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Abstract. Earlier studies on hollow-circular rubber bearings, all of which are conducted for steel-
reinforced bearings, indicate that the hole presence not only decreases the compression modulus of the
bearing but also increases the maximum shear strain developing in the bearing due to compression, both
of which are basic design parameters also for fiber-reinforced rubber bearings. This paper presents
analytical solutions to the compression problem of hollow-circular fiber-reinforced rubber bearings. The
problem is handled using the most-recent formulation of the “pressure method”. The analytical solutions
are, then, used to investigate the effects of reinforcement flexibility and hole presence on bearing’s
compression modulus and maximum shear strain in the bearing in view of four key parameters: (i)
reinforcement extensibility, (ii) hole size, (iii) bearing’s shape factor and (iv) rubber compressibility. It is
shown that the compression stiffness of a hollow-circular fiber-reinforced bearing may decrease
considerably as reinforcement flexibility and/or hole size increases particularly if the shape factor of the
bearing is high and rubber compressibility is not negligible. Numerical studies also show that the
existence of even a very small hole can increase the maximum shear strain in the bearing significantly,
which has to be considered in the design of such annular bearings.

Keywords: rubber; elastomeric bearing; hollow-circular bearing; fiber-reinforced bearing; reinforcement
flexibility; radius ratio; bulk compressibility; shape factor; compression modulus; seismic isolation.

1. Introduction

Due to its favorable mechanical properties, rubber has long been used in various engineering

applications, such as isolation of bridges from thermal expansion or of buildings from earthquakes.

In these applications, rubber components are usually designed to have low horizontal stiffness to

isolate the structure from horizontal excitations, yet high vertical and bending stiffness to support

the heavy weight of the superstructure (Kelly 1997). However, besides its low shear modulus, which

ranges from G = 0.30 MPa to G = 2.22 MPa, rubber has very little compressibility, e.g., Poisson’s

ratio of natural rubber is ν ≅ 0.4997 (Lindley 1974). For this reason, a rubber block, if used in its
“bulky” form, cannot support a vertical load or a bending moment without making considerable

deformations. This problem can easily be overcome by using rubber in its “bonded”, or

“reinforced”, form, as in the case of steel-laminated multilayered rubber bearings, which are

composed of several thin rubber layers interleaved by and bonded to steel shim plates. In fact, by
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bonding the top and bottom faces of a soft rubber layer (with G ≅ 1 MPa) to “rigid” surfaces (such

as, steel plates which has G ≅ 80000 MPa), “incompressibility” of rubber can be used in a favorable

manner since, as stated by Lindley (1968), “for materials such as rubber which have a low shear

modulus but a relatively high bulk modulus, any restrictions on their freedom to change shape can

have a very marked effect on their stiffness in compression”. Thus, it is possible to increase the

vertical/bending stiffness of a “reinforced” rubber unit as much as required simply by changing the

thickness of “bonded” rubber layers, in other words, by changing the amount of “constrained”

rubber. This is, in fact, one of the main reasons for outstanding success of rubber in many

engineering applications as spring/isolator for over a century.

In earlier engineering applications, rubber has mostly been used as bridge bearings, helicopter

rotor bearings, wharf fenders and elastic foundations to machinery and motors. In the last two

decades, the use of rubber has extended to earthquake resistant design applications. Many seismic

isolated buildings and bridges with rubber-based isolation systems at their bases have been

constructed, and continue being constructed, in all over the world (Naeim and Kelly 1999).

Advances in computer technology leads to advanced analytical techniques for investigating seismic

behavior of such isolated structures (e.g., Kim et al. 2008, Olmos and Roesset 2010). Similarly,

advances in material science result in development of different innovative isolator types (Kelly

1997). Until recently, seismic isolation technique has almost entirely applied to large buildings with

sensitive equipment and/or historical value and/or post-earthquake importance. The conventional

rubber-based isolators used in these applications are usually considerably large, heavy and expensive

due to the presence of steel shim plates as reinforcing elements. Kelly (1999, 2002) has conducted

experimental and analytical studies to examine feasibility of using fiber reinforcement in place of

steel sheets, which, if possible and feasible, can decrease both the cost and weight of the isolators,

and verified that it is possible to produce a fiber-reinforced bearing that matches the behavior of its

steel-reinforced counterpart. Although the idea is new, the viability of the concept has already been

investigated and proven through several experimental and analytical studies (e.g., Tsai and Kelly

2005a, b, Tsai 2006, 2007, Ashkezari et al. 2008, Mardini and Strauss 2008, Pinarbasi and Mengi

2008, Toopchi-Nezhad et al. 2008, Kang and Kang 2009, Toopchi-Nezhad et al. 2009). 

