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Abstract. The Combined Deterministic Stochastic Subspace based System Identification Technique
(CDSSSIT) is a powerful input-output system identification technique which is known to be always
convergent and numerically stable. The technique determines a Kalman state sequence from the projection
of the output-input data. The state space matrices are determied subsequently from this Kalman state
sequence using least squares. The objective of this paper is to examine the efficiency of the CDSSSIT in
identifying the modal parameters (frequencies and mode shapes) of a stiff structure. The results show that
the CDSSSIT predicts the modal parameters of stiff buildings quite accurately but is very sensitive to the
location of sensors. 
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1. Introduction

System identification techniques have been successfully implemented in the literature to identify

the modal parameters of bridges and high rise buildings (Kohler et al. 2005, Safak 1993, Celebi and

Safak 1992, Safak and Celebi 1992, Azarbayejani et al. 2009a, b, Mosallam et al. 2009, Cardini and

DeWolf 2009). However, for stiff structures, application of the system identification techniques still

is a challenge despite the advances in the electronics of health monitoring systems for the past 15

years. The Combined Deterministic Stochastic Subspace based System Identification Technique

(CDSSSIT) within this context, is a powerful input-output system identification technique that is

known to be always convergent, non-iterative and numerically stable (Van Overschee and De Moor

1992a, b, 1994a, b, 1995, 1996). In classical identification techniques, first the system matrices are

determined and then the Kalman states are identified from these system matrices through Kalman

filter (Van Overschee and De Moor 1992a, b, 1996). The CDSSSIT on the other hand, determines a

Kalman state sequence from the projection of the input-output data. The state space matrices are

determined subsequently from this Kalman state sequence using least squares. This is the difference

between the CDSSSIT algorithms and the classical identification schemes. The objective of this

paper is to search for the efficiency of the CDSSSIT in identifying the modal parameters of a stiff

building and to examine the sensitivity of the technique to different sensor locations. 
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A school building in Istanbul is monitored continuously for a TUBITAK Project (Gundes Bakir

2008). Before the instrumentation of the school, the toolbox OPTISEP (OPTImal SEnsor Placement

(OSP)) was developed in MATLAB by the author in a previous study (Gundes Bakir 2010) which

can compute the optimum sensor locations according to six alternative OSP techniques currently

used in NASA for large space structures. The techniques in the toolbox are then applied on this stiff

school building. The previous study showed that the Sensor Set Expansion Technique is the most

suitable technique for OSP in stiff mid rise reinforced concrete buildings. However, no system

identification step was involved in the previous study. Thus, it is now timely and imperative to

investigate the feasibility of the application of the CDSSSIT on the response data obtained from

different sensor configurations. This is the first objective of this paper. The parametric studies as

well as the Monte Carlo analysis will give the crucial information regarding the validity of the

previous study of the author (Gundes Bakir 2010) which compared different OSP techniques only in

terms of the determinant, the trace and the condition number of the Fisher Information Matrix

(FIM). A second objective of the study is to investigate whether the CDSSSIT, which is reported to

be numerically stable and convergent in the literature, can also successfully identify the modal

paramaters (frequencies, mode shapes) of stiff mid rise reinforced concrete building type structures

and whether the technique has some limitations. 

In this paper, a linear dynamic analysis is carried out on the finite element (FE) model of the

building and the response data is obtained from different sensor configurations. The CDSSSIT is then

applied on these response data to identify the modal parameters of the structure. A Monte Carlo

analysis is carried out and the identified modal parameters are then compared with the modal

parameters obtained from the FE model of the structure using the average values of the relative

eigenfrequency differences (RED) and the modal assurance criteria (MAC) from the Monte Carlo

simulations. The overall results of the study show that the CDSSSIT is overly sensitive to the

location of sensors. 

2. The CDSSSIT

The CDSSSIT by Van Overschee and De Moor (Van Overschee and De Moor 1992a, b, 1994a, b,

1996) is explained in the following subsections. 

2.1 The combined deterministic-stochastic model

The combined deterministic-stochastic model that will be identified is given by 

(1)
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the number of outputs, m is the number of inputs and  are the system matrices of the state

space model. This system is subdivided into the deterministic and the stochastic parts. The

stochastic part is denoted by a superscript s and the deterministic part is denoted by a superscript d.

