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Abstract. In this research, the wavelet transform is used to analyze time response of a cracked beam
carrying moving mass for damage detection. In this respect, a new damage detection method based on the
combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is
more capable in making damage signature evident than the traditional two approaches based on direct
investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded
that strain data outperforms displacement data at the same point in revealing damage signature. In
addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and
pure inertia force along the deflection direction to damage detection is investigated on a sample case.
From this analysis it is concluded that centrifuge force has the most influence on making both
displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-
sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand,
are observed to be insufficient alone. 
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1. Introduction

Structures under moving load constitute a significant field of research in engineering. They have

important applications such as rails, railway bridges, runways, tunnels, pipelines, etc. Hence, many

researches have been conducted to analyze dynamic behavior of them (Frýba 1999). The case of

damaged beam subject to moving loads is, however, a recent issue. The earlier work on this topic

appeared on the beginning of the century by Mahmoud (2001) to investigate the damage effect on

structural response. In that paper, the author showed that crack shifts the minimum point of

displacement profile to the right-hand on the time axis. Also, it was reported that a discontinuity

appears in the slope of the deflected shape of the beam at the crack location. In a similar work,

Mahmoud and Abu Zaid (2002) included the inertia effect of the moving load, and demonstrated

that this is dominant at higher speeds on the time response. Later, Bilello and Bergman (2004)

formulated the cracked beam under moving mass problem including all moving mass-related terms

called as convective terms. The authors state that changes in time-response of the structure due to

damage are more perceptible in comparison to the changes in the natural frequencies. Lin and
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Chang (2006), apart from the previous ones, derived the exact vibration modes of the cracked beam

solving the relevant eigenvalue problem. Recently, Ariaei et al. (2009) modeled the cracked beam

under moving load considering opening and closing of the crack during the load traverses beam.

They included all of the convective terms, and solved the problem by both discrete element

technique (DET) and the finite element method. The authors used the former method at the

subsequent analyzes due to its less time-consuming property. From numerical applications, they

concluded that breathing crack leads to less midspan deflection in comparison to the case of fully

open crack. However, much more increase in the vibration amplitudes of the same point when

moving load speed gets closer to the first critical speed is observed in the case of breathing crack.

Identifying damage location and, if possible, its extent are the issues as significant as

understanding the impact of damage on the dynamics of structure. The wavelet transform (WT) is,

in this regard, a proper technique for damage identification. The WT is a signal-processing tool

widely used in data compression and singularity detection applications. Its performance on

pinpointing singularity locations despite certain amount of noise interference has stimulated

researchers to focus on wavelet-based damage detection methods (see, for example, Kim and

Melhem (2004) for a literature survey). Some methods on this issue are based on analyzing the WT

coefficients of the structural response in the form of spatial data such as vibration modes, static or

dynamic displacement profiles. Certain derivatives of such data include local singularities at damage

locations. The WT coefficients therefore form sharp peaks at these locations, and the magnitudes of

these peaks are proportional to damage extent. There are two damage detection approaches by the

WT coefficients (Gökda  and Kopmaz 2009): In the first, only the WT coefficients of the response

of the damaged structure are analyzed for damage evaluation. In the second, however, the WT

coefficients of the response of healthy structure are also obtained, and, generally, subtracted from

the former coefficients. This second method is more advantageous in the case of small-size damage

(Zhong and Oyadiji 2007). However, if the number and extent of damage increase, this second

approach loses its sensitivity. Moreover, healthy structural response as a reference data may not be

available for many structures. 

Zhu and Law (2006), using the above first approach, showed the possibility of identifying damage

locations by the continuous WT. They demonstrated that the local time-dependent displacement

response of a beam to moving load gains singularity at the time when moving load passes on the

crack location. If the moving mass velocity is constant, then determining the singularity time means

finding the damage location. Since the continuos WT coefficients of the displacement function are

sensitive to local singularities, the peak points correspond to damage locations. From the parametric

analyzes, they concluded that the WT coefficients are sensitive to the closeness of measuring point

to damage location, the amount and the speed of moving force. Apart from that, in this research, a

new wavelet-based damage detection method is proposed for beam carrying moving mass. This

method does not necessitate the healthy structural response, and is based on using a suitable

approximation function extracted from the initial data by the discrete WT (DWT) as reference. It is

shown that the difference of the CWT coefficients of the initial data and the approximation function

is more sensitive to damage than the previous two approaches. From the numerical simulations by

the proposed method, it is concluded that strain data has more damage-sensitivity compared to

displacement data. Moreover, apart from the work of Zhu and Law (2006), influence of moving

mass-related terms such as gravitational force, Coriolis force, inertia force along the deflection

direction, and the centrifuge force is investigated considering a specific example. It was observed

that the centrifugal force has the most impact on making damage signature perceptible. The Coriolis
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force was the second despite not being as efficient as the former. The rest, on the contrary, were

observed to be insufficient alone.

