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Abstract. In large-scale problem, a huge size of computational resources is needed for a reliable
solution which represents the detailed description of dynamic behavior. Recently, eigenvalue reduction
schemes have been considered as important technique to resolve computational resource problems. In
addition, the efforts to advance an efficiency of reduction scheme leads to the development of the multi-
level system condensation (MLSC) which is initially based on the two-level condensation scheme (TLCS).
This scheme was proposed for approximating the lower eigenmodes which represent the global behavior
of the structures through the element-level energy estimation. The MLSC combines the multi-level sub-
structuring scheme with the previous TLCS for enhancement of efficiency which is related to computer
memory and computing time. The present study focuses on the implementation of the MLSC on the
direct time response analysis and the frequency response analysis of structural dynamic problems. For the
transient time response analysis, the MLSC is combined with the Newmark’s time integration scheme.
Numerical examples demonstrate the efficiency of the proposed method.

Keywords: structural dynamic system; system condensation; reduced system method; transient time
integration; sub-structuring scheme; two-level condensation scheme.

1. Introduction

In spite of enormous advance in digital computer capability, more and more large-scaled detailed

numerical models are constructed for the detailed prediction of the system behavior. To satisfy this

requirement, it is efficient to introduce modal reduction. In structural dynamic analysis, the model

reduction techniques are classified into two-category, degree-of-freedom based reduction (DBR) and

mode-based reduction (MBR). 

The representative method of MBR is Component Mode Synthesis (CMS) method. It was initially

developed by Craig and Bampton (1960) and have been revitalized in recent years. Now, it has been

lead by the Automated Multi-Level Sub-structuring method (Benninghof and Lehoucq 2004). The

MBR has an advantage in its convenient construction procedure. However, the MBR has a

truncation error which is related to high frequency modes.

On the other hand, the DBR includes the effects of high frequency modes within condensation
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procedure. Moreover, the DBR maintains the degrees of freedom (DOFs) in the physical domain

after completing the reduction procedure, contrary to MBR which transforms DOFs into generalized

coordinates. Since static condensation (Guyan 1965), various DBR techniques have been developed

in order to circumvent a limitation on digital computer resources (O'callahan 1989, Friswell et al.

1995, Kim and Kang 2001). The original system is reduced into smaller system through the

transformation matrix between the primary degrees of freedom (PDOFs) and the secondary degrees

of freedom (SDOFs) through the condensation procedures with assuring the solution accuracy within

the allowable error bounds. In fact, each condensation techniques have different scale of the

transformation error. Hence, it is required to select a reduction method which satisfies allowable error

tolerance. In this study, we adopted the IIRS techniques in the condensation process because the IIRS

technique is the optimized method to reduce DOFs transformation error (Friswell et al. 1998).

Basically, system condensation techniques have another critical issue that is the selection of

PDOFs. It is directly related with the solution accuracy and convergence of the reduced system and

dominant effect on the reliability of the reduced system. In addition, the selection of the PDOFs has

a similarity with that of sensor locations in damage detection problems. Hence, various studies have

been performed for appropriate PDOFs selection scheme. In general, the Sequential Elimination

method (SEM) (Henshell and Ong 1975, Shah and Raymund 1982) shows the most reliable

selection of PDOFs and the predictions of lower mode eigenvalues are very reliable. However, it

takes excessive computing time for selecting the PDOFs because it eliminates only a single DOF in

each iteration step. In order to reduce this trouble of the SEM, the Two-Level Condensation scheme

(TLCS) was proposed for eigenvalue problems (Cho and Kim 2004).

Recently, the two-level condensation scheme (TLCS) which combined with sub-structuring

scheme was proposed. (Cho and Kim 2004, Kim and Cho 2006, 2007) The previous study shows

remarkable advances in the practical application of the system condensation on the large-scaled

structural dynamic problem. However, the previous TLCS combined with sub-structuring method

has a trouble in the reduction of interface region between sub-structures. When original system

divided into a huge number of substructures, size of interface region becomes important part of

system information and the effect of interface DOFs cannot be neglected. The size of interface

region behaves as the bottleneck in the computational memory in the reduction process.

In the present study, we present the multi-level system condensation (MLSC) which is initially

based on the TLCS, Iterated IRS techniques. The proposed reduction method can dramatically

reduce the final size of the reduced system and improve its accuracy. We apply the MLSC to

transient time response analysis and frequency response analysis. The efficiency of the proposed

method is demonstrated through the numerical examples.