Experimental and analytical studies (e.g., Gent and Lindley 1959, Tsai 2006) show that

compressive behavior of a multilayered rubber bearing can realistically be derived from

compressive behavior of its typical interior “bonded” rubber layer. For this reason, in the last

century, many researchers have studied bonded rubber layers (refer to Pinarbasi et al. (2006, 2008)

and Pinarbasi and Mengi (2008) for an extensive list of references). Most of these studies have

concentrated on deriving closed-form expressions for compression modulus of rigidly-bonded

(simulating steel-reinforced) rubber layers since the vertical stiffness of a rubber bearing directly

depends on its compression modulus. Among different analytical approaches used to predict the

compression modulus of a bonded rubber layer, the one which is commonly called the “pressure

method” is the most widely-used. Originally developed for steel-reinforced rubber bearings (i.e.,

rigidly-bonded rubber layers), this method considers that the total displacement of a bonded rubber

layer is composed of the superposition of two simple displacements; pure homogeneous

compression of the corresponding unbonded layer and additional displacement required to keep the

points on the bonded surfaces in their original positions (Gent and Lindley 1959). The pressure

method is based on three fundamental assumptions: (i) initially vertical lateral surfaces take a

parabolic shape in the deformed configuration, (ii) plane sections remain plane and (iii) state of

stress at any point in rubber is dominated by the hydrostatic pressure. Advanced analytical studies
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in which one/more of the three fundamental assumptions of the pressure method is/are removed

(e.g., Papoulia and Kelly 1996, Ling 1996, Tsai and Lee 1998, Pinarbasi et al. 2006) have already

verified the validity of these assumptions for typical seismic isolation bearings. Thus, the pressure

method is now widely used as a handy tool for simplified analysis of typical seismic isolation

bearings under compression/bending.

It is worth noting that although the original formulation of the pressure method is based on strict

incompressibility assumption, recognizing the significant effect of bulk compressibility of rubber in

“thin” rubber layers, this assumption is removed in subsequent formulations. Similarly, even though

the original formulation assumes rigid reinforcement, Kelly (1999) showed that the extensibility of

the reinforcing sheets can easily be incorporated into the formulation. Kelly and Takhirov (2001,

2002), Tsai and Kelly (2001) and Kelly (2002) have already used the methodology in the analysis

of fiber-reinforced rubber bearings.

Even though hollow-circular bearings are also commonly used in many engineering applications,

most of the studies in literature have been concentrated on “infinitely” long rectangular bearings or

solid circular bearings; only little attention has been given to hollow-circular discs. Studies on

annular bearings (e.g., Gent and Lindley 1959, Ling et al. 1995, Ling 1996, Pinarbasi et al. 2008),

all of which have been conducted, to the authors’ best knowledge, for steel-reinforced case, have

clearly indicated that the presence of even a very small hole in the center of a circular bearing can

decrease the compression modulus of the bearing considerably. These studies have also pointed out

that the existence of a central hole in a rubber bearing can significantly increase the bonding shear

strain under compression as well. It is to be noted that most design codes limit the maximum shear

strain developing in a bearing subjected to combined shear and compression, which is computed by

adding the shear strain due to shear deformation of the bearing with that due to compression (Kelly

1997). For this reason, besides compression modulus, bonding shear strain is usually accepted as

basic design parameters for bridge/seismic isolation bearings. Thus, it is essential that the hole

effects on compressive behavior of annular bearing be well understood and properly included in its

design. 

This paper aims to study, in detail, the compressive behavior of hollow-circular fiber-reinforced

rubber bearings (HCFRRBs). The related compression problem is formulated by using the most-

recent formulation of the pressure method developed by Kelly (1999), which includes both rubber

compressibility and reinforcement flexibility. Particular emphasis is given to the investigation of the

effects of reinforcement flexibility and hole presence in view of four key parameters: (i) the

stiffness ratio of the reinforcement (relative stiffness of reinforcing sheets with respect to rubber

layers), (ii) radius ratio of the hole (ratio of hole radius to outer radius of the bearing), (iii) aspect

ratio of the bearing (ratio of outer radius of the bearing to thickness of its individual rubber layers)

and (iv) bulk compressibility of rubber.

2. Compression analysis of HCFRRBs by using “modified” pressure method

2.1 Formulation and solution of the problem

Fig. 1(a) illustrates a typical interior “bonded” rubber layer in an HCFRRB. The disc with inner

radius a, outer radius R and uniform thickness t is assumed to be perfectly bonded, at its top and

bottom faces, to fiber reinforcements made up of many individual fibers, which are modeled as
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extensible reinforcing sheets of equivalent thickness tf. When compressed uniformly by a uniaxial

force P, the top and bottom reinforcing sheets approach each other with a relative vertical

displacement ∆, as illustrated in Fig. 1(b). The object is to formulate this compression problem by
using a modified version of the pressure method (Kelly 1999). 