2. Theory

2.1 Dynamic response of a beam under moving load

Fig. 1 illustrates the system under consideration in this work, where a beam of length L with

section sizes w and h is traversed by a moving mass of mP with speed VP. An open crack with

height hc is located at xc. The crack is assumed to be fully open during the moving mass traverses

beam. Moreover, moving mass and beam are assumed to be in contact throughout the motion.

Furthermore, beam’s surface roughness is neglected. In other words, the model adopted in

references such as Mahmoud (2001), Zhu and Law (2006) is regarded. By the Euler-Bernoulli

approach, the equation of motion of the beam can be given as (Rao 2000)

(1)

where ρ, A, EI, and C denote, respectively, the density, section area, the bending stiffness, and

viscous damping. δ is the Dirac delta function, and g means gravitational acceleration: g = 9.81 ms−2.

The first two terms in the bracket at the left side are centrifuge and Coriolis accelerations,

respectively, whereas the third is the acceleration due to displacement along the vertical axis.

Mode superposition method can be used to solve the Eq. (1). To this end, free vibration modes of

the undamped beam are obtained first. Setting C and mP equal to zero, and introducing

 lead to the fourth-order homogeneous differential equation in Y(x). The well-

known solution is as follows

Y(x) = c1cos(λx) + c2sin(λx) + c3cosh(λx) + c4sinh(λx), λ = (ρAω2/(EI))0.25 (2)

where ci (i = 1, 2, 3, 4) denotes the undefined constants. The beam is assumed to be divided into

two parts by the crack. Then, the compatibility equations at the crack location can be written as

(Mahmoud 2001)

, , , (3)

where subscripts 1 and 2 refer respectively to the beam portions at the left and right of the crack

location. The first, third, and the fourth equations separated by comma in Eq. (3) imply the

deflection, bending moment, and shear force continuity at the crack location while the second

indicates slope discontinuity due to crack. The geometric factor θ is defined by

ρA
∂2
y

∂t2
------- C

∂y
∂t
----- EI

∂4
y

∂x4
------- mPδ x VPt–( ) VP

2∂2y

∂x2
------- 2VP

∂2y
∂x∂t
-----------

∂2y

∂t2
-------+ ++ + + mPgδ x VPt–( )–=

y x t,( ) Y x( )sin ωt( )=

Y1 xc( ) Y2 xc( )= Y1′ xc( ) θY1″ xc( )+ Y2′ xc( )= Y1″ xc( ) Y2″ xc( )= Y1″′ xc( ) Y2″′ xc( )=

Fig. 1 Beam with a surface crack carrying a moving load 



84 Hakan Gökdag
o

, (4)

(Ariaei et al. 2009). Using Eq. (2), displacement, slope, curvature, and its derivative can be written

in matrix notation as

, , , (5)

Then, Eq. (3) becomes as follows 

 (6)

where subscripts 1 and 2 again denotes, respectively, the first and the second beam parts separated

by the crack. For each beam part, there are four ci coefficients as seen in Eq. (2). In the case of

single crack, one needs to define eight coefficients in total; the first four are the elements of the

vector C1, and the rest belong to C2. Eq. (6) gives four equations. The remaining four are obtained

by applying boundary conditions as TLC1= 0 and TRC2= 0, where TL and TR are 2×4 matrixes, L

and R denotes, respectively, the points x = 0 and x = L. Finally, the following eigenvalue equation is

obtained.

