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Investigation on efficiency and applicability of subspace 
iteration method with accelerated starting vectors for 

calculating natural modes of structures
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Abstract. For efficient calculation of natural modes of structures, a numerical scheme which accelerates
convergence of the subspace iteration method by employing accelerated starting Lanczos vectors was
proposed in 2005. This paper is an extension of the study. The previous study simply showed feasibility
of the proposed method by analyzing structures with smaller degrees of freedom. While, the present study
verifies efficiency of the proposed method more rigorously by comparing closeness of conventional and
accelerated starting vectors to genuine eigenvectors. This study also analyzes an example structure with
larger degrees of freedom and more complex constraints in order to investigate applicability of the
proposed method.
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1. Introduction

Natural modes such as natural frequencies and mode shapes are key parameters in dynamic

analysis or seismic design of structures. Natural frequencies and mode shapes of structures can be

obtained through eigenvalue analysis. Various numerical methods can be applied for eigenvalue

analysis of structures. Among them, the subspace iteration method is widely used. The subspace

iteration method is originally proposed by Bathe and Wilson (1972). Thereafter, many improved

methods have been developed by many researchers (Bathe and Ramaswamy 1980, Akl et al. 1982,

Wilson and Itoh 1983, Lam and Bertolini 1994, Kim et al. 2005, Sui and Zhong 2006, Zhao et al.

2007, Chen et al. 2008).

Among them, the subspace iteration method using Lanczos vectors as starting iteration vectors is

described in the study by Bathe and Ramaswamy (1980). Kim et al. (2005) presented a modified

version of the method. The modified method uses accelerated starting Lanczos vectors which are

obtained from vector generation algorithm using squared dynamic matrix. The numerical technique
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of squaring matrix was originally proposed by Grosso et al. (1993) in quantum problems for solving

eigenstate of quantum. The similar technique was proposed in the simultaneous inverse iteration

process in the modified subspace iteration method (Lam and Bertolini 1994, Qian and Dhatt 1995,

Wang and Zhou 1999). Kim et al. (2005) applied the numerical technique to generation of

accelerated starting vectors in the subspace iteration method.

This paper is the extension of the study by Kim et al. (2005). The previous study introduced an

accelerated algorithm and simply showed the feasibility of the proposed method. Example structures

were also simple building structures with smaller degrees of freedom such as 1008 and 5040 DOFs.

This study investigates the efficiency of the proposed method more rigorously by comparing

conventional and proposed starting vectors for their closeness to eigenvectors. Natural modes of an

example structure with larger degrees of freedom over 20000 DOFs and more complicated

constraints are also analyzed to examine the applicability of the proposed method by comparing

number of iterations and calculation time of the conventional and proposed methods.

2. Subspace iteration method with accelerated starting vectors

Natural frequencies and mode shapes of structures are obtained by solving the following

eigenvalue problem

(1)

where M and K are symmetric mass and stiffness matrices of order n, respectively.  is the jth

natural frequency and  is the jth eigenvector which describes the jth mode shape of structures.

The first step in the subspace iteration method for solving (1) is to establish a starting subspace.

Starting subspace takes the form of a matrix of which columns are starting iteration vectors. The

subspace iteration method with Lanczos starting subspace uses Lanczos vectors as starting iteration

vectors because Lanczos vectors are good approximations of exact eigenvectors. Lanczos vectors

are generated from the Lanczos algorithm which was first proposed by Lanczos (1950). Lanczos

algorithm can be summarized as follows. The first Lanczos vector is established by

(2)

where x is an arbitrary vector and usually . Then, the following calculations are

repeated for  with 
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In the steps, xi is the ith Lanczos vector. Eq. (3) represents inverse iteration. In the equation,

 is called dynamic matrix.  is not obtained by direct calculation of the dynamic matrix but

it is obtained by forward reduction and back substitution. Eqs. (4) and (5) are orthogonalization

processes. Eqs. (6) and (7) are steps for normalization. If the number of required eigenpairs

(eigenvalue and the corresponding eigenvector) is p, the number of required Lanczos vectors is

generally 2p and the starting subspace will be .

The next step is to perform subspace iteration which includes simultaneous inverse iteration,

system reduction, eigenvalue analysis for reduced system and computation of updated subspace. The

simultaneous inverse iteration is performed as follows for .