The deterministic and the stochastic models can be expressed as 

(4)

(5)

(6)

(7)

2.2 Construction of the block Hankel matrices

 

Block Hankel matrices are constructed from the input and output data. The subscripts of the input

block Hankel matrix U in the following two equations represent the first and the last element of the

first column. Similarly,  is denoted by Up and  by Uf where the subscripts p and f denote
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block Hankel matrices. From a statistical point of view j should be much larger than i. To ensure that

all the samples are used, j is taken as equal to , where s is the number of samples of the

measurement. The output block Hankel matrices  are defined similar to Eqs. (8)

and (9). A block Hankel matrix  consisting of inputs and outputs is also defined in Eq. (10). 
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2.3 Combined deterministic stochastic subspace system identification

The orthogonal and the oblique projections are two extensively used geometrical tools in subspace

based system identification. The orthogonal projection is denoted by the operator ΠF that projects

the row space of the matrix onto the row space of the matrix F as

(11)

where (•)† defines the Moore-Penrose pseudo-inverse of the matrix (•). 

(12)

It should be noted that F in the above equation is written in bold face in order to indicate that the
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The extended observability  and the extended observability matrices without the last l rows

represented by  are computed from

(21)

 
(22)

The following equation is solved for A, C and K

(23)

The matrices L, M and K are defined as
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The matrices Q, S and R can be computed from the residuals ρw and ρv as

(29)

 

2.4 Derivation of the eigenfrequencies and mode shapes from the state space system

matrices

The system matrix A can be decomposed as (Peeters 2000)

(30)

where  is the eigenvector matrix and  is a diagonal matrix that contains the

discrete time eigenvalues µi. The eigenfrequencies are calculated from

(31)

where λi denotes the continuous time eigenvalues and ∆t is the sampling time. The mode shapes V

are computed from

(32)

 

3. The optimal sensor placement techniques

Six different OSP techniques are implemented in the toolbox OPTISEP developed by the author.

These OSP techniques are initially developed for OSP in large space structures such as space

shuttles, satellites or other types of large space structures in NASA. Different techniques that are
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(33)

where

(34)

φsi is the ith row of the target mode participation matrix corresponding to the ith candidate sensor

location and nc is the number of candidate sensors. The algorithm in an iterative way calculates the

effective independence value that corresponds to every candidate sensor location and then deletes

the one that has the smallest contribution until the number of the candidate sensor locations are

equal to the available number of sensors. The value of Ei is between 0 and 1. If this value is equal

to 1 for a sensor location, then that location is crucial and should not be deleted from the candidate

sensor locations. If it is 0, then that sensor location has no contribution to the signal strength or

spatial independence. 

3.2 The effective independence driving point residue technique (EFI-DPRT)

 

It has been argued in the literature (Imamovic 1998) that with the EFIT, sensor locations with low

energy content can also be selected. This is overcome in the EFI-DPRT by multiplying the effective

independence value for each candidate sensor location by the corresponding driving point residue

coefficient given by 

(35)

where ωj is the jth target mode frequency. Consequently, the effective independence value for the

EFI-DPRT can be computed as

(36)

 

3.3 Optimum driving point based technique (ODPT)

 

In the ODP technique, the ODP parameter is computed which can be expressed as 

(37)

The idea is to detect the nodal points in order to prevent the sensors to be located in these

regions. 

3.4 Non-optimum driving point based technique (NODPT)

This is an energy based algorithm that uses the NODP parameter which is defined as
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3.5 Sensor set expansion technique (SSET)

SSET developed by Kammer (2005) iteratively expands an initial set of sensors to the desired

number of sensors in contrast to the above-mentioned techniques which decrease the initial set of

candidate sensor locations to the available number of sensors. The method not only results in a

dramatic decrease in the computational time but also allows a test engineer to specify a set of

locations that they absolutely want to keep in the final sensor configuration. The expert engineers

can determine an initial set of sensor locations and then expand this initial set to the desired number

of sensors in an optimal way. The method essentially is based on maximizing the determinant of the

target mode information matrix. Maximizing the determinant, increases both the target mode signal

strength and the linear independence. There are two different cases that must be examined when

using the technique. These are when the initial node set renders target mode shapes linearly

independent and when the initial node set renders target mode shapes linearly dependent. The

details of the technique can be found in Kammer (2005). The SSET is originally developed for

triaxial sensors. However, in this study, it is implemented slightly differently so that it can also be

applied on uniaxial sensors with the same logic of expanding an initial predetermined set of sensors

to the available number of sensors.