, (7)

If the number of crack is Nc, then there are Nc+ 1 beam parts, hence Eq. (7) can be generalized as

follows

(8)

Solving the eigenvalue problem, the vibration modes (Yi, i = 1, 2, …) of the cracked beam is

obtained (here the index “i” denotes the number of modes, and should not be confused with those in
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Eqs. (3,6)). Then, the time response of a point on beam axis can be constituted as 

. Substituting this into the Eq. (1), multiplying both sides by Yj(x), and integrating from

0 to L lead to the set of ordinary differential equations in modal coordinates qi(t), which can be

represented by the state space form as 

 (9)

where the elements of the mass (M), stiffness (K), damping (C) matrixes as well as the generalized

force vector (F) are defined as follows

,

, , (10)

In this work, the ode45 function in MATLAB environment is employed to solve the Eq. (9) for

the modal coordinates q. In addition to the time displacement of a point x, i.e., y(x, t), one can

obtain at the same point the strain (εxx(x, t)) of the beam’s outer surface by the well-known stress-

bending moment relation 

(11)

where .

2.2 Basics of the wavelet transform

The CWT of a function f(x) ∈ L2(|R) is defined by the integral

, , (12)

where  is derived from a mother wavelet  as  through the scale,

s, and the shifting parameters, b.  is a compactly-supported, zero-mean function in L2(|R), and

satisfies some other mathematical requirements (Addison 2002). Moreover,  is said to have N

vanishing moments if 

(13)

holds for m = 0, 1, 2,…, N − 1. As N increases, both the localization of the wavelet in x space and

its regularity (i.e., differentialability) becomes better. This property is useful in damage detection

applications. However, excessive number of vanishing moments (NVM) should be avoided, since

the localization of wavelet decreases with increasing NVM. Otherwise, significant errors in

pinpointing damage location occur. According to the relevant literature, N should be at least 2.

However, N = 4 and N = 6 are preferred frequently due to the practical concerns such as noise

interference (Hong et al. 2002, Loutridis et al. 2005, Gökda  2008). 
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If the scale and shifting parameters in Eq. (12) are sampled as s = 2j, b = n2j, which is called as

dyadic sampling, and if an orthogonal wavelet is used, then the DWT coefficients Wj, n are obtained.

In this case, it is possible to decompose f (x) to an approximation function at the Jth decomposition

level, AJ(x), and the sum of detail functions Dj(x) up to that level as (Addison 2002)

, (14)

Here, AJ represents the smooth part of f (x) whereas the sum of the details includes the higher

frequency variations. AJ becomes smoother with increasing J. 

Although the DWT coefficients can also be employed for damage detection, the CWT is preferred

mostly due to its redundancy feature that improves the damage sensitivity of the WT coefficients

(Douka et al. 2003). In this work, the CWT-based indexes are used for damage detection.

2.3 The proposed damage detection method

Suppose that the time displacement of a point a (0 ≤ a ≤ L) or the time-dependent strain at the

same point be f (t); i.e., f (t) = y(a, t) or f (t)= εxx(a, t). Then, the WT coefficients of this function are

to be computed. In this case, the parameter x in Eq. (12) is replaced with t. Before extracting a

suitable approximation function (AJ(t)) from f (t), f (t) needs to be extended at the ends to reduce

boundary distortion. This is of significant importance for the proper application of the proposed

method. There are several approaches for this operation such as symmetric, antisymmetric, periodic

extensions, and extension by cubic spline extrapolation (Messina 2008, Loutridis et al. 2005, Rucka

and Wild 2006). Moreover, other easily applicable methods such as zeropad, smooth padding can be

cited (Misiti et al. 2007), as well. However, none of these is suitable for every boundary type.

Moreover, the extrapolation-based ones are sensitive to noise interference. Messina (2008), to avoid

such restrictions, developed an optimization-based procedure that can significantly reduce distortions

even in the general case of unknown boundary types and noisy data. According to his method, data

is first extended at the ends by global polynomial fit (i.e., using all data points), which is called as

first approximation. Later, this approximation is further refined by adjusting polynomial coefficients

through an optimization procedure. The objective function of this procedure is the norm of the

wavelet coefficients inside the interval influenced by distortions around the initial data ends. Despite

its efficiency, this method consumes considerable time in comparison to the previous ones.

