetically, we note that not only the uniform distributed load and the concentrated load, but

also a line load and patch load can be expressed as trigonometric series. The solution of

inhomogeneous Eq. (29) is described as ψp and it can be derived as the following Eqs. (37) and

(38) when Q is given as Eqs. (35) and (36), respectively. 

(37)

(38)

 

L cos
πh λeXX Y+( )

2a
------------------------------- sin

πh λeXX Y+( )
2a

-------------------------------+⎝ ⎠
⎛ ⎞ 0=

Q
16q0 1–( ) j k 2+ +( )/2

jkπ
2
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2b
---------sinα

k 1 3 …, ,=

∞

∑
j 1 3 …, ,=

∞
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Q0
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where Kjk and Ljk are to be determined to satisfy Eq. (29) for all X and Y, m is the number of the

trigonometric terms needed for convergence. The general solution for ψ is derived as the sum of the

homogeneous solution and the particular solution as 

 (39)

Since no unknowns exist in the particular solution, the total number of unknowns in the general

solution is still 24l+12, as in the homogeneous solution.

4. Determination of unknown constants for series solution 

In the Mindlin theory, the boundary conditions for various edges are given below for determining

the unknown constants in the homogeneous solution. The normal and tangential directions to the

edge are denoted here using subscripts n and s respectively. The moments on the edges are

accordingly noted using these subscripts consistent with the directions of the stresses thereby

induced. Namely Mn is for the moment causing normal stresses and Ms is the torsional moment

inducing shear stresses. 

(1) Clamped:  (40)

(2) Soft Simply Supported (SS1) :  (41)

(3) Hard Simply Supported (SS2):  (42)

(4) Free:   (43)

Here, w, φn, φs with the bar indicate the enforced displacement, and Mn, Ms, Qn with the bar

ψ ψhp ψht+( ) ψp+=

w w= φn φn= φs φ s=, ,

w w= Mn Mn= φs φ s=, ,

w w= Mn Mn= Ms Ms=, ,

Mn Mn= Ms Ms= Qn Qn=, ,

Fig. 2 Comparison between SS1 and SS2
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indicate the external force along the edge. Note that the Kirchhoff theory treats SS1 and SS2 in

Eqs. (41) and (42) as the same boundary condition. The difference between them is explained

graphically in Fig. 2 when the variables with bar are zero (Hangai 1995). The boundary condition

of SS1 restricts the tangential rotation by supporting two points in the cross section, thereby

generating a non-zero torsional moment. In contrast, the boundary condition of SS2 supports the

plate only at one point in the cross section, allowing a tangential rotation and generating no twisting

moment. 

The boundary conditions in Eqs. (40) to (43) can be unified as follows 

 (44)

where Γ1(X, Y) to Γ12(X, Y) represent the left hand side of Eqs. (40) to (43) and the meaning of the

bar is the same. Γ1(X, Y) to Γ12(X, Y) are expanded as a Fourier series as follows for the solution

method pursued in this paper 

  (for the edge of Y = b, −b)

  (for the edge of X = a, −a) (45)

where coefficients a0d, acd, and bcd are Fourier coefficients for boundary condition Γd(X, Y). In the

same manner, Γd(X, Y) with the bar are also expanded. For necessary truncation, l terms are kept for

each of the 12 boundary conditions so that a total of 12(2l+1) equations are to be established as in

Eq. (46).

(46)

where the variable with bar is the fourier coefficients of Γd(X, Y) with the bar. The simultaneous

Eq. (46) include the 24l+12 unknowns and can be solved because the number of equations and

unknowns are the same.