A cylindrical coordinate system (r, θ, z) is defined as shown in Fig. 1(a). Since the deformation of

the disc is axisymmetric, the displacement component in θ direction vanishes; i.e., v = 0, and the

displacement components in the other directions are independent of θ ; i.e., u = u(r, z), w = w(r, z).

The deformed shape of the layer is defined by the kinematic assumptions of the pressure method;

i.e., the “parabolic bulging” and “plane sections remain plane” assumptions. As explained in Kelly

(1999), the flexibility of the reinforcing sheets can be incorporated into the methodology by

supplementing, to the existing parabolic bulging term in radial displacement component, an

additional displacement term (u1) that is constant through the rubber thickness. Thus, the nonzero

displacement components can be expressed in the following form 

and (1)

Although it is common to assume strict incompressibility (ν = 0.5) for rubber, this assumption can

lead to overestimated compression stiffness particularly if the “shape factor” of the bearing is large.

Shape factor of a multilayered rubber bearing is defined as the ratio of one loaded area to the bulge-

free areas for a typical interior rubber layer (Kelly 1997). As an example, for a circular bearing with

radius R and thickness of individual rubber layers t, shape factor simply equals to S = R/2t. In the

case of hollow-circular bearings with inner radius a, outer radius R and thickness of individual

rubber layers t, it equals to , where β is the radius ratio for the interior hole and

equals to a/R, So is called “initial shape factor” (Ling et al. 1995) and simply equals to the shape

factor of the circular bearing with the same outer radius and interior rubber thickness, i.e., R/2t. 

To obtain general solutions, the bulk compressibility of rubber is to be included in the present

formulation. Thus, the dilatational constitutive relation for the rubber layer can be written as follows

(2)

where εrr, εθθ, εzz are strain components in coordinate directions, K is the bulk modulus of rubber

and p is the mean pressure in the rubber. According to the third assumption of the pressure method,

the normal stress components in rubber, i.e., σrr, σθθ, σzz, are all of the same order and their
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Fig. 1 Uniform compression of an interior “bonded” rubber layer in an HCFRRB
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magnitudes are approximately equal to the mean pressure p.; i.e., σrr= σθθ= σzz ≅ −p. Axisymmetric
strain-displacement relations lead to

, , and (3)

where the commas imply partial differentiation with respect to the indicated coordinate and γrz is the

shear strain related to the shear stress component τrz, which is generated by the constraints at the

bonded faces of the rubber layer. Substituting the first three relations in Eq. (3) into Eq. (2)  and

integrating the resulting equation through the thickness of the rubber layer result in

(4)

When written in terms of the stress components, equilibrium of the rubber layer in radial direction

gives

(5)

 

Under the pressure assumption, i.e., with the condition σrr= σθθ= σzz ≅ −p and using elastic stress-
strain relation for shear behavior of rubber; i.e., , where G is the shear modulus of rubber,

with the last relation in Eq. (3), Eq. (5) reduces to

(6)
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Fig. 2 Forces on infinitesimal area of a reinforcing sheet in an HCFRRB (Tsai and Kelly 2001)
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Fig. 2 shows the internal forces on infinitesimal area of a reinforcing sheet bonded to rubber

layers at its top and bottom surfaces. In the figure, Nrr and Nθθ denote the stretching forces in the

reinforcement per its unit length in radial and circumferential directions respectively while  and

 denote the bonding shear stresses, i.e., shear stresses applied from the rubber layers to the

reinforcing sheet at its top and bottom faces, which equal to  and

. It is assumed that the reinforcing sheet is under the influence of plane state of

stress. By neglecting the higher order terms, the equilibrium equation for the reinforcing sheet in

radial direction can be written as

(7)

Using the linear stress-strain relations, internal forces Nrr and Nθθ can be expressed in terms of u1
as follows

and where (8)

where kf is defined as “in-plane stiffness of the reinforcement”, Ef and νf are respectively elasticity

modulus and Poisson’s ratio of the reinforcing sheet. Substituting Eq. (8) and  into

Eq. (7) gives

(9)

Eqs. (4), (6) and (9) constitute three equations to solve the three unknowns of the problem; u0, u1
and p. Taking the derivative of Eq. (4) with respect to r, which gives

(10)

and using Eqs. (6) and (9) in the resulting equation, i.e., in Eq. (10), to eliminate, respectively, the

terms in p and u1, the following second order differential equation for u0 is obtained

 where  with  and (11)

The solution of Eq. (11) for u0 is in the following form

(12)

where c1 and c2 are constants to be determined from the boundary conditions of the problem, and, I1
and K1 represent, respectively, the modified Bessel functions of first and second kind of order one.