Moreover, it needs a bit complex programming. In this research, an easily applicable and efficient

way that is just based on polynomial extension is proposed. Two issues that considerably affect the

success of this method are the degree of the extension polynomial (D) and the number of points

considered in the curve fitting procedure (Ncf). D depends on the NVM of the selected wavelet for

extension. If data is extended at an end by a wavelet with N NVM, then D should be equal to N−1
according to the Eq. (13), since the wavelet can only be orthogonal to the polynomials up to the

degree N−1. When D is more or less, some derivatives at the end may be discontinuous, which in

turn may yield additional distortions. On the other hand, the suitable Ncf is determined after D is

decided. One can experience that distortions vary in a large range depending on Ncf. It is difficult to

state a certain rule for the suitable Ncf. However, to the authors experience with many data, the

suitable Ncf is generally obtained in the interval D + 1 ≤ Ncf≤ 0.3Nm, where Nm denotes the initial

length of the data to be extended (note that at least D + 1 data points are required if a polynomial of

f x( ) AJ x( ) Dj x( )
j ∞–=

J

∑+= Dj x( ) Wj n, ψj n, x( )
n ∞–=

∞
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degree D is fitted). Regarding each Ncf in this interval, the following norm is computed to find out

quantitative measure of distortions, and the Ncf that corresponds to the minimum distortion is

selected.

l: left end, r: right end (15)

where Nl = Ne, and Nr = Ne + Nm, if data of length Nm is extended by adding Ne terms at each end.

In this paper, the symlet family is regarded. Its support length is Nsp= 2N−1, where N is NVM
(Misiti et al. 2007). For this wavelet, the length of the interval including the significant nonzero

terms is nearly half of its full support length. Therefore, the intervals [Ne − R(s0.25Nsp),

Ne+ R(s0.25Nsp)] and [Ne+ Nm− R(s0.25Nsp), Ne+ Nm+ R(s0.25Nsp)], where R(·) means rounding to

the nearest integer, should be regarded for the left and right ends, respectively, if extension is

performed at scale s. 

When moving mass passes over the damage point (i.e., when VPt = xc is realized), a local

discontinuity arises in f (t) (Zhu and Law 2006). The purpose is to detect this by the CWT

coefficients of the extended f (t). However, f (t) has less sensitivity to such local singularity in

comparison to vibration modes. Hence, only the examination of CWT coefficients of f (t) may not

be helpful in identifying damage location, particularly in the case of small-size damage. Therefore, a

new and more sensitive damage index whose application will be set forth shortly is proposed here.

The assumption that this new method is based on is that the CWT coefficients of the difference

f (t) − AJ(t) are sensitive to local singularity, where AJ(t) is a suitable approximation function

extracted from f (t) by the DWT. Here, the suitable AJ(t) is assumed to be both extremely compatible

with f (t) and considerably free of local singularities. The compatibility of f (t) and AJ(t) can be

measured quantitatively by the well-known modal assurance criterion (MAC) (Ewins 2000). Since

f (t) and AJ(t) are represented by vectors of discrete numbers in the computer environment, the MAC

between them can be computed by

(16)

where K is the length of each vector. To achieve higher MAC, AJ(t) should be extracted from f (t)

using a wavelet with large NVM (Gökda  and Kopmaz 2010). Because the frequency spectrum of

the scale function of the mother wavelet becomes narrower about zero frequency axis (Debnath

2002), which means the scale function of the wavelet becomes more sensitive to lower-frequency

parts. AJ(t) contains, as stated previously, the lower-frequency parts of f (t). Hence, processing f (t)

with a wavelet with larger NVM enables to obtain AJ(t) that is more compatible with f (t). Then, the

question of how high the NVM should be arises. The Fig. 3.15 in Addison (2002) is helpful to

determine the suitable interval for NVM. It can be verified by this figure at the reference work that

the shrinkage of the scale function of the Daubechies (Db) wavelet becomes negligible when its

NVM satisfies the condition 10 ≤ NVM ≤ 20. The properties of the symlet family are similar to those

of Db wavelets (Misiti et al. 2007), as well. Moreover, its symmetry, which is desired to achieve

better visual representation, is better than Db wavelets. Hence, it is proposed here that a symlet with

NVM between the interval [10,20] can be employed in the DWT to extract suitable AJ(t). 

After deciding on the proper wavelet to use in the DWT, the appropriate DWT decomposition

level should be determined. As J increases, AJ(t) becomes more free of singularity-like variations,

Fl r, W s i,( )2
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hence the MAC decreases slightly. However, after a certain J, which mostly depends on the data

length, the MAC drops sharply. Because, not only the high-frequency signal components that

include both damage-induced singularities and high-frequency noise parts are removed from f (t),

but also some basic lower-frequency components having significant contribution to the general form

of f (t) are begun to be removed. This situation implies that J should not be increased further. 