5. Application examples

In this section, three application examples are presented using the developed analytical method for

skewed thick plates. They are also compared with solutions published in the literature, and with the

FEM analysis result obtained using a commercial package ANSYS 11. In the analysis by ANSYS,

2D 4-node quadrilateral plate elements (SHELL181) appropriate for thick plate analysis are used for

Γd X Y,( ) Γd X Y,( )

d 1 2 3      edge CD in Fig. 1( ), ,=

d 4 5 6       edge AB in Fig. 1( ), ,=

d 7 8 9       edge BC in Fig. 1( ), ,=

d 10 11 12 edge AD in Fig. 1( ), ,=⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

Γd X Y,( )
a0d

2
------- acdcos

cπX

a
---------⎝ ⎠

⎛ ⎞ bcdsin
cπX

a
---------⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞  d 1 2 … 6, , ,=( )

c 1=

∞

∑+=

Γd X Y,( )
a0d

2
------- acdcos

cπY

b
---------⎝ ⎠

⎛ ⎞ bcdsin
cπY

b
---------⎝ ⎠

⎛ ⎞+⎝ ⎠
⎛ ⎞  d 7 8 … 12, , ,=( )

c 1=

∞

∑+=

a0d a0d=

acd acd=

bcd bcd=⎩
⎪
⎨
⎪
⎧

c 1 … l, ,= d 1 … 12, ,=,( )
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the skewed plates with various skewed angles. For skewed plates of which the skewed angle

α = 30°, 45°, 60°, 75°, and 90° the numbers of nodes and elements are 1683 and 1523, respectively.

In contrast, for skewed angle α = 15°, 2 triangular elements are used at acute corners to avoid an

extensively skewed element. Consequently, the numbers of nodes and elements are 1650 and 1493,

respectively. In addition, the effect on convergence of the number of terms l and m in the

fundamental and particular solutions is studied. In the following examples, the shear correction

factor Ks is taken as 5/6, as is commonly used in plate analyses.

5.1 Simply supported isotropic skewed thin plate under uniformly distributed load

Isotropic thin skewed plates are analyzed here. As an external force, uniformly distributed load q0

is applied and as skewed angles, α = 15°, 30°, 45°, 60°, 75°, and 90° are employed. The

geometrical properties used in this research are a = b, and t = 0.02 a. The SS2 boundary condition

in Eq. (42) is used for all edges. 

As a first step, the numbers of terms in the series solution l and m are determined. Fig. 3 shows

the out-of-plane deflection w at the center of the a = 30° plate against the numbers of terms l and m

in Eq. (37). Also the expansion of the transverse load Q and the boundary conditions Γd used

respectively m and l terms. To see the trend of convergence as a function of l, Fig. 3 shows the

results of increasing the number of terms m, for four different l values. The vertical axis shows the

deflection normalized by that of l = 7 and m = 55, denoted as (l, m) = (7, 55). As seen, the deflection

w for (l, m)=(5, 55) and (7, 35) differs by less than 0.5% from that of (l, m)=(7, 55). It can be

concluded that the solution is already convergent while truncated at (l, m)=(7, 55) and therefore l = 7

and m = 55 are employed in this example. Note that for different skew angles, similar results are

observed.

Table 1 is a comparison between the present and the previous results of the deflection wc,

maximum principal moment Mmax c, and minimum principal moment Mmin c at the center of the plate

(X, Y) = (0, 0). The deflection and moment are expressed in a dimensionless form as 100wcD/q0a
4

Fig. 3 Truncation effect for convergence for center deflection of simply supported (SS2) isotropic 30 degrees
skewed thin plate under uniform loading 
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Table 1 Deflection, maximum moment, and minimum moment at the center of simply supported (SS2)
skewed thin plates under uniform loading (value in parentheses is error ratio)

α 100wcD/q0a
4 10Mmax c /q0a

2 10Mmin c /q0a
2

75°

Present Study 5.8513 1.9318 1.7191
ANSYS 5.8662 (0.25%) 1.9215 (-0.53%) 1.7074 (-0.68%)
Butalia et al. (1990) 5.8013 (-0.85%) 1.9207 (-0.57%) 1.7082 (-0.63%)
GangaRao and Chaudhary (1998) 5.8240 (-0.47%) N/A N/A
Liew and Han (1997) 5.9257 (1.27%) 1.9512 (1.00%) 1.7261 (0.41%)
Sengupta (1991) 5.8468 (-0.77%) 1.9241 (-0.40%) 1.7097 (-0.55%)
Sengupta (1995) 5.8172 (-0.58%) 1.9030 (1.49%) 1.6931 (-1.51%)

