
Structural Engineering and Mechanics, Vol. 37, No. 5 (2011) 475-487 475

A topological optimization method for flexible multi-body 
dynamic system using epsilon algorithm

Zhi-Jun Yang*1,2, Xin Chen1 and Robert Kelly1

1Faculty of ElectroMechanical Engineering, Guangdong University of Technology, 510006, China
2Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA

(Received December 16, 2009, Accepted October 21, 2010)

Abstract. In a flexible multi-body dynamic system the typical topological optimization method for
structures cannot be directly applied, as the stiffness varies with position. In this paper, the topological
optimization of the flexible multi-body dynamic system is converted into structural optimization using the
equivalent static load method. First, the actual boundary conditions of the control system and the
approximate stiffness curve of the mechanism are obtained from a flexible multi-body dynamical
simulation. Second, the finite element models are built using the absolute nodal coordination for different
positions according to the stiffness curve. For efficiency, the static reanalysis method is utilized to solve
these finite element equilibrium equations. Specifically, the finite element equilibrium equations of key
points in the stiffness curve are fully solved as the initial solution, and the following equilibrium
equations are solved using a reanalysis method with an error controlled epsilon algorithm. In order to
identify the efficiency of the elements, a non-dimensional measurement is introduced. Finally, an
improved evolutional structural optimization (ESO) method is used to solve the optimization problem. The
presented method is applied to the optimal design of a die bonder. The numerical results show that the
presented method is practical and efficient when optimizing the design of the mechanism. 

Keywords: topological optimization; the flexible multi-body dynamic system; die bonder; epsilon
algorithm.

1. Introduction

 

The structural optimization problem has been a subject under numerous studies in recent years.

Topological optimization can greatly improve the design and potential savings are generally more

significant than those resulting from fixed-topology optimization (Liu and Chen 1992). It can also

be used for optimal design of geometrically and materially nonlinear structures (Huang and Xie

2010), and dynamic problem with non-stochastic structural uncertainty (Lee et al. 2010). However,

the topological optimization method is difficult to be applyed to dynamic response optimization, one

of the main difficulties is the design sensitivity analysis, which is inevitable in gradient-based

optimization methodology. Further difficulties involve the treatment of the dynamic constraints, and

the computational solution during the optimization process. 

To evaluate design sensitivity in a dynamic response optimization, one has to solve many
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differential equations resulting from the number of design variables and the number of active

constraints (Arora 1999). If a transformation method such as the augmented Lagrangian method

(ALM) is used with the adjoint variable method (AVM), the cost of calculating the design

sensitivity can be reduced. However, a terminal value problem must be solved to acquire the adjoint

variable for the augmented functional. If the terminal value has some error that has been

accumulating over the entire time interval where the equations of motion are integrated, the adjoint

variable for the augmented functional can diverge or be inaccurate. Another drawback of the ALM

in dynamic response optimization is that some multiplier updating rules require the gradient of an

individual response. These drawbacks reduce the attraction the ALM and AVM methods, although

they considerably reduced computational effort. 

Another predicament we often encounter in structural dynamic response optimization is how to

treat dynamic constraints. To remove the time parameter from the dynamic constraints, it is

customary to replace the dynamic constraint with an equivalent integral form or several pointwise

constraints (Tseng and Arora 1989). In general, this replacement causes an increase in the number

of constraints or numerical instability in the optimization procedure. We need extra effort to reduce

the number of constraints or to stabilize the optimization procedure. There are many optimization

examples of large structures that are subject to static loads. The existence of many practical

examples means that the static response optimization methodology is well established. Design

sensitivity evaluation in static response optimization does not need to solve differential equations

but only simpler simultaneous algebraic equations. In the modern computing environment, it is

relatively easier to solve large-scale algebraic equations. If the advantages of static response

optimization can be exploited in dynamic response optimization situations, it will be much easier to

perform dynamic response optimization of a structure. Basically the objective of the treatment of a

dynamic constraint is the elimination of the time parameter. After eliminating the time parameter,

we try to find the optimum design by using various optimization techniques. At this point, if we

have some compensation for the errors of design sensitivity and response, the static response

optimization process can be adopted in dynamic response optimization situations. Recently, a

structural dynamic response optimization procedure using static response optimization techniques

has been demonstrated (Kang et al. 2001, Choi and Park 2002). The main idea is transformation of

a dynamic load into equivalent static loads and performing a static response optimization with the

transformed equivalent static load set. This method is applied to optimization of structure with

dynamic loads (Park and Kang 2003) and flexible multi-body dynamic systems (Kang et al. 2005).