In the light of the previous explanations, the steps of the method can be ordered as follows:

1) Extend f (t) in the way proposed. The wavelet to be used for extension should be the same with

the one that will be used to compute the CWT-based damage index. Avoid from excessively

small scales for the sake of stability of numerical operations (Messina 2008).

2) Select a symN wavelet with N ≥ 10, where N denotes NVM, and compute MAC for the first

several J levels. Determine the decomposition level where the first notable drop in the MAC is

observed. Then, the approximation function before this level can be taken as the suitable one. 

3) Compute the following damage index with the extended f (t) and the AJ(t) extracted from f (t) at

the second step 

(17)

where Wf and WA refers, respectively, to the CWT coefficients of f (t) and AJ(t). 

For the purpose of comparison, the following indexes will also be computed

, (18)

where upper u indicates the CWT coefficients of the time-dependent response of the healthy beam.

Note that II employs a reference data as well as III. However, II extracts this from the damaged

structural response by the DWT.

3. Numerical applications

3.1 Model verification

First, the reliability of the model used to obtain time response data will be tested. To this end, the

following data considered by Ariaei et al. (2009) is employed to obtain the time displacement of

beam midspan: L = 50 m, ρ = 7860 kgm−3, w = 0.5 m, h = 1 m, mP = 39300 kg (equal to 20 percent

of the beam mass), g = 9.81 ms−2, xc = 0.5L and . The first six vibration modes are

employed, and the sampling frequency is taken as 1000 Hz, which is sufficiently more than the 2.5

times of the 6th natural frequency of the beam (~34 Hz). Besides 2 percent modal damping is

assumed as in Zhu and Law (2006).

Fig. 2 shows the time displacement of the midspan for different moving mass speeds. Comparing

this with the Fig. 5 in Ariaei et al. (2009), one can realize the general agreement between them.

However, at higher speeds there occur some discrepancies between the curves. For example, the

minimum point at Fig. 2 for VP = 80 ms−1 is −2.15 whereas it is nearly −2 in the Fig. 5 of the
reference paper. Similarly, at VP = 160 ms−1 the minimum points are −0.81(here) and approximately
−0.6(reference). That is, discrepancy becomes significant with increasing speed. This may be due to
the approaches to obtain vibration modes. In the reference work, the DET is used. The accuracy of

this depends on the number of discrete elements. However, the exact vibration modes of the beam

are employed in the present work.

II Wf s b,( ) WA s b,( )–=

III Wf s b,( ) W f

u
s b,( )–= IIII Wf s b,( )=

δ 0.5=
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Fig. 2 Time-dependent displacements of beam midspan for various moving mass speeds. Normalization is
performed by dividing each data to mPgL

3/48EI, i.e., the static displacement of the midspan under the
load mPg

Table 1 Comparison of distortions by several methods for various scales 

 Scale (s) Pol Asym Sym Per CSE

2

Fl 1.67 × 10-5 3.09 × 10-5 2.06 × 10-5 2.37 × 10-3 3.45 × 10-5

el --- 85 23 >100 >100

Fr 6.91 × 10-6 1.59 × 10-5 1.25 × 10-3 2.37 × 10-3 7.2210-6

er --- >100 >100 >100 4

6

Fl 8.76 × 10-5 1.58 × 10-4 1.44 × 10-4 9.63 × 10-3 7.73 × 10-4

el --- 80 64 >100 >100

Fr 2.92 × 10-5 7.21 × 10-5 1.07 × 10-2 9.63 × 10-3 3.09 × 10-3

er --- >100 >100 >100 >100

10

Fl 5.74 × 10-5 1.25 × 10-4 9.88 × 10-5 1.99 × 10-2 2.35 × 10-3

el --- >100 72 >100 >100

Fr 1.42 × 10-4 4.95 × 10-4 2.99 × 10-2 1.99 × 10-2 5.13 × 10-3

er --- >100 >100 >100 >100

20

Fl 6.59 × 10-4 1.45 × 10-3 1.29 × 10-3 6.49 × 10-2 9.69 × 10-2

el --- >100 96 >100 >100

Fr 5.09 × 10-3 1.44 × 10-2 1.21 × 10-1 6.49 × 10-2 1.83 × 10-1

er --- >100 >100 >100 >100

“l”: left, “r”: right, Pol: Polynomial (proposed), Asym: Antisymmetric, Sym: Symmetric, Per: Periodic, CSE:
Cubic Spline Extrapolation, e = 100(F* − FPol)/FPol, F*: one of the four methods other than Pol. The wavelet
used for extension is sym6, so that fifth-degree polynomials are employed in the Pol method.
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3.2 Performance of the proposed boundary extension method