60°

Present Study 4.1946 1.7227 1.3614
ANSYS 4.1455 (-1.17%) 1.7051 (-1.02%) 1.3372 (-1.78%)
Butalia et al. (1990) 3.9832 (-5.04%) 1.6790 (-2.54%) 1.2980 (-4.66%)
GangaRao and Chaudhary (1998) 4.0960 (-2.35%) N/A N/A
Liew and Han (1997) 4.1908 (-0.09%) 1.7349 (0.71%) 1.3561 (-0.39%)
Morley (1963) 4.0960 (-2.35%) 1.7000 (-1.32%) 1.3320 (-2.16%)
Muhammad and Singh (2004) 4.0960 (-2.35%) 1.7240 (0.08%) 1.3720 (0.78%)
Sengupta (1991) 4.1123 (-1.96%) 1.7075 (-0.88%) 1.3391 (-1.64%)
Sengupta (1995) 4.1079 (-2.07%) 1.6909 (-1.85%) 1.3267 (-2.54%)

45°

Present Study 2.2105 1.3289 0.9075
ANSYS 2.1498 (-2.75%) 1.2955 (-2.51%) 0.8824 (-2.76%)
Argyris (1965) 2.0787 (-5.96%) 1.2983 (-2.30%) 0.8570 (-5.56%)
Butalia et al. (1990) 1.9125 (-13.5%) 1.2266 (-7.70%) 0.7803 (-14.0%)
GangaRao and Chaudhary (1998) 2.1120 (-4.46%) N/A N/A
Liew and Han (1997) 2.1669 (-1.97%) 1.3194 (-0.71%) 0.9032 (-0.47%)
Sengupta (1991) 2.1330 (-3.51%) 1.2995 (-2.21%) 0.8866 (-2.30%)
Sengupta (1995) 2.1285 (-3.71%) 1.2892 (-2.99%) 0.8787 (-3.17%)

30°

Present Study 0.6824 0.7888 0.4678
ANSYS 0.6721 (-1.51%) 0.7656 (-2.94%) 0.4482 (-4.19%)
Argyris (1965) 0.6158 (-9.76%) 0.7668 (-2.79%) 0.4028 (-13.9%)
Butalia et al. (1990) 0.5194 (-23.9%) 0.6662 (-15.5%) 0.3166 (-32.3%)
Carstensen et al. (2010) 0.6784 (-0.59%) N/A N/A
GangaRao and Chaudhary (1998) 0.6496 (-4.81%) N/A N/A
Jirousek (1987) 0.6526 (-4.37%) 0.7625 (-3.33%) 0.4343 (-7.16%)
Liew and Han (1997) 0.6679 (-2.12%) 0.7780 (-1.37%) 0.4509 (-3.61%)
Morley (1963) 0.6528 (-4.34%) 0.7640 (-3.14%) 0.4320 (-7.65%)
Muhammad and Singh (2004) 0.5658 (-17.1%) 0.6800 (-13.8%) 0.3405 (-27.2%)
Razaqpur et al. (2003) 0.6771 (-0.78%) 0.7568 (-4.06%) 0.4441 (-5.07%)
Sengupta (1991) 0.6690 (-1.97%) 0.7734 (-1.95%) 0.4481 (-4.21%)
Sengupta (1995) 0.6587 (-3.47%) 0.7628 (-3.30%) 0.4340 (-7.23%)

15°

Present Study 0.0658 0.2637 0.1220
ANSYS 0.0650 (-1.22%) 0.2580 (-2.17%) 0.1194 (-2.13%)
Butalia et al. (1990) 0.0422 (-35.9%) 0.1906 (-27.7%) 0.0639 (-47.6%)
Liew and Han (1997) 0.0635 (-3.50%) 0.2566 (-2.69%) 0.1149 (-5.82%)
Sengupta (1991) 0.0653 (-0.76%) 0.2586 (-1.93%) 0.1226 (0.49%)
Sengupta (1995) 0.0605 (-8.05%) 0.2461 (-6.67%) 0.1030 (-15.6%)
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and  10Mc /q0a
2, where wc and Mc are the deflection and moment at the center of the plate, and D is

the bending stiffness and is expressed as .