Optimization of large-scale structures using conventional formulations often involves much

computational effort. Repeated solutions of the analysis and sensitivity analysis equations usually

require most of this effort. The computational cost may become prohibitive in large-scale structures

having complex analysis models. To alleviate this difficulty, various procedures are developed and

integrated into a general optimization approach. The approach is suitable for different classes of

response types and optimization methods, including linear and non-linear response (Kirsch and

Bogomolni 2007, Bogomolni et al. 2006); static and dynamic response (Kirsch et al. 2006, 2007);

and direct and gradient optimization methods (Kirsch et al. 2005). Combined approximations are

used for reanalysis and repeated sensitivity analysis (Kirsch and Bogomolni 2004). The advantage is

that the efficiency of local approximations and the improved quality of global approximations are

combined to obtain effective solution procedures. Approximate reanalysis and finite-difference

sensitivity reanalysis are considered for each intermediate design during the solution process.

Reductions in the computational effort may be several orders of magnitude less than would
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otherwise be required. The Epsilon algorithm can accelerate the convergence speed, need less

computer effort and can obtain higher accuracy even when the changes are large (Wu et al. 2007,

Chen et al. 2006). 

In this paper, the problem of the mechanism’s structural optimization is treated as that of

structural optimization using the equivalent static load method. Firstly, the actual boundary

conditions of the control system and the approximate stiffness curve of the mechanism are obtained

from a flexible multi-body dynamical simulation. Then according to the stiffness curve, the

governing equations of the mechanism are divided into separate finite element equilibrium equations

for different positions. For efficiency, the static reanalysis method is utilized to solve these

equations. The detailed procedure is that, the finite element equilibrium equations of the key points

in the stiffness curve are fully solved as the initial solution, and the following equilibriums are

solved using a reanalysis method with the Epsilon algorithm. In order to identify the efficiency of

elements, a non-dimensional measurement is introduced, and an improved ESO method is used to

solve the optimization problem. The presented method is applied to the optimal design for a die

bonder. The numerical results show that the method is practicable and efficient. 

2. Technical background

For mechanisms operating at very high speed, the vibration of the structures must be considered,

when the deformation is small, the relative nodal coordinate formulation (RNCF) with a floating

frame of reference extended from the motion of the rigid body system is used Eq. (1), while for

large deformations the absolute nodal coordinate formulation (ANCF) turned out to be very efficient

Eq. (4). 

According to previous work (Kubler 2003), the equation for the relative nodal coordinate

formulation extended from the motion of the rigid body system is

(1)

Where  is the mass matrix of the rigid body system, ,  and  are

the generalized elastic force, generalized Coriolis force and external force of the rigid body with

position r, respectively. The velocity and acceleration are  and , respectively.

In comparison to the equation of motion of the rigid body system the additional term 

(2)

depends only on the stiffness and damping matrices K and D of the flexible bodies. Moreover, the

inertial matrix shows the inertial coupling due to the relative coordinates

(3)

where lower case r and f denote the rigid bodies and flexible body, respectively. Within ANCF for

highly flexible bodies absolute coordinates are summarized in a vector  characterizing the

material points of the bodies by an appropriate shape function. The equation of motion is
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(4)

where M is a constant mass matrix and the vector  of the generalized Coriolis force

vanishes due to the absolute coordinates. The equation of motion for flexible bodies has the same

format as structural vibration.