(8)

Then, the reduced system is calculated by

(9)

(10)

The order of reduced system is q because  is a n by q matrix. The following eigenvalue

problem for the reduced system is solved.

(11)

The generalized Jacobi method can be effectively used for the reduced small system. Using the

eigensolution of reduced system, the updated subspace is obtained by

(12)

As k increases,  converges to a diagonal matrix whose diagonal entries are exact eigenvalues

and  converges to a matrix whose columns are exact eigenvectors. If the number of lower

eigenpairs whose errors are within the predetermined tolerance is p, the iteration loop is terminated.

Subspace iteration method with accelerated starting vectors uses modified Lanczos algorithm to

generate accelerated Lanczos vectors. The modified algorithm uses (13) instead of (3).

(13)

In the equation, squared dynamic matrix is used while conventional algorithm uses non-squared

dynamic matrix as in (3). Squared dynamic matrix means doubled inverse iteration. In (13),  is

not calculated by direct square of the dynamic matrix. It is obtained by repeated forward reduction

and back substitution. Since  in (13) is the vector calculated from the repeated inverse iteration, it

can separate approximate eigenvalues more rapidly than  in (3). Therefore, modified starting

subspace with accelerated Lanczos vectors generated from the proposed algorithm are closer to

exact eigenvector space than conventional Lanczos starting subspace, resulting in reduction of the

number of subspace iterations. Of course, squared dynamic matrix requires additional cost for

forward reduction and back substitution. However, the degree of cost reduction due to less iteration

overwhelms that of cost increase due to additional forward reduction and back substitution.

Simultaneous inverse iteration, system reduction, eigenvalue analysis for reduced system and

computation of updated subspace have the same procedures as the conventional method.
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3. Starting vectors’ closeness to eigenvectors

In order to verify efficiency of proposed method, comparison of iteration numbers or CPU time

for example structures might be valid. However, prior to such direct procedure, investigation on the

characteristics of starting vectors due to conventional and proposed algorithms and their

comparisons will lead to more basic insight. In this paper, staring vectors of conventional and

proposed method and their closeness to eigenvectors are examined and compared. Two standard

structures are considered for examples.

The first example is a cantilever beam. Length, section area, second moment of inertia, torsion

constant and density are all assumed to be 1. p = 7 and q = 14. Figs. 1-7 present mode shapes of

eigenvectors and starting vectors of the cantilever beam. Those figures show which of the

conventional and proposed starting vectors are closer to exact eigenvectors. It is shown that

closeness of conventional and proposed starting vectors are similar for the first, second and third

mode. However, proposed starting vectors are closer to eigenvectors than conventional starting

vectors for 4th~7th modes. Consequently, number of iterations of the proposed method is smaller

Fig. 1 Mode shapes of 1st eigenvector and starting iteration vectors of cantilever

Fig. 2 Mode shapes of 2nd eigenvector and starting iteration vectors of cantilever
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Fig. 3 Mode shapes of 3rd eigenvector and starting iteration vectors of cantilever

Fig. 4 Mode shapes of 4th eigenvector and starting iteration vectors of cantilever

Fig. 5 Mode shapes of 5th eigenvector and starting iteration vectors of cantilever
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Fig. 6 Mode shapes of 6th eigenvector and starting iteration vectors of cantilever

Fig. 7 Mode shapes of 7th eigenvector and starting iteration vectors of cantilever

Fig. 8 Mode shapes of 1st eigenvector and starting iteration vectors of simple beam
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Fig. 9 Mode shapes of 2nd eigenvector and starting iteration vectors of simple beam

Fig. 10 Mode shapes of 3rd eigenvector and starting iteration vectors of simple beam

Fig. 11 Mode shapes of 4th eigenvector and starting iteration vectors of simple beam
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Fig. 12 Mode shapes of 5th eigenvector and starting iteration vectors of simple beam

Fig. 13 Mode shapes of 6th eigenvector and starting iteration vectors of simple beam

Fig. 14 Mode shapes of 7th eigenvector and starting iteration vectors of simple beam



Investigation on efficiency and applicability of subspace iteration method 569

than that of conventional method. Numbers of iterations of the conventional and proposed methods

for getting seven modes are 3 and 1, respectively.