4. The instrumented school building

The instrumented building is a five storey structure with one basement as shown in Fig. 1 and is

located in the Kadikoy district of Istanbul on the Asian side. 

The first four mode shapes of the frame are shown in Figs. 2, 3, 4 and 5. 

The modal frequencies are given in Table 1. One of the considerations in this study is the

typical structural design of the school building. The structure is substantially stiff in the short

direction and relatively stiff in the long direction. Therefore, one of the other aims of this paper

Fig. 1 The instrumented school building (website of the instrumented building, 2009)
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Fig. 2 The first vibration mode (the first bending mode in the longitudinal direction)

Fig. 3 The second vibration mode (the first bending mode in the transversal direction) 

Fig. 4 The third vibration mode (the torsional mode) 
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is to answer the question whether the CDSSSIT will successfully identify the global modes in

such a stiff structure.

5. Final optimal sensor configuration in the school building

The OSP toolbox OPTISEP has been applied on the stiff school building in a previous study of

the author (Gundes Bakir 2010). The resulting sensor configurations are shown in Figs. 6 and 7.

The techniques are compared in terms of the determinant, the trace and the condition number of the

FIM in the previous paper. The results showed that the SSET gives the best results among all the

six different techniques. However, no identification step is involved in the afore-mentioned study. In

this stage of the project, the CDSSSIT will be implemented when collecting real time data from this

building for identifying the modal parameters. Thus, it is now timely to investigate whether the

modal parameters are identified successfully with the CDSSSIT. In this paper, several parametric

studies and Monte Carlo simulations are carried out to determine the best OSP technique that would

give the best eigenfrequency and mode shape estimates when the CDSSSIT is applied on the

response data from this structure. 

Table 1 Modal frequencies 

 Number Frequency (Hz)  Mode type

 1  2.62  First bending mode in the z direction 

 2  4.84  First bending mode in the x direction

 3  5.91  First torsion mode

 4  10.007  Second bending mode in the z direction 

 5-12  10.133  Local modes of the ground storey beams

Fig. 5 The fourth vibration mode (the second bending mode in the longitudinal direction)
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6. Implementation of CDSSSIT and the parametric studies

A linear dynamic analysis is carried out on the stiff school building and the response data is

obtained from different sensor configurations. The dynamic excitation load is white noise Gaussian

with 4096 samples of dt = 0.005 sec. The total excitation period is 20.475 sec. The structure is

excited in both horizontal directions. The response data is obtained from the assumed sensor

configurations according to the 6 different techniques. The CDSSSIT, specifically, the com-alt

algorithm (Van Overschee and De Moor 1996) is then successfully applied on these response data to

identify the modal parameters of the structure first for the case without noise and then for a noise to

 Fig. 7 Final sensor configurations according to (d) EFI-DPRT, (e) SSET (Gundes Bakir 2010) 

Fig. 6 Final sensor configurations according to (a) NODPT (b) EFIT and SVD-OSPT (c) ODP method
(Gundes Bakir 2010)
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signal ratio (NSR) of 10% for each sensor configuration. These are then compared with the modal

parameters obtained from the FE model of the structure using RED and MAC. A Monte Carlo

analysis of 40 runs is carried out in order to investigate the robustness of the techniques in the

presence of noise and the average results are plotted. This is a feasibility study for determining the

most efficient and the most accurate modal parameters from the instrumented school building using

the CDSSSIT. 

The RED obtained from CDSSSIT according to different sensor configurations for the cases

without noise and with a NSR of 10% are given in Figs. 8-17.

Fig. 10 The RED obtained with EFIT and CDSSSIT
without noise (average of the Monte Carlo
simulations)

Fig. 11 The RED obtained with EFIT and CDSSSIT
for a NSR of 10% (average of the Monte
Carlo simulations)

Fig. 8 The RED obtained with CDSSSIT and SSET
without noise (average of the Monte Carlo
simulations)

Fig. 9 The RED obtained with CDSSSIT and SSET
for a NSR of 10% (average of the Monte
Carlo simulations)
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The average MAC obtained by the CDSSSIT from Monte Carlo simulations according to

different sensor configurations for the cases without noise and with a NSR of 10% are given in

Figs. 18-27.