Using the equivalent static load method, we can derive the equivalent static load using the finite

element method. The equation of the motion of a structure under a dynamic load can be written as

Eq. (4), where the damping effect is ignored. Rearranging Eq. (4) yields

(5)

or 

(6)

 (7)

According to definition of equivalent static load method, Eq. (7) is the equivalent static load at

time t.

Note that the equivalent static load can be described by the external load and inertial force. Thus

the equivalent static load is an implicit function of the design variables relating to size, and even

though the external force is applied to a single point of a structure, the equivalent static load is

applied to all degrees of freedom of the structure. 

From Eq. (7), the equivalent static load can only be obtained after performing a transient analysis

of the structure to calculate the known displacement fields using an equivalent static load. From the

analysis viewpoint, the equivalent static load seems to be useless. However, the goal of the

equivalent static load is not to predict displacement induced by a dynamic load but to regenerate the

known displacement during an optimization procedure, which will be presented in this work. In

other words, the equivalent static load is not an analysis-oriented load but a design-oriented load. 

The external loads and inertial forces in the FEM model can be derived from a flexible body

dynamic analysis performed by ADAMS software. By using the equivalent static method, we need

to build a series of structural equilibrium equations, and then the time-dependent constraint is

replaced by the point wise constraints. In such cases, we need to deal with a large number of

structural optimization calculations, so we introduce the fast reanalysis method to solve the

sequential structural equations with a minimum of computational time. When flexible bodies move

at very high speed, the inertial forces will be large and the changes to the structure would alter the

performance of the structure significantly, hence the reanalysis and sensitivity analysis methods for

traditional structural modification will give diverge or inaccurate results. 

3. Fast solution method

Given an equivalent structure at position p with stiffness matrix Kp and the equivalent static load

vector , the displacements  are computed by the equilibrium equation

(8)

It is assumed that the stiffness matrix Kp is given from the initial analysis in the decomposed

form
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 (9)

where Up is an upper triangular matrix. It is assumed that the degrees of freedom for the next

position do not change, so that the finite element equation of the next position i of the structure

becomes

 (10)

where  is the stiffness matrix of the equivalent structure of the next ith position and vector

 and  are the corresponding displacement and load vectors.

The Eq. (10) of the equivalent structure of the next ith position can be expressed as

 (11)

where  is the increment of the stiffness matrix and  is the increment of the equivalent

static load respectively .

The goal is to find an efficient and accurate approximation of the modified displacements 

due to the stiffness and equivalent static load changes in the topological modifications without

solving Eq. (11). Once the displacements have been evaluated, the explicit stress-displacement

relationships can readily determine the stresses 

 (12)

where S is the stress transformation matrix.The above formulation is suitable for the whole series of

equivalent static loads. The difference is only in the  term caused by the different positions

due to the motion.

The perturbation method studies the system subjected to small changes in its design parameters.

Therefore, if the finite element equilibrium equations of position p is represented by Eq. (10), the

problem becomes that to determine  when  and  are perturbed to the form 

and  respectively. So, the static displacement analysis problem of the perturbed system

can be written as 

(13)

where

(14)

(15)

(16)

Substituting Eqs. (14), (15) into Eq. (13),we can get

(17)
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 (20)

If we consider an infinite sequence , and let the sn be the partial sum of the

sequence, then we have a new sequence 

(21)

(22)

For the sequence , we construct an iterative form

(23)

(24)

, (25)

The iteration formula (23)-(25) is similar to the scalar case (Wu et al. 2007), and the inverse of a

vector  defined as

 (26)

where the asterisk denotes the complex conjugate and H the Hermitian conjugate. The vector

epsilon-algorithm table can be also constructed by Eqs. (8)-(10). 

