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Abstract. This study investigates the use of a vibration correlation technique (VCT) to identify the
buckling load of a rectangular thin plate. It is proposed that the buckling load can be determined
experimentally using the natural frequencies of plates under tensile loading. A set of rectangular plates
was tested for natural frequencies using an impact test method. Aluminum and stainless steel specimens
with CCCC, CCCF and CFCF boundary conditions were included in the experiment. The measured
buckling load was determined from the plot of the square of a measured natural frequency versus an in-
plane load. The buckling loads from the measured vibration data match the numerical solutions very well.
For specimens with well-defined boundary conditions, the average percentage difference between buckling
loads from VCT and numerical solutions is −0.18% with a standard deviation of 5.05%. The proposed
technique using vibration data in the tensile loading region has proven to be an accurate and reliable
method which might be used to identify the buckling load of plates. Unlike other static methods, this
correlation approach does not require drawing lines in the pre-buckling and post-buckling regions; thus,
bias in data interpretation is avoided.
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1. Introduction

Buckling load is one of the important parameters which should be considered in the design of thin

or slender structures subjected to compressive loading. The buckling behavior of engineering

structures such as columns, plates, frames, and shells has been continuously investigated in the past

several decades. Thin plates are among the most important of the many types of structures used in

engineering applications. 

The stability problem of a plate can be investigated using theoretical, numerical and experimental

approaches. The theoretical method is applicable to a limited type of problem, where a closed-form

solution is possible. For more complicated structures, numerical methods such as a finite element

method are required. Solutions from both theoretical and numerical methods are generally verified

with experimental results. Experimental methods involve a number of costly and time-consuming

processes; however, imperfections and complications are naturally included in any scientific inquiry.
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In an experimental study of plate buckling, identification of the buckling point is an important

part of the process, since it directly affects the accuracy of the measurement. In the experiment, the

buckling load of plates can be identified using various kinds of plots; for example: 1) a plot of in-

plane loads vs. out-of-plane displacement; 2) a plot of in-plane loads vs. end-shortening; and 3) a

plot of in-plane loads vs. difference of surface strains. These methods, which may be classified as

static methods, utilize the change of the slope of the curve in pre-buckling and post-buckling

regions to identify buckling load. The plots mentioned above, as well as other static methods, are

summarized by Singer et al. (1992).

Several studies have employed static methods to identify the buckling load of plates. Chai et al.

(1991) verified the theoretical buckling load of composite plates using an experimental method.

Buckling load was determined from the intersection of the tangents drawn in the pre-buckling and

post-buckling slopes of the load versus membrane strain curve. Discrepancies between the

experimental and theoretical solutions of between −7% and +11% were reported. Tuttle et al. (1999)

determined buckling loads of composite panels from the plots of applied in-plane load vs. out-of-

plane displacement, and compared the experimental results to numerical predictions obtained using

a Galerkin method. Although the average percentage error between the measured and predicted

buckling loads is low, the standard deviation of the percentage error is as high as 15%. The

difficulties of identifying the buckling load using a static test method were documented. In

particular, drawing two lines in the pre-buckling and post-buckling regions to identify the buckling

point depended on personal judgment, and could be a cause of error. To use the experimental result

as a benchmark solution, the method used to identify buckling load must be accurate and reliable.

There is a need for an alternative approach to experimentally identify the buckling load of a plate.

In this paper, vibration correlation technique (VCT) is explored and modified to determine the

buckling load of a plate. VCT is a nondestructive test utilizing measured vibration data. This concept

has been applied to buckling problems in the past, with a varying amount of success. Lurie and

Monica (1952) showed that the square of the frequency of the lateral vibration of a thin plate with

simple supports on all edges is linearly related to the end load. They also conducted some

experiments on elastically restrained columns, rigid-joint trusses, and thin flat plates. The authors

reported that VCT was successfully employed to predict the buckling load of only columns and

trusses. For flat plates, because of the initial curvature, the buckling load cannot be predicted by the

proposed method. However, Chailleux et al. (1975) later showed that with a carefully designed

experimental setting, VCT can be used to determine the buckling load with satisfactory accuracy. The

experimental dynamic curve is linear in the low-load region, so it is possible to extrapolate the data

to obtain the buckling load. Segall and Springer (1986) proposed a dynamic method to determine

linear buckling loads of elastic rectangular plates. With an integral equation representation of the

elastic stability, their proposed technique does not require the application of an in-plane load. A few

studies (Souza and Assaid 1991, Go et al. 1997, Go and Liou 2000) including a report by

Singhatanadgid and Sukajit (2008) which is the pilot investigation of this study, concerning the use of

vibration data to investigate buckling behavior can be found in the literature. 