Let’s consider the time displacement of the midspan of the same beam for the speed VP = 20 m/s

(other values are the same if otherwise not stated). The data is assumed to be contaminated by

white noise such that the signal to noise ratio (SNR) is 100 dB. Table 1 compares the distortions at

various scales by several methods including the proposed one. As can be easily seen, the least

distortion at every case is achieved by the proposed polynomial method (Pol). The relative errors,

taking the Pol as reference, are given for comparison. Errors more than 100 percent are shown by

>100. It is observed that the present method yields considerably smaller distortions, hence can be

acknowledged as the most efficient. On the other hand, Fig. 3 illustrates the variation of the suitable

Ncf values for the left and right end of the time data. The time data is sampled at 1000 Hz, and the

total time for the moving mass to move along the beam is L/VP = 50/20 = 2.5 s. Therefore, the

length of the time data is Nm = 2500. Fig. 2 verifies that the suitable Ncf is always smaller than

0.3Nm = 750. Moreover, as the scale increases, the suitable Ncf values for each data end becomes

closer, which can be ascribed to the stability of numerical operations at higher scales.

3.3 Performance of the proposed damage index (II)

The same beam is considered again. To indicate the application of the proposed damage detection

method, this time two damages are assumed to exist at the points xc1 = 0.3L, xc2 = 0.7L with

. The moving mass speed is VP = 20 ms−1, and the other parameters remain the same.

The time-dependent displacement and strain of the midspan are illustrated in Fig. 4. It is seen that

damage slightly changes both data. 

Again white noise is added to contaminate both data such that SNR = 100 dB. The extension is

performed at the 10th scale, i.e., s = 10, which is sufficiently large for damage effect to become

evident, by using sym6 wavelet whose NVM equals to 5. To extract a suitable approximation

function by the DWT, the sym18 wavelet is employed. Table 2 shows variation of the MAC wrt the

DWT decomposition level J. From the table, the MAC is seen to decrease slightly with increasing

J. However, after a certain value, which is J = 4 for the displacement, and J = 3 for the strain, a

sharp drop is observed. Then, it can be concluded that the suitable levels for displacement and strain

data are J = 4 and J = 3, respectively. Indeed, this conclusion is more obvious in Fig. 5, where II
indexes around these levels are illustrated by colormap representation. Since the displacement data

δ 1 δ 2 0.2= =

Fig. 3 Variation of the suitable Ncf wrt scale 
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is not as sensitive to damage as the strain data, let’s explain the scene in Fig. 5 regarding the strain

data. In the right column of Fig. 5, where the approximation function at the second level is used to

obtain II, it is observed that the index is not sufficient in revealing damage-induced singularities.

The reason is that A2(t) is not sufficiently free of such singularities. As II is based on the difference

f (t) − A2(t), these singularites cancel out each other, so that II can not reveal damage signature. On

the other hand, when A4(t) is regarded, the formal resemblance of f (t) and A4(t) diminishes, so that

the sensitivity of II to damage drops significantly. In the case of A3(t), however, both damages are

obviously seen.

In Fig. 6 colormap representations of the indexes III and IIII are displayed. Damage signature can

barely be perceived in these graphs. Comparison of the indexes at the 10th scale (see Fig. 7)

highlights the efficiency of the index II. Hence, II is regarded for the subsequent analysis. 