In order to control the accuracy of the Epsilon Algorithm for a vector series, an error value is

given to assure the demand of better kinematic and dynamic performance of a high-speed

mechanism is met. The error eR is evaluated by

(27)

where T is the given tolerance. If sufficient accuracy is not achieved, then increasing the number of

iterations j will result in more computational cost. The maximum number of iterations is controlled

by the user. If the maximum iterative number is reached and no solution is achieved within the

tolerances required then the specific equations cannot be solved by the reanalysis method. In this

situation, a full solution is required to solve this equation and thus becomes the new original

solution for the next equivalent static load of the structure. Fig. 1 shows how the reanalysis method

is performed in the mechanism system.  is the location where a full solution must be performed,

and the next few structural dynamic equations can be solved using the reanalysis method just

mentioned. The interval between equations can be determined by the rate of change of the stiffness

of the system. The number of reanalysis points can be set in advance or interactively during the

solution.
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4. Sensitivity analysis

 

To identify the efficiency of the material, the element sensitivity of the strain energy of elements

is introduced. Suppose that an element is removed from the base structure, the element sensitivity of

the strain energy is defined by

(28)

where  is the stiffness matrix of the ith element of the structure, ri is the displacement vector of

the ith element, and Ei is used to denote the element sensitivity of the strain energy as the result of

removing the ith element from the reference structure. Using Eq. (28) the all element sensitivity of

strain energy of the structures, , can be obtained. We then define

 (29)

where n is the number of the optimable elements , c is the number of loadcases, max(Ei, j, E2, j, ….

En, j) is the maximum element of the jth loadcase; si are the non-dimensional measures for

identification of those elements of the structures which need to be kept or removed. Then the

criterion for determining the efficiency of material is defined as follows 

 (30)

where  is a threshold value for determining the efficiency of material at kth iteration. If the search

criterion, Eq. (30), is satisfied, the ith element of the structures can be retained; otherwise the ith

element should be removed.

5. The topological optimization procedure

In the topological optimization of a mechanism’s structures, the objective is to find the optimal

topology and configuration of material, which minimizes the weight of the structures within global

stiffness constraints.The total strain energy is used as the inverse measurement of the global

stiffness of the structure. Thus the layout optimization problem of structures can be formulated as

follows  
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Fig. 1 Indication of solution of serial equivalent static load equations using the reanalysis method 
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(31)

where M is the total mass of the structure, and E* is a given threshold value, E is the total strain

energy of the structure given by

 (32)

where K is the stiffness matrix of the structure, f and r are the load and displacement vectors,

respectively.

The procedure of the topological optimization of mechanism’s structures is given as follows.

Step1. Carry out the dynamic analysis of the flexible multibody system, obtain the velocity and

acceleration for any position, and export as the load case for each equivalent structural

dynamic response.

Step2. Build finite element models for each position of the motion using the exported boundary

condition and formulate a series of static equilibrium equations.

Step3. Solve the static equilibrium equations using the reanalysis method presented by this paper.

Step4. Calculate the element sensitivity with regard to the strain energy of each equivalent

structure using Eq. (28), and combine all of the element sensitivity results using Eq. (29).

Step5. Use the search criterion Eq. (30) to decide which elements need to be kept or removed. At

the kth iteration, the threshold value  is determined by 

(33)

With this increased rejection threshold value, the elements of the structures can be removed

repeatedly until the optimal structures are obtained. The elements are defined as special material

instead of being deleted immediately. Therefore, the removed elements can be recovered in later

iterations. The procedure requires two parameters to be prescribed. The first is the initial rejection

ratio  and the second is the increased rate . Values of  and  have been

used for many test examples. 

Step6. Update the displacements and element strain energy of structures using the error controlled

Epsilon algorithm.

Step7. Evaluate the total strain energy E of the structure. Repeat steps 4-6 until the following

condition is no longer satisfied, the optimal layout of structures is obtained 

(34)

or the following condition is satisfied, the the layout optimization of structures is also considered to

be obtained. 

(35)

where M is the mass of removed structures at kth iteration, and å is a given small value.