In this study, the relationship between buckling and vibration behavior of thin plates is

investigated. The relationship between applied in-plane load and the natural frequency of plates is

derived from the governing differential equations of both problems. The derived relationship, which

is applicable to thin plates with any boundary conditions, is numerically verified by simulating a

plot of the derived relationship. Because of the premature curvature, which is usually detected even

before the specimen has buckled, it is proposed in this study that the buckling load be determined
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from the vibration data of a plate subjected to tensile loading. A test frame, capable of applying

tensile and compressive loading to a specimen, was prepared. A series of vibration tests was

performed to determine the natural frequencies of the plates. The vibration data, along with the

derived relationship, were used to predict the buckling load. Experimental buckling loads were

compared to the numerical solutions to verify the proposed technique.

2. Relationship between natural frequency and buckling load

The vibration correlation technique utilizes the relationship between vibration parameters and

buckling parameters. If the relationship between both parameters is established, the buckling

behavior can be determined from the known or measured vibration parameters. In this section,

vibration and buckling behaviors of a thin plate are investigated and their relationship is derived. As

shown in Fig. 1, a rectangular plate with a dimension of a × b and subjected to a uniform uniaxial

loading N
x

 is a system of interest. For a buckling problem, an applied in-plane load N
x
 is always a

compressive load. The desired parameters to be determined are buckling load and buckling mode.

The buckling load of a plate − represented by N
x
 – is the in-plane compressive load N

x
 at which

buckling occurs, while the buckling mode is the out-of-plane configuration w of the buckled plate.

In addition, natural frequencies and vibration mode shapes are two parameters to be determined in a

vibration problem. The natural frequencies of a plate can be determined for a specimen with a given

N
x
. It should be noted that N

x
 and N

x
 refer to the same in-plane load; however, N

x
 is the buckling

load, which must be a compressive load (negative value); while N
x
 is the applied in-plane load,

which can be either tension or compression. To derive the relationship between both phenomena,

the governing equations of both problems are considered. The governing equations for buckling and

vibration of a thin isotropic plate are written as

(1)

and

(2)

respectively. D is the flexural rigidity and is defined by 
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Fig. 1 A rectangular plate subjected to a uniaxial in-plane load N
x
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E is Young’s modulus, h is the plate thickness and v is Poisson’s ratio. For a given plate with

particular boundary conditions, it is widely known that the buckling mode is identical to one of the

vibration modes. Specifically, the out-of-plane displacement of the buckled plate is the same as the

out-of-plane displacement of one of the vibration modes. So, the governing equation of the buckling

problem can be rewritten as 

(3)

where  and .

Similarly, the governing equation of the vibration of loaded plates is written as

(4)

where .

It should be noted that the terms containing derivatives of w are the same for both problems

because the buckling mode and vibration mode are identical. From Eq. (3), the buckling load of a

plate can be written as

 (5)

Similarly, the natural frequency of a plate, with the applied in-plane load N
x
, can be determined

from Eq. (4), and written as 

(6)

where  is the natural frequency of a plate with applied load N
x
. It is noticed that the natural

frequency of a plate varies with the in-plane loading. For an unloaded plate, the natural frequency is

simply described as

(7)

where ω is the natural frequency of a plate without an applied load. By dividing Eq. (5) by Eq. (6)

and utilizing Eq. (7), the ratio of the square of the natural frequency of a loaded plate to that of an

unloaded plate is written as 

(8)

From the relationship shown in Eq. (8), both the buckling load  and the natural frequency of

an unloaded plate ω may be considered as a constant for a specific specimen. The variables in that

equation are the natural frequency of the loaded plate  and the applied in-plane load N
x
. Thus,

the square of the natural frequency  varies linearly with the applied load N
x
. With the

buckling load being a negative value, it is observed that the natural frequency of the plate increases

with the applied tensile load. On the other hand, it decreases with the applied compression.
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Moreover, if the applied load N
x
 equals the buckling load of the plate, the natural frequency 

theoretically equals zero. Based on this observation, the natural frequencies of the loaded plate can

be utilized to predict its buckling load by plotting  versus the in-plane load N
x
. The buckling

load can be determined from the applied load N
x
 at which the natural frequency approaches zero.

Since this relationship is derived from the governing equations, it is applicable to specimens with

any boundary conditions. In addition to conventional boundary conditions, this relationship is also

applicable for thin plates with unknown or imperfect boundary conditions. As long as the vibration

data is obtained from a given specimen with specific boundary conditions, the buckling load

determined using VCT will be the buckling load of that specimen.