2. The multi-level system condensation

2.1 Formulation of the multi-level system condensation

A general mathematical derivation of equation of motion is given as 

 (1)

where M, C and K are mass, damping and stiffness matrices, respectively. f(t) is the applied force

and x,  and  are the structural displacement, velocity and acceleration vector. In the undamped

Mx·· Cx· Kx+ + f t( )=

x· x··
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free vibration problem, the trial solution,  leads to the generalized eigenvalue problem

which is represented as

 (2)

where K and M are stiffness and mass matrix. The original system divided into several sub-

structures through hierarchical graph partitioning procedure. In this section, four sub-structure case

through two level graph partitioning procedure which is presented in Fig. 1 is presented. The

governing Eq. (2) is divided and rearranged as shown in Eq. (3a) and (3b) and rearranged

displacement field is presented in Eq. (3c). The symbol (i, j) means jth domain which is partitioned

at the ith level. The highest level means interior part of each substructures and lower level means

interface region between adjacent sub-structures.

(3a)

(3b)

x t( ) xe
iω t

=

Kx λMx=

 

 

Fig. 1 Configuration of the simple plate example 
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(3c)

After transformation of each sub-structure through the block Gaussian eliminator given in Eq. (5),

each domain has an independency to each other as described in Eq. (7a) and (7b). In the multi-level

sub-structuring case, the block Gaussian eliminator is separated according to the graph partitioning

level as shown in Eq. (6a) and (6b), and Ui means ith level eliminator. Due to the separation of the

eliminator, the factorization of each domain can be performed independently to other domains.

 (4)

where

(5a)

(5b)

Due to the factorization of Eq. (5), stiffness and mass matrices are decomposed into the block-

diagonalized form which is shown below 

 (6a)

(6b)

 

U U0U1=
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The approximated eigenvalue problems of ith level jth sub-domain are constructed with the

diagonal parts of the transformed system metrics, Eq. (7a) and (7b). Here, it is assumed that is the

effect of off-diagonal parts of mass matrix is less dominant to solution space than diagonal parts.

 (7)

Each decoupled eigenvalue problem of Eq. (7) can be represented as the form divided by primary

and secondary DOFs. From the relation between the primary and the secondary DOFs, the

transformation matrix can be obtained as  using the IIRS technique (Friswell 1995).

The details are confirmed in the reference. The transformation matrix  condenses each

decoupled eigenvalue problems of Eq. (8) as below. 

 (8)

where

,  (9)

And the final form of transformation matrix is represented as Eq. (10).

 (10)

After assembly of each reduced systems given in Eq. (17), the original governing equation in

Eq. (2) is finally condensed into Eq. (19). 

 (11)

where

 (12a)

K i j,( )x i j,( ) λM i j,( )x i j,( )– 0=
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Fig. 2 Hierarchy of sub-structuring in the simple plate example
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    (12b)

(12c)

2.2 The selection of the primary degrees of freedom

As mentioned in the introduction section, the selection scheme of PDOFs is very important in the

system condensation method because it significantly influences accuracy of the reduced system.

This paper employs the robust TLCS for the selection of PDOFs developed by Cho and Kim (2004)

and the schematics of the TLCS is presented in Fig. 3. 

In the first step, the reduced system is constructed through the estimation at the element-level

using Rayleigh energy. In order to estimate the energy of each element, Ritz vectors need to be

constructed as assumed modes through the Gram-Schmidt procedure as shown in Eq. (21). 

M
R

T
T
U

T
MU( )T=

 

x
p

x 2 1,( )

p
  x 2 2,( )

p
  x 1 1,( )

p
  x 2 3,( )

p
  x 2 4,( )

p
  x 1 2,( )

p
  x 0 1,( )

p
[ ]

T
=

Fig. 3 Schematic configurations of the Two-Level Condensation Scheme (TLCS)
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,  (13)

After the sufficient number of Ritz vectors are obtained, the element-level energy estimator based

on Rayleigh quotient can be obtained by summing the Rayleigh quotient calculated by each Ritz

vector. The sum of the Rayleigh quotients of each ith element can be calculated as follows. 

 (14)

where NM is the number of Ritz vectors and  are ith element stiffness and mass matrix,

respectively. After estimating Rayleigh quotients for all the elements in the whole structure, the

elements with the smaller first Rayleigh quotient are selected as primary elements. The first reduced

system can be constructed through IRS technique, and the DOFs which are included in the primary

elements are regarded as PDOFs.

In the second step, the final PDOFs are selected from the information of the reduced system

which is constructed in the first step. In the previous TLCS, SEM is used as the DOF-wise selection

scheme in the second step. However, Kim and Choi used the kinetic energy method (Kim and Choi

2000) instead of SEM. Because the reliability of TLCS is mostly determined in the first step, the

difference between SEM and DOFs energy method is marginal in the basis on the solution accuracy.

Even though accuracy between two methods is marginal, the kinetic energy method consumes

smaller amount of computational resources than that of SEM. Through the second step, the final

PDOFs can be selected. The TLCS is suitable to the interior parts of substructures because it is

basically element-wise manipulation. However, systems of interface region between each

substructure are constituted by the node-wised information. In this case, only the second step of

TLCS is used for selection of PDOFs.

2.3 Time-frequency response analysis

Finally, the equation of equilibrium governing the linear dynamic response of a reduced system is

presented as below.