In the case of α = 15°, 30°, a significant difference is observed between the present solution and

the solution of Butalia et al. (1990). The latter indicated in their literature that the result by their

method is not necessarily correct when α is less than 45° and the present analysis bears this out. In

addition, in the case of α = 30°, the results of Muhammad and Singh (2004) shows significant

difference with the present results. They also have recognized this problem, and mentioned that the

problem is resolved when the boundary is clamped. It has been felt that their shape function fails to

estimate the simply supported condition along the skew edge which requires evaluating the moment

and torsion precisely. Furthermore, in the case of α = 15°, the results of Sengupta (1991) and

Sengupta (1995) are different. The present result indicates that the result of Sengupta (1991) is

closer to the exact solution. For other cases, the present result is in good agreement with the

previous result and the finite element analysis result. 

Figs. 4 to 7 are the comparison between the present method and FEM analysis using ANSYS for

the deflection w and strains εx, εy, and εxy defined in the following Eq. (47) for α = 30°, 60°, and

90° along line HF defined in Fig. 1 and on the top of the plate. 

  (47)

The deflection and strains are normalized as 100wD/q0a
4 and . The results show that

our analytical and the numerical solutions agree with each other very well for these isotropic thin

skewed plates under the uniformly distributed load. The deflection w in Fig. 4 is shown to decrease
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Fig. 4 Analytical and FEM solutions for deflection
of simply supported (SS2) isotropic skewed
thin plate under uniform loading

Fig. 5 Analytical and FEM results of x-direction
strain of simply supported (SS2) isotropic
skewed thin plate under uniform loading
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with skew angle a, apparently due to reducing the shortest distance from the loading location to the

nearest support. Strains εx and εy displayed in Figs. 5 and 6 also behave similarly for the same

reason especially at the center of the plate. However, shear strain εxy in Fig. 7 is due to torsion and

does not change with skew angle monotonically. 

When a plate is skewed, the torsional effect becomes significant and it causes εxy in the plate. This

relation is not monotonic, depending on the relative relations of the plate’s skew angle, width/length

ratio, loading position, boundary conditions, etc. 

5.2 Simply supported isotropic skewed thick plates under a uniformly distributed load

In the previous example, it is proved that the present method can analyze thin plates with a large

or small skewed angle very well. In this example, the skewed thick plates are analyzed. For the

concerned skewed thick plates, the following geometrical properties are used: a = b, t = 0.4 a. Like

the previous example, uniformly distributed load q0 is applied as an external force and α = 15°, 30°,

45°, 60°, 75°, and 90° are employed as skewed angles. The SS2 boundary condition in Eq. (42) is

used for all four edges. Fig. 8 is the deflection at the center of the plate of which skewed angle α =

30° of various m values against the number of terms l of a particular solution. Like the previous

example (1), w of (l, m) = (5, 55) and (7, 35) differ less than 0.5% from that of (l, m)=(7, 55);

therefore, (l, m)=(7, 55) is also employed in this example. Note that for different skew angles,

similar results are observed.

For a comparison of the present analytical solution and other numerical solutions, Table 2 exhibits

the results of the proposed solution, Liew and Han’s research (1997), and an FEM analysis using

ANSYS for the deflection wc, maximum principal moment Mmax c, and minimum principal moment

Mmin c at the center of the plate (X, Y) = (0, 0). Figs. 9 to 12 display comparisons between the

present method and FEM analysis using ANSYS for the deflection w and strains εx, εy, and εxy

defined in Eq. (47) for α = 30°, 60°, and 90° along line HF defined in Fig. 1 and on the top of the

plate. The deflection and strains are expressed in a dimensionless form as in the previous example.

The results show that our analytical and the numerical solutions agree with each other very well for

Fig. 6 Analytical and FEM solutions of y-direction
strain in simply supported (SS2) isotropic
skewed thin plate under uniform loading

Fig. 7 Analytical and FEM solutions of shear strain
of simply supported (SS2) isotropic skewed
thin plate under uniform loading
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these isotropic thick skewed plates under a uniformly distributed load. 