Substituting Eq. (12) into Eq. (9), the differential equation for u1 can also be obtained 

(13)

which has the solution in the following form
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where c3 and c4 are additional integration constants. Stress-free boundary conditions at the bulge-

free faces of the rubber layer; i.e., , and force-free boundary conditions at the edges of

the reinforcing sheet; i.e., , provide four conditions to solve four unknown integration

constants. Since the boundary conditions are defined in terms of p and Nrr, it is convenient to write

them in terms of the integration constants by substituting Eqs. (12) and (14) respectively into

Eq. (4) and into the first of Eq. (8) 

(15)

 

(16)

where I0 and K0 represent, respectively, the modified Bessel functions of first and second kind of

order zero. Stress boundary conditions for the rubber layer; i.e.,  and , imply

 and (17)

By eliminating c3 from Eq. (17), c2 can be written in terms of c1 as 

 where (18)

Then, substituting Eq. (18) into the first of Eq. (17), c3 can be obtained in terms of c1 as

(19)

Using Eq. (18), the reinforcement-related boundary conditions can be written in the following

simpler form

 and (20)
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where

(23)

Finally, by eliminating c3 from Eq. (20), one can write c4 in terms of c1 as follows

(24)

The vertical stiffness Kv of a multilayered rubber bearing is defined as (Naeim and Kelly 1999)

(25)

where A is the area of the reinforcing sheets, tr is the total rubber thickness in the bearing and Ec is

named as effective compression modulus, or simply “compression modulus”. Compression modulus

of a rubber bearing is controlled by its “bonded” rubber layers and is determined from the ratio of

nominal compressive stress σc to nominal compression strain εc 

(26)

The total compressive force P can be determined by integrating the pressure over the bonded area.

Noting that , pressure distribution in the rubber layer can be written as

(27)

which, when integrated over the bonded area and divided to Aεc, where , gives the

following closed-form expression for compression modulus of hollow-circular fiber-reinforced

bearings, which will be denoted in this paper as 

(28)
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(29)

2.2 Convergence of the solution to some special limiting cases

The results obtained in the previous section are general in the sense that they include the effects of

three basic parameters: (i) the presence of a central circular hole in the bearing, (ii) compressibility of

the rubber layer and (iii) extensibility of the reinforcing sheets. There are various special cases which

can be used to verify the accuracy of these results, such as the cases which neglect the effects of the

rubber compressibility and/or reinforcement extensibility and/or hole existence. 

Each case can be analyzed separately. If the effect of rubber compressibility is desired to be

neglected, the dilatational constitutive equation used in the above formulation has to be changed

with the incompressibility condition (i.e., ). Or if, instead of an annular circular

bearing, a solid circular bearing is desired to be analyzed, the boundary conditions written on the

hole (i.e., at r = a) has to be replaced with the conditions that stresses in the rubber layer and forces

in the reinforcement have to be finite at the center of the bearing (i.e., at r = 0). Else, if, instead of

a fiber-reinforced bearing, a steel-reinforced bearing is desired to be analyzed, the term representing

the reinforcement extensibility in radial displacement component has to be removed from the

formulation (i.e., ). To have consistent and comparable results, each of these extreme cases,

some of which are also available in literature in different forms, has been analyzed separately (not

presented here). The closed-form expressions derived for each case are used to check the

convergence of the general expressions derived in this study.

2.2.1 Hollow-circular fiber-reinforced bearings, effect of compressibility neglected
The first limiting case that deserves discussing in this paper is the incompressible case, which,

similar to the compressible case, has not been published in literature, yet (to the best knowledge of

authors). Although the inclusion of rubber compressibility is essential for accurate prediction of Ec

of high shape factor bearings, incompressibility assumption can realistically be used in low shape

factor bearings. Ec of a hollow-circular fiber-reinforced rubber bearing with the assumption of

incompressibility, denoted in this paper as , can be obtained from Eq. (28) by letting

K → ∞, which means λ → 0, or,  = α

(30)

2.2.2 Hollow-circular steel-reinforced bearings, effect of compressibility included

In case of a steel-reinforced bearing, the extensibility of rigid steel plates is neglected, which can
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be reflected to Eq. (28) by allowing kf → ∞, implying α → 0, thus,  = λ. Before applying the

limits, by recalling that , it is convenient to rewrite Eq. (28) as 

(31)