Numerical verification

To numerically verify the VCT and the derived relationship shown in Eq. (8), a numerical

simulation of the vibration and buckling of a plate was performed. The Ritz method with

characteristic beam functions was used to solve the buckling and vibration problems. Detailed

information about the Ritz method, which is beyond the scope of this paper, can be found in Ding

(1996), Rajalingham et al. (1996), Lee et al. (1997), Aydogdu et al. (2003), Wang et al. (2005),

Timarci et al. (2005) and Ni et al. (2005). A 2-mm-thick aluminum plate with a dimension a × b of

400x200 mm2 was chosen as a specimen. The plate was assumed to be simply supported on the

loading edges and clamp-supported on the other two edges. The buckling load of this specimen was

numerically determined, and found to be 88.216 kN/m with buckling mode (3, 1). The buckling

mode of this specimen is graphically shown in Fig. 2. The numerical solution serves as the

theoretical solution for this simulation, and is used to validate the buckling load from VCT.

Buckling load and mode determined from VCT requires the vibration data, i.e., natural frequencies

and vibration mode shapes, of the plate subjected to in-plane loading. These vibration parameters of

the loaded plated were also simulated using the Ritz method. The applied in-plane load was

increased step by step in both tensile and compressive loading ranges. The square of the natural

frequencies for the first six modes was plotted versus applied load, as shown in Fig. 3. The mode

shape of each vibration mode is shown in Fig. 4. The relationship between  and N
x
 of a

particular vibration mode is linear, as expected according to the derived relationship. The predicted

buckling load can be determined by extrapolating the vibration data to the in-plane load at which

the square of the natural frequency approaches zero. Trend lines of each vibration mode intercept

the N
x
 axis at a different load level. The lowest compressive load is the buckling load, and its

corresponding vibration mode shape is the predicted buckling mode. In this simulation, the

predicted buckling is 88.216 kN/m and the buckling mode is mode (3, 1). VCT predicted the

ω
*

ω
*2

ω*2

Fig. 2 Buckling mode determined from the buckling problem
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buckling mode to be mode (3, 1) because the trend line of this vibration mode intersects the N
x
 axis

at the lowest load, compared to those of other vibration modes. The buckling load determined from

the vibration data compares perfectly with the numerical solution. Similarly, the buckling mode

determined from VCT is also identical to the buckling mode of the numerical solution. In

conclusion, the squares of the natural frequencies vary linearly with the applied in-plane load, as

expected from the relationship shown in Eq. (8). The natural frequency approaches zero as the in-

plane compressive load approaches the buckling load of plate. The numerical simulation showed

that buckling behaviors of a thin plate can be accurately predicted using VCT. The concept of using

vibration parameters to identify buckling load and mode is thus theoretically verified. However,

further experimental study is required to determine the accuracy and reliability of the technique. 

Fig. 3 Square of the natural frequencies of an aluminum plate vs. applied loading 

Fig. 4 Vibration mode shapes of the first six vibration modes
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3. Experimental arrangement

Although the relationship between vibration and buckling behaviors of a thin plate is theoretically

confirmed, the applicability of VCT as an experimental technique which can be used to identify

buckling load requires further investigation. A series of experiments was performed to determine the

accuracy and reliability of the proposed technique. A set of aluminum and stainless steel plates was

used; each plate was uniaxially loaded on a custom-made test frame. The experiment was then

performed on the loaded specimens to determine natural frequencies and vibration mode shape. The

vibration data was obtained for the specimens subjected to both tensile and compressive loading.

The measured natural frequencies and applied loading were then plotted, with results similar to

those shown in Fig. 3. The predicted buckling load was identified using VCT, i.e., the relationship

derived previously.

3.1 Test frame

The test setup, shown in Fig. 5, was specifically designed to accommodate the loading

configurations and vibration testing. The test frame is capable of applying both clamped and free

boundary conditions to the specimens (The simple supported boundary condition was not included

in the experiment because it is difficult to obtain a perfect simple support compared with the other

two conventional boundary conditions). Both tensile and compressive loads can be applied on the

specimens. In-plane loads are applied horizontally using a hydraulic cylinder pressurized with a

hand pump. The hydraulic cylinder is mounted on the right end frame, which is fixed to the left end

frame using two guided columns. A rectangular thin plate is mounted on the loading edges, with

clamped support between crosshead #2 and crosshead #3. 