A word of caution is in order here. It is shown from Figs. 4 and 9 that dimensionless deflection of

skewed thick plate is more than that of skewed thin plate. This result is consistent with the fact

described in chapter 1 that the Kirchhoff theory suffers from under-predicting deflections when

thick plate is analyzed.

Table 2 Deflection, maximum moment, and minimum moment at the center of simply supported (SS2)
skewed thick plates under uniform loading (value in parentheses is error ratio)

α 100wcD/q0a
4 10Mmax c /q0a

2 10Mmin c /q0a
2

75°

Present Study 8.0392 2.1469 1.9178

ANSYS 8.0325 (-0.08%) 2.1431 (-0.18%) 1.9146 (-0.17%)

Liew and Han (1997) 8.0236 (-0.19%) 2.1476 (0.03%) 1.9188 (0.05%)

60°

Present Study 5.8358 1.9177 1.5112

ANSYS 5.8217 (-0.24%) 1.9067 (-0.57%) 1.5067 (-0.30%)

Liew and Han (1997) 5.8319 (-0.07%) 1.9110 (-0.35%) 1.5108 (-0.03%)

45°

Present Study 3.1925 1.4581 0.9979

ANSYS 3.1767 (-0.49%) 1.4509 (-0.49%) 0.9918 (-0.61%)

Liew and Han (1997) 3.2095 (0.53%) 1.4548 (-0.23%) 0.9958 (-0.21%)

30°

Present Study 1.1383 0.8604 0.4889

ANSYS 1.1342 (-0.36%) 0.8542 (-0.72%) 0.4848 (-0.84%)

Liew and Han (1997) 1.1692 (2.71%) 0.8567 (-0.43%) 0.4885 (-0.08%)

15°

Present Study 0.1842 0.2784 0.1248

ANSYS 0.1833 (-0.49%) 0.2768 (-0.57%) 0.1257 (0.72%)

Liew and Han (1997) 0.1991 (8.09%) 0.2785 (0.04%) 0.1257 (0.72%)

Fig. 8 Truncation effect for convergence for center deflection of simply supported (SS2) isotropic 30 degrees
skewed thick plate under uniform loading
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5.3 Orthotropic thick skewed plates with two free edges and two clamped edges under a

concentrated load

Orthotropic skewed thick plates are analyzed in this example, with the following material and

geometrical properties: Ey = 0.5 Ex, Gxy = 0.3 Ex, Gxz = 0.1 Ex, Gyz = 0.08 Ex, νxy = 0.2, a = b, t = 0.4 a,

where Ex and Ey are Young’s modulus along the x and y directions, and Gxy, Gxz, and Gyz are shear

modulus in the xy, xz, and yz planes. These values determine [Dr], [Do], [Ar], and [Ao] in Eqs. (2)

and (4). The external transverse force is a concentrated force of Q0 applied at (X, Y) = (−a/2, b/2).

Plates with skew angle α = 30°, 60°, and 90° are analyzed here. Edges AB and CD are free and

Edges BC and DA are clamped.

Fig. 9 Analytical and FEM solutions for deflection
of simply supported (SS2) isotropic skewed
thick plate under uniform loading

Fig. 10 Analytical and FEM results of x-direction
strain of simply supported (SS2) isotropic
skewed thick plate under uniform loading

Fig. 11 Analytical and FEM solutions of y-direction
strain in simply supported (SS2) isotropic
skewed thick plate under uniform loading

Fig. 12 Analytical and FEM solutions of shear strain
of simply supported (SS2) isotropic skewed
thick plate under uniform loading
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As with the previous example, the numbers of terms including l and m need to be determined

first. Fig. 13 shows the deflection w at the center of the plate (X, Y) = (0, 0) for skew angle α= 30°,

as one of the cases considered, for various l and m values. It is seen that the deflection at

(l, m) = (9, 125) is well converged. Therefore (l, m) = (9, 125) is employed here and is also used as

the reference for comparison. 