Then, in the limiting case, when α → 0,  = λ, and λ2/α2 → ∞, Ec of hollow-circular steel-

reinforced bearings which includes the effect of bulk compressibility, denoted in this paper as

, is obtained as 

  (32)

where

(33)

Eq. (32) can further be reduced to 

(34)

2.2.3 Circular fiber-reinforced bearings, effect of compressibility included

Ec of a circular fiber-reinforced bearing which includes the effect of rubber compressibility,

denoted in this paper as , can be obtained from Eq. (28) by removing the effects of the hole at

the center of the bearing, i.e., by letting a/R → 0. For such a case, the terms containing modified

Bessel functions of second kind (i.e., K0 and K1) drop. Thus,  becomes
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where 

 and (36)

Eq. (35) can be written in a more compact form as follows

(37)

2.2.4 Circular fiber-reinforced bearings, effect of compressibility neglected

Ec of a circular fiber-reinforced bearing which neglects the effect of rubber compressibility,

denoted as , can be obtained by simplifying Eq. (35) further using K → ∞, which implies
λ → 0, i.e., = α. Thus, similar to the hollow-circular case studied in Section 2.2.1, it is sufficient

to remove A4 term and replace all α’s with ’s, which results in

(38)

It can easily be shown that Eq. (38) is the same as the expression given in Tsai and Kelly (2001).

2.2.5 Circular steel-reinforced bearings, effect of compressibility included

Recalling that , Eq. (37) can be rewritten in the following form 

(39)

When kf → ∞, α → 0 and  = λ. Thus, in the limiting case when λ2/α2 → ∞, Eq. (39) reduces
to the following simple expression for Ec of a circular steel-reinforced bearing which includes the

effect of bulk compressibility, denoted in this paper as 

(40)

which is identical to the expression presented in Kelly (1997). As shown by Kelly (1997), this

expression satisfactorily reduces to the following well-known expression derived for circular steel-

reinforced bearings with the assumption of incompressibility, denoted as  

and (41)

At this point, it is to be noted that the formulation used in this study does not include the first stage

solutions; i.e., the solutions coming from the homogenous compression of the rubber layer. In other
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words, the above-presented Ec expressions only include the second stage solutions. Since the shape-

factor-dependent expressions obtained from second stage solutions are usually much larger than the

shape-factor-independent expressions coming from first stage solutions (unless the shape factor of the

bearing is considerably low), such a simplification is possible for practical seismic isolation bearings

(Kelly 1997). In case of bearings with small shape factors, it is strongly recommended that the

constant-term coming from the first-stage solutions, which is simply equal to the modulus of

elasticity (E) of rubber in case of an annular bearing, be added to the Ec expressions presented above. 

3. Discussions

From Eq. (27) to Eq. (29), it may be noticed that the compressive behavior of a HCFRRB is

controlled by four main parameters: (i) the extensibility of fiber-reinforcement, (ii) size of the centrally-

placed hole, (iii) aspect ratio of the interior “reinforced” rubber layers and (iv) bulk compressibility of

the rubber. In this section of the paper, the effects of each factor on two basic design parameters;

namely, compression modulus and maximum bonding shear strain, are investigated thoroughly.

For easier presentations and discussions, some nondimensionalized parameters are defined.

Denoted as k*f , which equals to kf /Gt, the “stiffness ratio” of the bearing provides a measure on

relative “stiffness” of the reinforcing sheets compared to the rubber layers. Since as shown by Tsai

and Kelly (2001), the individual effect of νf on compressive behavior of the bearings is not major, νf
is not considered as a variable of the parametric study, instead, it is fixed to a common value of

νf= 0.3, as done in Tsai and Kelly (2001). The second parameter, “radius ratio”, denoted as β,

provides a measure on relative size of the hole and is simply defined as β = a/R. Incorporation of

the third parameter; i.e., aspect ratio of interior “bonded” rubber layers, into the numerical study of

annular rubber bearings, however, is not as straightforward as in circular bearings. Unlike a circular

bearing, for which the shape factor (the ratio of one bonded area to its bulge free area) is S = R/2t, it

is not possible to relate the shape factor of an annular bearing, which is  where

So = R/2t, directly to the aspect ratio of the interior rubber layers. It can be noticed that So, called

“initial shape factor” (Ling et al. 1995), simply equals to the shape factor of the circular bearing

with the same outer radius and interior rubber thickness. Considering that β has already been

selected as one of the basic parameters governing the compressive behavior of annular bearings,

instead of S, So is selected as the third parameter of the study. Finally, as emphasized by the earlier

studies, since ignoring the bulk compressibility of rubber can lead to overestimation of compression

modulus for bearings with high shape factors, rubber compressibility is included in the numerical

study as the fourth parameter. Plotting the graphs in terms of either Poisson’s ratio ν or “relative”

bulk compressibility K/G of rubber is possible. Recalling the relation between these two material

constants, i.e., , the conversion between them can easily be made

whenever required. It is also to be noted that since the basic assumptions of the pressure method

may not be valid for highly compressible materials, the lower limit of ν is selected in the numerical

analysis as ν = 0.49, which corresponds to highly compressible rubber with K = 50G.