3.4 Effects of moving mass force terms on damage detection

This time damage locations are as follows: xc1 = 0.3L, xc2 = 0.7L, xc3 = 0.85L. According to the

previous analyzes the displacement data is less sensitive to damage. Therefore, moderate crack

depth ( ) is considered this time for better evaluation of the impact of moving

mass-related force terms on the performance of damage detection. To this end, the cases in Table 3

are regarded, and the corresponding time data are displayed in Fig. 8. According to the figure, the

δ 1 δ 2 δ 3 0.4= = =

Fig. 4 Normalized time-dependent displacements and strains of the beam midspan in healthy and damaged
cases. Each strain data is divided by the static strain estatic = mPgLh/8EI for normalization. u:
undamaged, d: damaged  

Table 2 MAC versus DWT decomposition level (J). sym18 is used to obtain approximation functions 

MAC

J Displacement Strain

1
2
3
4
5
6

0.99999999998800
0.99999999998208
0.99999999997927
0.99999999994775

0.99999999754260
0.99999974883043

0.99999999998548
0.99999999997798
0.99999999996341

0.99999998755777
0.99999869533762
0.99993498143988
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Fig. 5 II index for displacement (left column) and strain (right column) data at various decomposition levels
(J). Black dots on the horizontal axis denote damage locations at 0.3L and 0.7L 
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Fig. 6 Colormap representation of III and IIII indexes for displacement and strain data  

Fig. 7 Comparison of the damage indexes at the 10th scale 
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curves corresponding to the cases 2 and 5 exhibit a close trend. Similarly, the remaining curves

show resemblance among themselves. On the other hand, the plot of II for each case is given in

Fig. 9. Damage effects were experienced to be sufficiently evident at the 10th and 20th scales for

strain and displacement data, respectively. Therefore, only these scales are regarded. According to

the plots for the strain data, damage signatures are extremely obvious in the cases 4,5, and 6. On

the other hand, the best results are obtained at the 4th and 6th cases for the displacement data. In the

latter plots, the index exhibits a large-magnitude peak at the second damage location (0.7L) while it

suddenly increases and decreases at the first (0.3L) and third (0.85L) damage locations, respectively.

That is, the first and third damage locations are indirectly detected whereas the second damage

location is directly determined. The following conclusions can be drawn from the complete

evaluation of Fig. 9:

1) Both centrifuge and Coriolis forces improve damage sensitivity of the index II. However,

centrifuge force has relatively more contribution.

2) Case 5 corresponds to the real situation where all of the moving-mass related terms exist. Case

6 excludes the vertical inertia effect. Although insignificant change is observed for strain data,

II exhibits better result in Case 6 than Case 5. This means the vertical inertia force due to the

Table 3 Considered cases for the evaluation of influence of moving mass-related terms on damage detection
performance. +: included, −: not included, subscript “x” and “t” denote partial derivatives wrt those
variables 

Case
Moving Force Inertia Force Coriolis Force Centrifuge Force

1 + − − −

2 + + − −

3 + − + −

4 + − − +

5 + + + +

6 + − + +

mPgδ x VPt–( )– mPδ x VPt–( ) ytt⋅ mPδ x VPt–( ) 2VPyxt⋅ mPδ x VPt–( ) VP

2

yxx⋅

Fig. 8 Midspan displacement and strain curves for each case in Table 3, VP= 20 ms-1 
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Fig. 9 Damage detection results for the cases in Table 3
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moving mass adversely affects the damage sensitivity of II. However, this conclusion may not

be valid for other mP, VP values, and crack locations and extents.

3) The strain data is considerably more sensitive to damage than displacement. Hence, in practical

applications strain data can be used to get reliable results.

4. Conclusions

In this research, time data measured from a point on a beam under moving load is analyzed by

the WT to identify damage locations. In this respect, a new method whose performance is superior

to the two methods that are based on direct investigation of the CWT coefficients of data is

introduced. This new method is based on the combined use of the CWT and the DWT. According

to the method, the data measured from damaged structure is first extended to reduce boundary

distortion. In this regard, a new technique based on just polynomial extension is proposed. It was

shown that this method is relatively more efficient than the other frequently-used approaches. Later,

a suitable approximation function is extracted from the extended data by the DWT, and a sensitive

damage index is defined by the difference of the CWT coefficients of the original data and its

approximation function. From the numerical applications, it was concluded that strain data is more

sensitive to damage than displacement. Moreover, the centrifuge and Coriolis forces among the

moving mass-related force terms are experienced to improve the damage detection performance of

the damage index. Numerical and experimental evaluations of the performance of the proposed

damage index for various mP and VP values, damage locations, data measurement points are worthy

of further investigation. Moreover, damage models including crack’s opening and closing, load-

beam interaction etc should be regarded in modeling to produce more realistic time data. Hence, the

future works are planned to cover these topics.
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