Step8. Remove the elements by deleting material from the final result, and smooth the boundary

using a smoothing method such as the OOsmooth software in Hyperworks.
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6. Numerical example

 

During the operation of a die bonder, the bonder (Fig. 2) moves on to the wafer and picks up a

die, and then moves back and bonds it onto the leadframe. As the capillary moves at very high

speeds, it is necessary to optimally design the mechanism so as to obtain the best dynamic

performance. The assembly model of the die bonder with the arm at a 90º drive angle is shown in

Fig. 2 and the corresponding assembly finite element model is shown in Fig. 3. The finite element

of the arm of the die bonder includes 23153 solid elements and 25744 nodes. The material of

structures is aluminum with Young’s modulus 71.75 GPa and mass density 2740 kg/m3. During the

Fig. 2 Assembly of the die bonder Fig. 3 Finite element Model of the die bonder

Table 1 Frequencies of the first ten modes of the die bonder in different position

α

(º)
Mode1

Freq(Hz)
Mode 2
Freq(Hz)

Mode 3
Freq(Hz)

Mode 4
Freq(Hz)

Mode 5
Freq(Hz)

Mode 6
Freq(Hz)

Mode 7
Freq(Hz)

Mode 8
Freq(Hz)

Mode 9
Freq(Hz)

Mode 10
Freq(Hz)

0 0.039 112.6832 117.7509 221.7676 232.284 396.1588 510.8086 629.2661 728.7595 884.9595

10 0.045 112.6861 185.1197 221.2857 234.6903 396.5793 510.5535 629.742 728.8834 884.1193

20 0.027 112.699 218.9099 227.4708 298.0035 398.4157 509.8322 631.1407 729.0269 880.8168

30 0.088 112.733 216.0793 228.8021 370.9492 409.0406 509.0369 633.3381 729.333 875.4335

40 0.175 112.8015 212.3618 229.1991 388.5817 448.9342 508.9621 636.1638 730.0094 868.7857

50 0.264 112.9155 208.2248 229.6411 390.5916 481.3221 511.8741 639.4336 731.2723 861.8146

60 0.342 113.0796 203.9979 230.3455 390.6403 494.6158 521.8949 642.9725 733.3023 855.3318

70 0.412 113.2918 199.9167 231.436 390.0111 497.7388 533.0556 646.6244 736.2223 849.9092

80 0.473 113.5424 196.1336 232.9899 389.0336 498.707 539.4266 650.2569 740.0904 845.8785

90 0.528 113.8166 192.7367 235.0379 387.8753 499.1963 540.3386 653.7616 744.914 843.3852

100 0.584 114.0953 189.7678 237.5547 386.6549 499.2882 535.9728 657.0528 750.6514 842.4299

110 0.64 114.3593 187.2372 240.4532 385.4669 498.0139 526.9898 660.0629 757.186 842.8739

120 0.703 114.5904 185.1348 243.5729 384.3826 490.8803 516.9234 662.7319 764.2741 844.4258

130 0.771 114.7728 183.4375 246.6675 383.4332 469.3288 512.4347 665.004 771.5254 846.682

140 0.838 114.8909 182.115 249.3502 382.4955 431.9569 511.8312 666.8307 778.4422 849.2025

150 0.894 114.9172 181.1338 250.7785 372.7502 385.9856 512.2935 668.1843 784.5007 851.5892

160 0.914 114.749 180.4611 245.8238 303.2969 382.8814 512.9369 669.0674 789.2372 853.5415

170 0.805 113.6145 180.0518 185.6277 266.3805 382.5668 513.4389 669.5137 792.3149 854.8826

180 0.039 104.3495 129.7162 179.9479 263.5894 382.4923 513.671 669.5726 793.5544 855.5465
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motion, the drive angle changes from 0 to 180 degrees. From the modal analysis at different

positions, it can be seen that the natural resonance frequencies vary with drive angle (Table 1). 

The frequencies of the first ten modes of all positions (with drive angle increments of 10 degrees)

are listed in Table 1, and the frequency vs. drive angle for the first ten modes are shown in Fig. 4.

These results show that the first mode is rigid motion, and modes 3-7 are more sensitive to drive

angle.

In order to reduce the mass of the die bonder such that the inertial force can be reduced, the

component structures of the die bonder arm are optimized using the presented methods.The

frequencies of the first ten flexible modes during the process of optimization are listed in the Table 2.