3.1 Compression modulus

Fig. 3 shows the variation of compression modulus of HCFRRBs (Ec,HC) with stiffness ratio (k
*
f  =

kf /Gt) for two specific values of initial shape factors; So= 5, representing low shape factor (LSF)

S So 1 β–( )=

K/G 2 1 ν+( )[ ]/ 3 1 2ν–( )[ ]=
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Fig. 3 Effect of reinforcement flexibility on compression modulus
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bearings and S0 = 30, representing high shape factor (HSF) bearings. The effect of rubber

compressibility is also studied in the graphs, which are plotted for three different values of Poisson’s

ratio; ν = 0.49, corresponding to highly compressible rubber with K = 50G, ν = 0.4995,

corresponding to natural rubber with K = 1000G, and ν = 0.4999999, which is considered to be

sufficiently close to the incompressible value of 0.5, corresponding to K/G → ∞. Also, the graphs

are plotted for three different values of radius ratio; β ≅ 0, implying a solid section, β = 0.1,

representing a medium-sized hole, and β = 0.5, representing a considerably large hole. Noticing that

the graphs presented in Fig. 3 are plotted in log-log scale and comparing the graphs in Fig. 3(a)

with those in Fig. 3(b), one can see the great effect of shape factor on compression modulus. As

expected, the compression modulus of a fiber-reinforced bearing asymptotically approaches to the

compression modulus of its “equivalent” (i.e., with identical So, β and ν) steel-reinforced bearing as

k*f  increases. While an HSF bearing reaches its asymptotic value at considerably large values of k*f ,

particularly if rubber compressibility is very low, there is no need to have very large values of k*f
for an LSF bearing to behave as if it were steel-reinforced. Such a behavior can also be observed

from the comparison of the graphs plotted for bearings with identical So and ν but different β

values; as β increases, the limiting k*f  value decreases. While the curves plotted in Fig. 3(a) for the

bearing with So = 5 composed of nearly (ν = 0.4995) and strictly (ν ≅ 0.5) incompressible rubber
almost coincide, showing that slight compressibility of rubber can realistically be ignored in the

design of LSF bearings, those in Fig. 3(b) for the bearing with So = 30 deviate from each other

considerably, indicating the significant effect of compressibility in HSF bearings. One can also

observe from Fig. 3 that for the bearing with the same So and β, as ν decreases, the limiting k
*
f

value at which the steel-reinforced bearing behavior is attained decreases. 

Since Ec,HC of an LSF bearing can be much smaller than Ec,HC of an HSF bearing for an easier

and more accurate evaluation of the effects of k*f  on bearings with different So values, it can be

helpful to replot the graphs in Fig. 3 by normalizing the modulus values with respect to their

limiting values computed for the corresponding (i.e., with identical So, β and ν) steel-reinforced

bearings (Ec,HC,SR). Such graphs are presented in Fig. 4. Since the behavior change from LSF

bearings to HSF bearings is very rapid, the graphs plotted for bearings with an intermediate initial

shape factor, So= 15, representing moderate shape factor (MSF) bearings, are also included in these

normalized graphs. As it is apparent from Fig. 4(b), the curves plotted for MSF bearings, thus their

compressive behavior, lay in between those for LSF and HSF bearings. 

The effects of β on Ec,HC are more apparent in the graphs presented in Fig. 5, which are plotted

for So= 5, 15 and 30, and for two specific values of stiffness ratio: k*f = 30000 and k*f = 300,

corresponding respectively to a relatively stiff and highly extensible reinforcing sheets. In the

graphs, modulus values are normalized with respect to their limiting values computed for the

corresponding (i.e., with identical So, k
*
f  and ν) circular bearings (Ec,C) so that the decrease in

compression modulus due to the hole existence can directly be seen. Investigation of the behavior of

the bearings when k*f = 30000 is valuable in view of that this particular value of k*f  is calculated

using Ef = 210 GPa, νf = 0.3, tf = 0.27 mm, t = 3 mm, G = 0.7 MPa, which represent the geometric

and material properties of fiber-reinforced seismic isolation bearings tested by Kelly (2002). In fact,

as it is apparent from Fig. 4, the value of 30000 is a sufficiently large value for k*f , even for the

HSF bearing (So = 30), to use Ec,HC,SR instead of Ec,HC in the design of fiber-reinforced bearings

provided that ν ≤ 0.4995. Fig. 5(a) show how fast Ec,HC decreases with increasing β if ν = 0.5 and

k*f = 30000. The presence of slight compressibility (ν = 0.4995) reduces this effect considerably in

HSF and MSF bearings. From the comparison of Fig. 5(a) with Fig. 5(b), it is seen that if k*f
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decreases, the bearings, particularly the MSF and HSF bearings, become less sensitive to the hole

effects unless β is considerably large. 