 The second example is a simply supported beam of which length, section area, second moment

of inertia, torsion constant and density are 1. p is 7 and q is 14. Figs. 8~14 are resulting mode

shapes. Closeness of conventional and proposed starting vectors are similar in the case of the first,

second, third, fifth and seventh modes. However, proposed starting vector is closer to eigenvector

than conventional starting vector in the fourth mode. And, Fig. 13 shows that no approximation for

the sixth mode is included in the fourteen conventional starting vectors. Number of iterations to get

seven modes is 7 in the conventional method. While, number of iterations of the proposed method

is only 2.

4. Numerical example

A numerical example is considered to show applicability of the proposed subspace iteration

method. A very large floating structure (VLFS) is considered as an example structure. VLFS is a

very innovative structure and many researchers are discussing its design and analysis methods

(Pham et al. 2008, Riggs et al. 2008). This paper analyzes natural modes of a VLFS with hinge-

linked breakwater which was designed as a floating airport by Korea Ocean Research &

Development Institute (2008). And, the number of iterations and computing time are examined with

increasing the number of required modes. Fig. 15 shows geometry of the example structure. Finite

plate elements are used to establish a numerical discrete model. Number of nodes is 8466 and total

degrees of freedom are 25398. Fig. 16 shows the mesh system. Main particulars of example

Fig. 15 Geometry of example structure

Fig. 16 Finite element mesh of example structure
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Table 1 Main particulars of example structure

Basic dimensions
Breadth (B)
Length (L)
Draft (d)

1500 m
450 m + 4500 m

2 m

Material properties
Young’s modulus (E)
Bending stiffness per unit length (I/B)
Poisson ratio

2.1 × 1011 Pa
0.924 m3

0.3

Finite element model

Number of nodes
Number of elements
Total degrees of freedom
Half-band width of system matrix

8466
8200
25398
158

Fig. 17 Mode shapes of example structure
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structure are summarized in Table 1. Hinge-linked nodes are imposed to special constraint

conditions. If two nodes are linked with hinge and equation numbers for the vertical displacement

component of the nodes are i and j, the stiffness matrix is modified as (14) by the penalty method.

(14)

Where λ is a penalty number such as 1010
× max(diag(K)).

Results are shown in Fig. 17, Table 2 and Fig. 18. Fig. 17 shows some selected mode shape of

example structure. Table 2 summarizes the number of iterations for obtaining required modes and

K i i,( )new K i i,( ) λ+=

K i j,( )new K i j,( ) λ–=

K j i,( )new K j i,( ) λ–=

K j j,( )new K j j,( ) λ+=

Table 2 Number of iterations for calculating natural modes of example structure

Number of
required modes

Number of iterations

Conventional Proposed

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

56
41
32
28
21
18
16
14
14
11
9
9
8
8
7
7
7
5
3
5
4
9
6
5
3
2
3
2
2
2
2

53
37
27
22
17
14
12
10
9
8
8
8
4
2
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
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Fig. 18 represents computing time spent on calculating required modes. In general, larger number of

modes requires more computing time. However, sometimes, many starting vectors have the chances

of including good guesses of eigenvectors when the number of required modes is large. In that case,

the number of iterations is small resulting in less computing time. Such trend is also observed in

this example.

As shown in Table 2 and Fig. 18, proposed method has smaller number of iterations and less

computing time than the conventional method when the number of required modes is generally

small. When the number of required modes is large, conventional starting vectors are already good

approximations of eigenvectors because the size of starting subspace is sufficiently large. In such

cases, accelerated starting vectors have no benefits. However, in practical analysis and design, a few

lower dominant modes are important. In that sense, the proposed method has a practical

applicability.

5. Conclusions

In this study, the efficiency and applicability of the subspace iteration method with accelerated

Lanczos starting vectors are investigated. By examining starting vectors’ closeness to eigenvectors,

the efficiency of the proposed method is validated. By analyzing a structure with larger DOFs and

more complex constraints, the applicability of the proposed method is verified. From numerical

analyses, conclusions are summarized as follows.

Since proposed starting vectors are generated from the modified algorithm which uses squared

dynamic matrix, starting vectors of the proposed method are closer to exact eigenvectors than those

of the conventional method. Therefore, the proposed method has more rapid convergence.

Fig. 18 Computing time for calculating natural modes of example structure 
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Numerical results of an example structure shows that the proposed method has smaller number of

iterations and less computing time than the conventional method when the lower dominant modes

are calculated.
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