7. Results and discussion

The results show the average of the Monte Carlo runs and demonstrate clearly that with all of the

Fig. 14 The RED obtained using CDSSSIT and
ODPT without noise (average of the Monte
Carlo simulations)

Fig. 15 The RED obtained using CDSSSIT and
ODPT with a NSR of 10% (average of the
Monte Carlo simulations) 

Fig. 12 The RED obtained from EFI-DPRT and
CDSSSIT without noise (average of the
Monte Carlo simulations)

Fig. 13 The RED obtained from EFI-DPRT and
CDSSSSIT for a NSR of 10% (average of
the Monte Carlo simulations)
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OSP techniques, the eigenfrequencies of this stiff structure can be adequately identified using

CDSSSIT. However, with none of the OSP configurations except for the SSET, the mode shapes of

the structure can be adequately identified. This is even true without noise. For the case without

noise, the MAC values using SSET in combination with the CDSSSIT are substantially high

whereas the mode shapes can not be adequately captured using other OSP configurations. It is also

apparent that even for the case with a NSR of 10%, the first, the second and the fourth modes are

very accurately identified using the SSET in combination with the CDSSSIT. There is only a

problem with the torsional mode. This can be expected as the structure was too stiff in the short

Fig. 18 The MAC from CDSSSIT and SSET without
noise (average of the Monte Carlo simulations) 

Fig. 19 The MAC from CDSSSIT and SSET for a
NSR of 10% (average of the Monte Carlo
simulations)

Fig. 16 The RED obtained from CDSSSIT and
NODPT without noise (average of the
Monte Carlo simulations) 

Fig. 17 The RED obtained from CDSSSIT and
NODPT for a NSR of 10% (average of the
Monte Carlo simulations) 
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direction and was not excited in all directions in the dynamic analysis. These may be the reasons

behind the relatively lower MAC values for the torsional mode.

As mentioned above, the mode shapes can not be adequately identified with CDSSSIT for sensor

configurations computed according to the other techniques than the SSET. The reason may be the

following: When the sensor configuration computed according to the NODPT is investigated in

detail, it is apparent that the sensors are concentrated in the lower stories at the left hand side and

only 2 sensors in the short direction are present in the roof. In the EFIT, ODPT and EFI-DPRT, the

sensors are mainly located in the upper stories. In the sensor distribution obtained from ODPT, there

Fig. 22 The MAC from EFI-DPRT and CDSSSIT
without noise (average of the Monte Carlo
simulations)

Fig. 23 The MAC from EFI-DPRT and CDSSSIT
for a NSR of 10% (average of the Monte
Carlo simulations)

Fig. 20 The MAC from the EFIT without noise
(average of the Monte Carlo simulations)

Fig. 21 The MAC from the EFIT and CDSSSIT for
a NSR of 10% (average of the Monte Carlo
simulations) 
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is no single sensor in the short direction in the 2nd, 3rd, 4th and the 5th stories. If the sensor

configuration with the SSET is investigated on the other hand, it becomes apparent that the sensors

are distributed homogeneously throughout the structure. 

The overall results of the parametric studies show that the best estimates are obtained from the

CDSSSIT when the sensor configuration is computed according to the SSET but it is also apparent

that the CDSSSIT falls short of accurately identifying the mode shapes of such a stiff structure

when other techniques are used for OSP. The parametric studies also reveal the vulnerability of the

CDSSSIT to the presence of noise in measurements. 

Fig. 26 The MAC from CDSSSIT and NODPT
without noise (average of the Monte Carlo
simulations)

Fig. 27 The MAC from CDSSSIT and NODPT for a
NSR of 10% (average of the Monte Carlo
simulations)

Fig. 24 The MAC from CDSSSIT and ODPT
without noise (average of the Monte Carlo
simulations)

Fig. 25 The MAC from CDSSSIT and ODPT for a
NSR of 10% (average of the Monte Carlo
simulations)  
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8. Conclusions

It is relatively easier to identify the modal parameters of flexible structures from the response

data. However, for stiff structures, application of the system identification techniques becomes a

challenge. This paper investigates the feasibility of the application of the CDSSSIT on the response

data obtained from stiff building type structures for the identification of modal parameters. The use

of this technique is important as it is known to be always convergent and numerically stable. A

Monte Carlo analysis is carried out and the average results from simulations are compared in terms

of the RED as well as the MAC. The results of these parametric studies show that the CDSSSIT

predicts the modal parameters of stiff structures quite accurately but is sensitive to the location of

sensors and the best results can be obtained from the CDSSSIT if it is used in combination with the

OSP method SSET. It is also apparent that the CDSSSIT is vulnerable to the presence of noise in

measurements and this limitation of the technique ought to be considered when it is applied on stiff

mid rise building type structures. 
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