The effects of rubber compressibility on Ec,HC are more apparent from Fig. 6, which shows its

variation with ν or K/G for various geometric and material properties. In the graphs, modulus values

are normalized with respect to those computed ignoring bulk compressibility of rubber (Ec,HC,incomp)

so that the decrease in compression modulus due to rubber compressibility can directly be seen. The

S-shaped curves show how incompressible behavior is approached as ν increases. The earlier

conclusion that the bearings with smaller So and/or k
*
f  reach their incompressible values at much

smaller values of ν is now more apparent. These graphs also show why Ec,HC of an HSF bearing

Fig. 4 Effect of reinforcement flexibility on normalized compression 
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Fig. 5 Effect of radius ratio on normalized compression modulus
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with k*f = 30000 decrease significantly when ν = 0.4995 while an LSF bearing does not “sense”

such small compressibility.

Fig. 6 Effect of rubber compressibility on normalized compression modulus
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Fig. 7 Variation of “magnification factor” with reinforcement flexibility
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3.2 Maximum shear strain

A detailed study on shear stress distributions in an HCFRRB shows that one of the major effects

of the existence of a hole in a fiber-reinforced bearing is the increase in shear stress, thus, shear

strain, developing in the bearing under compression. Considering that maximum shear strain

generated in the bearing by compression has to be added to that by shear to compute the maximum

total shear strain developing in a compression-shear bearing and noting that this maximum value of

the shear strain is usually limited to some code-defined values in the design of the bearing, it is

important to investigate how it is affected from the reinforcement flexibility in HCFRRBs. The

graphs shown in Fig. 7 illustrate this effect for various geometric and material properties. In Fig. 7,

γ*max  denotes the ratio of maximum shear strain developing in the bearing due to compression to the

applied compression strain; i.e., γ*max = γmax /εc. γ
*
max  values of HCFRRBs (γ

*
max ,HC) are normalized

with respect to γ*max  values of corresponding (i.e., with identical So, k
*
f  and ν) circular steel-

reinforced rubber bearings (γ*max,C,SR), which is defined in this paper as “magnification factor ( f )”. It

Fig. 8 Variation of “magnification factor” with radius ratio
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Fig. 9 Effect of the presence of a small to moderate hole on pressure and shear stress distributions for kf /
Gt = 30000

is worth noting that γ*max ,C,SR = 6So when ν = 0.5. As expected, f decreases as k
*
f  decreases. The

effect of k*f  on f  is similar to its effect on Ec. S-shaped curves define the limiting k
*
f  values above

which a fiber-reinforced bearing behaves as if steel-reinforced. f values computed for a very small
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Fig. 10 Magnification factors in practical ranges of parameters
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hole (β =0.01) are unexpectedly large, particularly if k*f  is also large. The presence of slight

compressibility can decrease these large values significantly in HSF bearings. As β increases, f

decreases. The decrease is more significant when ν = 0.5. 

Fig. 8 shows how f increases as β → 0 and decreases as β → 1. The presence of even slight

compressibility (ν = 0.4995) can decrease f values considerably when β is small particularly if So
and k*f  are large. k

*
f  has a similar effect on f. The curves plotted for k

*
f  = 300 and/or ν = 0.49 are

almost uniform, except near β → 0. The unexpected behavior observed for very small holes can be

explained by plotting the stress distributions, as shown in Fig. 9. Even though the maximum

pressure occurs at the center of a circular bearing, the presence of a central hole cause an abrupt

decrease in pressure near the hole in a hollow circular bearing. Since shear stress depends on

pressure, such a change in pressure distribution also affects shear stress distribution. In fact, as

discussed in Pinarbasi et al. (2008), the behavior of a hollow circular bearing approaches the

behavior of long strip as diameter ratio approaches 1.0. (For more detailed discussions about the

stress concentrations near the edges, one may refer to Pinarbasi et al. (2008)).