For this example, because no previous work in the literature has been found reporting a similar

experience, only FEM analysis results by ANSYS are employed for comparison with our analytical

solution results. Table 3 shows comparison results. In addition to wc, Mmax c, and Mmin c compared in

the last two examples, the deflection at the loading point wl is also compared. The deflection and

moment are expressed in a dimensionless form as 100wcD11/Q0a
2 and 10M/Q0, where w and M are the

deflection and moment, and D11 is the bending stiffness and is expressed as .

Mindlin theory has drawback that the derivation of deflection is not continuous and it leads the

deflection at the point where concentrated load generally expressed as a delta function is applied

can be infinite. However, this research has expressed the concentrated load as the limited number of

terms of trigonometric series, therefore the issue is automatically solved because it is no longer the

delta function though it is very close to it. This prevents the deflection from being infinite, and it is

seen from Table 3 that our solution is close enough to FEM result.

Figs. 14 to 17 show a comparison of the deflection w and strains εx, εy, and εxy defined in Eq. (28)

D11 Ext
3
/12 1 νxyνyx–( )=

Fig. 13 Convergence of center deflection of orthotropic 30 degrees skewed thick plate under concentrated
load 

Table 3 Deflection, maximum moment, and minimum moment at the center of orthotropic skewed thick plates
under concentrated loading (value in parentheses is error ratio) 

α 100wcD11/Q0a
2 100wlD11/Q0a

2 10Mmax c /Q0 10Mmin c /Q0

60o
Present Study 3.7373 16.178 0.6351 -0.0096

ANSYS  3.7719 (0.93%) 16.652(+2.93%) 0.6320 (-0.49%) -0.0099 (3.12%)

30o
Present Study 3.8319 12.714 0.8740 0.0858

ANSYS 3.7519 (-2.08%) 12.997(+2.18%) 0.8715 (-0.29%) 0.0841 (-1.98%)
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for α = 30°, 60°, and 90° along the line HF indicated in Fig. 1. The strains are normalized as

100D11ε /Q0t. It is seen that our analytical solutions and the numerical solutions agree with each other

very well. 

The results shown in Figs. 14 to 17 indicate that the response behavior for this case is much more

complex than the examples above, due to non-symmetric loading and boundary conditions. These

response quantities are read at Y = 0. Due to the oblique coordinate system, the load at (X, Y) = (−a/2,

b/2) has different relative relations with the interested responses on Y = 0, along with different skew

angles. For example, this causes the peak responses of the deflection in Fig. 14 moves towards

center with the skew angle decreasing from 90° to 30° because the loading point of 30° plate is

closer than that of 60° and 90° plate. 

Fig. 14 Analytical and FEM solutions of center
deflection of orthotropic skewed thick plate
under concentrated load

Fig. 15 Analytical and FEM solutions of x-direction
strain of orthotropic skewed thick plate
under concentrated load

Fig. 16 Analytical and FEM solutions of y-direction
strain of orthotropic skewed thick plate
under concentrated load

Fig. 17 Analytical and FEM solutions of shear strain
of orthotropic skewed thick plate under
concentrated load
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6. Conclusions

The governing differential equation of skewed thick plates in an oblique coordinate system is

formulated in this paper. This equation allows derivation of the analytical solution for any boundary

conditions and loading conditions. This derivation is reported for the first time. All response

quantities, including shear forces, moments, stresses, strains, deflections, and rotation angles, can be

readily derived from the proposed potential function ψ. The three illustrative examples show that the

analytical solutions are in good agreement with those reported in several previous studies and with

numerical solutions obtained by FEM. At the same time, it is found that some of the numerical

results are not consistent with our exact solutions.

It is also worth noting that the approach to the governing differential equation and its analytical

solution developed in this study can be used for further studies including, but not limited to,

continuous plate analysis and dynamic analysis, for which only numerical solutions exist. For

example, the solution presented here has been used to develop an analytical method for skewed

composite beam bridge analysis, where the structure is considered to be composed of continuous

thick plates. The details of this application will be reported in our next paper. Note that beam

bridges represent the largest percentage of all bridge types in many countries and thus in the world.

Meanwhile, as mentioned in the introduction, the solution developed here may provide the

possibility of developing an analytical solution for a dynamic problem. For example, by introducing

inertia terms to Eq. (29), the free vibration problem is expected to be solved.
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