In the first iteration, 1334 elements at low sensitivity are modified; note that the rate of change for

each component is different. In the second iteration, the material of all the elements are reassigned

according to the combined sensitivity, 2050 elements are defined as deleted material, and Young’s

Fig. 4 Frequency vs. drive angle for the first ten modes

Table 2 The frequencies of the first ten modes of the specific position during optimal design

mode
Frequencies of structures (Hz)

Change
Rate of 
ChangeOriginal Step1 Step2 Step3

2 119.6361 118.2105 120.276 119.8268 0.1907 0.16%

3 204.2693 206.3296 202.1958 198.1035 -6.1658 -3.02%

4 247.507 252.7171 240.7929 237.5691 -9.9379 -4.02%

5 328.2244 396.2702 323.9933 315.9957 -12.2287 -3.73%

6 452.7336 498.1879 465.587 465.7856 13.052 2.88%

7 492.8783 623.4556 487.9892 483.922 -8.9563 -1.82%

8 623.8224 786.0137 610.6964 598.4155 -25.4069 -4.07%

9 734.9551 993.0482 744.2667 742.308 7.3529 1.00%

10 928.4488 1099.8681 919.6725 918.7554 -9.6934 -1.04%

11 1069.6187 1132.44 1097.703 1106.515 36.8963 3.45%

Mass
(kg)

Total 0.5602 0.5263 0.5029 0.4876 -0.0726 -12.96%

Optimable
Structures

0.3378 0.3035 0.2799 0.2652 -0.0726 -21.49%

Deleting Elements 0 1334 2050 2591 2591 11.19%



A topological optimization method for flexible multi-body dynamic system 485

modulus and mass density are within 1% of the normal material (Fig. 6). In the final optimal design

where the elements are completely removed (Fig. 7), the frequencies of the vibration are changed

very little, but the mass of the structure is reduced 21.49%. These results show that the presented

approach is efficient and easy to carry out.

In order to show the efficiency of optimization, the residual vibration (Fig. 8) and drive torque

(Fig. 9) are compared between the base structure and the optimal structure obtained by the

presented method. Note that the base structure is the most stiffener structure of the possible design

space. It can be seen (shown in Table 3) that the maximum residual vibration magnitude is smaller

(decreased 19.7903%) but nearly the same due to the stiffness constraints. Meanwhile, the drive

torque became smaller due to the reduced mass thus needing less power (reduced 19.5013%) for the

same motion profile of the die bonder.

Fig. 5 Original structure of Link 5 and crank 3 of the die bonder

Fig. 6 Removing elements of structures Link 5 and crank 3 of the die bonder

Fig. 7 Optimal structure of Link 5 and crank 3 of the die bonder 

Table 3 The comparison of residual vibration and drive torque

Residual vibration Drive Torque

Magnitude (µm) Change Rate (%) Magnitude (N·mm) Change Rate (%)

Base 35.4820 - 834.9584 -

Optimal 28.4600 -19.7903 672.1309 -19.5013
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7. Conclusions

In this paper, a topological optimization method for flexible multi-body dynamic system has been

presented. In this process, the actual boundary conditions of the control system and the approximate

stiffness curve of mechanism are calculated from a flexible multi-body dynamics simulation, and

the governing equations of the mechanism are divided into separated finite element equilibrium

equations for different positions according to the stiffness curve. For efficiency, the static reanalysis

method is utilized to solve these equations, a non-dimensional measurement is introduced to identify

the efficiency of the elements, and an improved ESO method is used to solve the optimal design

problem. The presented method is easy to implement with a general finite element system and

convenient to use in various engineering problems. The present method was implemented for the

topological optimization of a die bonder. From the example shown in Table 2, it can be seen that

only three iterations were needed for obtaining the optimal configuration of material. The flexible

multibody simulation shows that the residual vibration can be restrained by stiffness constraints, and

the driven power can be minimized due to the lower inertial force using an updated lightweight

design.
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