For a tensile testing configuration, as shown in Fig. 5, the hydraulic ram applies a compressive

Fig. 5 Experimental setup of a specimen with CCCC boundary condition subjected to tensile loading
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force against crosshead #1. Loads are monitored using a load cell mounted between crosshead #1

and the hydraulic cylinder. Two linear bearings are embedded within the crossheads so they can

move linearly along two guided columns. The applied loading on crosshead #1 is transferred

through two tension rods to crosshead #2. Crosshead #2 thus is pushed, and tends to move to the

left-hand side. On the other hand, crosshead #3 is blocked by two stoppers mounted on the guided

columns, as shown in the figure. With this loading configuration, a specimen which is clamped

between crosshead #2 and crosshead #3 is stretched when the compressive load is applied by the

hydraulic ram. 

In the case of compressive testing, the test frame shown in Fig. 5 must be modified. Crosshead #1

and the tension rods are removed in the compressive testing configuration. The two stoppers which

are used to block crosshead #3 in the tensile testing configuration are moved to the left-hand side of

crosshead #2, to prevent the horizontal motion of the crosshead. A compressive load from the

hydraulic ram is then applied directly on crosshead #3. With this setup, the specimen is uniformly

compressed between crosshead #2 and crosshead #3. Hence the designed test frame is capable of

applying both tensile and compressive loads to a thin plate with changeable loading configurations.

Besides the loading mechanism, the test frame is also equipped with restraining devices to apply

desired boundary conditions to the test samples. In Fig. 5, the clamped boundary conditions of the

specimen are enforced by 20-mm-thick rigid stainless steel bars, denoted as “clamped support.” For

the unloaded edges, the clamped supports are mounted on the support holders, which are tightly

clamped to the guided columns. Similarly, the rigid stainless steel bars are placed in the slots of the

crossheads to assemble a clamped support on the loaded edges. On both loaded and unloaded edges,

machine screws are used to push the steel supports against the specimen surface. To obtain a

clamped support, machine screws are finger-tightened until the gap between the specimen and

support is invisible. Clamped supports on the unloaded edges of the specimen can be removed so

that a free edge is formed on those boundaries. With the described constraint mechanism, the

boundary conditions of a specimen consist of clamped support on the loaded edges (x = 0 and x =

a), and either clamped or free edges on the unloaded edges (y = 0 and y = b).

3.2 Test specimens

A series of experiments was performed on 12 thin isotropic plates with CCCC, CCCF and CFCF

boundary conditions. The symbol “C” represents a clamped boundary condition, while “F” stands

for a free boundary condition. The first and third letters symbolize the boundary conditions on x = 0

and x = a, respectively. Similarly, the boundary conditions on y = 0 and y = b are represented by the

second and fourth letters, respectively. The specimens were prepared from 6061-T6 aluminum alloy

and stainless steel AISI 304. The physical and mechanical properties of both materials are presented

in Table 1. Nominal dimensions a × b of the specimens were 300 × 200, 200 × 200, and 150 × 200

mm2. For each plate size, there were two specimens with different thicknesses. Thus, there were a

 Table 1 Properties of materials used in the experiments

Material
Modulus of Elasticity, 

E (GPa)
Poisson ratio, v

Density, ρ 
(kg/m3)

Aluminum 6061-T6 70 0.33 2700

Stainless steel AISI 304 193 0.30 8000
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Table 2 Buckling load in kN/m of aluminum specimens compared to numerical solutions

Specimen 
No.

Dimension
(a×b) mm2

Thickness,
mm

CCCC CCCF CFCF

Numerical 
Solution

Exp.
Measurement

% Diff
Numerical 
Solution

Exp.
Measurement

% Diff
Numerical 
Solution

Exp.
Measurement

%
Diff

1 300 × 200 2.032 113.2 115.7 2.21 34.0 34.8 2.43 23.5 24.1 2.40

2 300 × 200 2.298 163.7 165.6 1.14 49.2 46.6 -5.35 34.0 34.2 0.48

3 200 × 200 1.765 89.5 89.0 -0.53 40.7 38.3 -5.95 34.9 33.7 -3.43

4 200 × 200 1.955 121.6 125.1 2.90 55.3 54.8 -0.90 47.4 46.8 -1.39

5 150 × 200 1.745 100.1 101.1 0.94 65.5 64.8 -1.01 60.2 57.1 -5.18

6 150 × 200 1.976 145.4 146.5 0.75 95.1 99.0 4.10 87.4 84.5 -3.28

Average 1.24 -1.11 -1.73

Standard deviation 4.44 6.30 3.38

Table 3 Buckling load in kN/m of stainless steel specimens compared to numerical solutions

Specimen 
No.