  (15)

where  and  is the final reduced stiffness, damping and mass matrices, and final

damping matrix and applied force vector are also reduced to Eq. (16) which can be obtained

similarly to the reduction procedure of stiffness and mass matrices.

and  (16)

Assuming a harmonic input, the applied force and displacement response vectors can be expressed

as

and (17)
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The FRF of a structure can be evaluated using the displacement which is known as receptance

(Ewins 1984). 

(18)

The Newmark integration scheme is the one of the most popular methodologies for single step

direct integration of 2nd order differential equation and it is widely used in many commercial codes.

The Newmark method assumes a linear acceleration over the time interval as shown in Eq. (19).

Moreover, the constant-average-acceleration method with  and  is used for the

stability of methodology (Bath 1996).

 (19)

In this study, the Newmark time integration scheme is used for the transient time response

analysis.

3. Numerical examples

In this section, the validity and applicability of the method are discussed by applying the

algorithm to the example problems. Two structural models – a cantilever plate model and a wing-

box model- are chosen for numerical demonstration. Two response – transient time response and

frequency response – are studied to investigate accuracy with respect to the results of full system

analysis. For the comparison, we reproduce the MBR method which is equivalent to methodology

proposed Benninghof and Lehoucq (2004). Here, Ritz vectors used in TLCS technique is selected

for the reduction of interior part of sub-structures as internal normal modes.

First example is a cantilever plate model of which numerical modeling is depicted in Fig. 4. This

model is constituted by the four-node, hybrid shell element (Aminpour 1992) and the number of

finite elements is 1896. The total number of DOFs is 11,724. This model is partitioned into four

substructures through the two level graph partitioning process. A number of PDOFs is 371 which is

3.16% of original system. 
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Fig. 4 Configuration of cantilever plate example
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Fig. 5 is the result of frequency response analysis of the cantilever plate. Loading position is the

point A and displacement is computed at the point B as described in Fig. 4. In the frequency range

from 0 Hz to 20 Hz, both methods - the proposed method and MRB - provides reliable solutions

compared to the result of full system analysis as shown in Fig. 5. However, the proposed method

can provide more accurate result than MRB in the frequency range from 10 Hz to 20 Hz. The

accuracy of the proposed method shows the reliability of the present analysis.

The Newmark time integration scheme is conducted to get the transient time response. Here, we

apply the step loading as shown in Fig. 6. Step loading whose magnitude is 400 N is applied during

2 seconds and the time response during 8 seconds is obtained. Time interval is 0.01 second and

total time steps are 800, respectively. Displacement of point B which is in the transverse direction is

plotted in Fig. 7. The errors of displacement between the propose method and the full system

analysis are negligibly small. 

Next, we illustrate the application of the proposed method to large-size FE system. Here, once

more, the six DOF FE shell element which was used in the previous example is used. Wing-box

Fig. 5 The FRF graph (Receptance) of the cantilever plate example

Fig. 6 An applied load profile of the cantilever plate example
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model which is presented in Fig. 8(a) has 33,152 shell elements and 32,512 nodes. The total

number of DOFs is 193k. This model is partitioned into 128 substructures through the seven level

graph partitioning process as shown in Fig. 8(b). This model is reduced to the system which has

PDOFs is 3,280, that is, size of reduced system is 1.69% to full system.

The result of frequency response analysis is up to 400 Hz frequency range and it is shown in

Fig. 9(a). In the mid-range frequency (100~150 Hz), the MBR provides quite different results from

the result of the proposed method as shown in the FRF result of Fig. 9(b). This trend is similar to

that of the previous example. It should be mentioned that the proposed method needs only

17 minute for the entire calculation while the full system analysis requires more than 55 hour for

the same calculation.

Fig. 7 Transient time responses of the cantilever plate example

Fig. 8 Configurations for the wing-box example
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4. Conclusions

This study presents a combined method of TLCS, multi-level sub-structuring and IIRS to calculate

a considerable number of eigenvalues for large-scale problems. First, the full system is partitioned

by graph partition procedure. Next, the global system is decomposed using the block Gaussian

Fig. 9 The results of frequency response analysis of wing-box example
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eliminator. From the decomposition, decoupled eigen-problems are approximated. Here, the PDOFs

are selected by TLCS within every sub-eigen problem and IIRS reduces whole decoupled eigen-

problems into the reduced ones. Finally, the reduced system is constructed by the assembly of

uncoupled reduced systems and eigen problem of assembled reduced system is solved through SIL

method. The MLSC is applied to transient time response analysis and frequency response analysis. 

The performance of the proposed method is verified by numerical examples. In comparison with

the MBR, the proposed method shows remarkable improvement in the solution accuracy with

preserving computational efficiency. The remarkable fact is that the proposed method has a

significant advantage in both accuracy and efficiency as increment of system size. The proposed

reduction method should serve as an efficient scheme in the analysis and design of large-scale

structural dynamics problems. Non-linear problems and design optimization problems waits for their

realizations.
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