It is also worth noting that in the practical range of β ≥ 0.1 (see Fig. 10), f values are no more
than 2.5. It can also be concluded that ignoring the bulk compressibility of rubber may significantly

underestimate f unless So is low.

4. Conclusions

Due to its favorable mechanical properties, “bonded” rubber layers have long been used in various

engineering applications, mostly in the form of multilayered rubber bearings. Until recently, these

bearings are usually “reinforced” with steel plates. In an attempt to decrease both the cost and

weight of the bearings, Kelly (1999) proposed the use of fiber-reinforcement in place of steel

reinforcement. Although the idea is new, the viability of the concept has already been proven by

several analytical and experimental studies.

Earlier studies on annular rubber bearings, all of which are conducted for steel-reinforced bearings

(to the authors’ best knowledge), have indicated that the hole existence not only decreases the

compression modulus of the bearing but also increases the maximum shear strain generated in the

bearing by compression, both of which are basic design parameters also for fiber-reinforced

bearings. Thus, it is essential that the effects of both the hole presence and reinforcement flexibility

on the compressive behavior of an annular fiber-reinforced bearing be well understood and properly

included in its design. 

This paper presents analytical solutions to the problem of uniform compression of hollow-circular

fiber-reinforced bearings (HCFRRBs), which includes the solid-circular bearings as a special case as

the radius of hollow section vanishes. The problem is handled using the most-recent formulation of

the pressure method developed by Kelly (1999), which includes both rubber compressibility and

reinforcement flexibility. The analytical solutions are, then, used to investigate the effects of

reinforcement flexibility and hole presence on bearing’s compression modulus and maximum shear

strain developing in the bearing. Main conclusions can be summarized as follows:

• The compressive behavior of an HCFRRB with outer radius R, inner radius a, interior rubber
layers of thickness t, shear modulus G and Poisson’s ratio ν, interior fiber-reinforcing sheets of

thickness tf and in-plane stiffness , where Ef and νf are, respectively, elasticity

modulus and Poisson’s ratio of the reinforcing sheet, is controlled by four main parameters: (i)

kf Ef tf / 1 νf

2
–( )=
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“stiffness ratio” of the reinforcement k*f  = kf /Gt, (ii) “radius ratio” of the hole β = a/R, (iii)

Poisson’s ratio of rubber ν and (iv) “initial shape factor” of the bearing So = R/2t.

• The compressive behavior of a HCFRRB asymptotically approaches to that of its corresponding
(i.e., with identical So, β and ν) steel-reinforced bearing as k

*
f  increases. The k

*
f  value at which the

steel-reinforced behavior is attained decreases as ν and/or So decreases and/or β increases.

• The compression modulus of a HCFRRB (Ec,HC) decreases as β increases. The decrease in Ec,HC

with increasing β is not linear in general. For incompressible materials (ν = 0.5), Ec,HC reduces

abruptly near β = 0. The presence of slight compressibility (e.g., ν = 0.4995) decreases this effect

noticeably if So is high. In the same way, as k
*
f  decreases, moderate shape factor (MSF) and high

shape factor (HSF) bearings become less sensitive to the hole existence.

• Another important effect of the presence of a central hole in compressive behavior of a circular
fiber-reinforced rubber bearing is its increase in bonding shear strain, which is one of the basic

design parameters for such bearings. “Magnification factor ( f )” can reach very large values when

β is considerably small particularly if ν and/or k*f  are large. As an example, independent of So, a

hole with β = 0.01 results in f ≅ 11.0 when ν = 0.5 and k*f  is large. The presence of even slight

compressibility can decrease this large value considerably in MSF and HSF bearings. When β ≥
0.1, however, f values are much smaller, no more than 2.5 even for low shape factor (LSF)

bearings and/or incompressible cases. The numerical study shows that in this range (i.e., when β ≥
0.1), ignoring the effects of bulk compressibility of rubber may lead to underestimated

magnification factors unless the shape factor of the bearings is small. 

• The compressive behavior of a HCFRRB asymptotically approaches to its “incompressible”
behavior as bulk compressibility of rubber decreases. The limiting value for ν at which the

incompressible bearing behavior is attained decreases as k*f  decreases and/or So decreases and/or β

increases. Since LSF bearings reach their incompressible behavior at smaller values of ν, they are

not influenced from the presence of slight compressibility (ν = 0.4995). For this reason, their

compression modulus can be computed from the expressions derived ignoring rubber

compressibility. On the other hand, the compressive behavior of an MSF or HSF bearing with

slight compressibility can be considerably different than their incompressible behavior particularly

if the reinforcement extensibility is small. For this reason, it is essential that the effects of the bulk

compressibility of rubber be included in the design of MSF and HSF bearings. 
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