Dimension
(a×b) mm2

Thickness,
mm

CCCC CCCF CFCF

Numerical 
Solution

Exp.
Measurement

% Diff
Numerical 
Solution

Exp.
Measurement

% Diff
Numerical 
Solution

Exp.
Measurement

%
Diff

1 300 x 200 1.173 58.8 62.5 6.35 18.0 19.0 5.13 12.3 12.0 -1.87

2 300 x 200 1.389 97.6 112.6 15.38 29.7 28.4 -4.21 20.4 20.6 0.87

3 200 x 200 1.110 60.1 64.6 7.58 27.5 28.4 3.18 23.5 23.6 0.48

4 200 x 200 1.389 117.7 133.6 13.45 53.9 55.2 2.33 46.1 46.7 1.32

5 150 x 200 1.124 72.3 79.2 9.55 47.4 48.3 1.91 43.5 44.2 1.43

6 150 x 200 1.406 141.4 164.3 16.15 92.8 87.3 -5.91 85.2 N/A N/A

Average 11.41 0.40 0.45

Standard deviation 6.23 5.95 3.76
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total of six aluminum specimens and six stainless steel specimens. The aluminum and stainless steel

specimens’ dimensions are summarized in the first three columns of Table 2 and Table 3,

respectively. It should be noted that the actual size of a specimen is slightly larger than the nominal

size because a small portion on the boundary of the specimen is clamped by the rigid stainless steel

bar, and is not regarded as an effective area. The schematic dimensions of the specimens are

presented in Fig. 6. 

Each specimen was originally prepared to be a CCCC specimen. The width and height of all

specimens were 40 mm larger than those of the nominal dimensions. A 20-mm-wide area on each

of the four edges was reserved as an area to be clamped by a support. In the schematic of a CCCC

specimen shown in Fig. 6, the effective area or nominal area of the specimen is represented by a

clear area of a × b, whereas the dashed area is an area to be clamped by the support. After an

experiment on a CCCC specimen was concluded, a clamped area on one of the unloaded edges was

cut off to form a CCCF specimen. So, the actual size of a CCCF specimen was slightly smaller than

a CCCC specimen with the same nominal size. Finally, the other clamped area on the unloaded

edges was removed to obtain a CFCF specimen. Thus, specimens with an equal nominal size but

different boundary conditions are actually the same specimen. 

3.3 Testing procedures 

In this study, the natural frequencies of a loaded plate are required data in order to predict the

buckling behavior of the plate. Vibration testing was performed using an impact test, in which the

specimen was excited by an impact hammer while the applied impulse was monitored by a dynamic

signal analyzer. Acceleration response of the specimen was measured by an accelerometer placed on

the specimen at a selected location. Acceleration data measured in the time domain were processed

by a fast Fourier transform algorithm using the dynamic signal analyzer to obtain the frequency

response function (FRF). From the vibration response in the frequency domain, the natural

frequencies of the specimen were identified from the peak of the response. Vibration mode shape

was also obtained from an imaginary part of the response function. An overview of the vibration

testing and modal analysis is beyond the scope of this paper; the interested reader is referred to the

article by Avitabile (2001). The typical magnitude and imaginary part of the frequency response

function are shown in Fig. 7.

Fig. 6 Nominal and actual dimensions of the specimens



Experimental determination of the buckling load of rectangular plates 341

The experiment on a specimen was composed of two parts. The first part of the experiment was

performed to verify the relationship shown in Eq. (8) and to determine the buckling mode of the

plate. The specimen was loaded in both tensile and compressive loading ranges. Natural frequencies

of the specimen under unloaded, tensile-loaded and compressive-loaded conditions were determined,

respectively. The square of the natural frequency was plotted against applied in-plane load. A

typical relationship between ω*2 and N
x
 is presented in Fig. 8, which is the vibration behavior of

aluminum specimen #3 with CCCF boundary condition. Natural frequencies of vibration modes (1,

1), (1, 2) and (2, 1) are included in the plot. Numbers representing a vibration mode stand for the

number of curves of an out-of-plane displacement in the x and y directions, respectively. Vibration

mode shape is determined from the imaginary parts of the frequency response from several

Fig. 7 Magnitude and imaginary parts of the frequency response of CCCC stainless steel specimen #2,
without an in-plane load

Fig. 8 Plot of ω*2 vs. N
x
 of aluminum specimen #3, with CCCF boundary condition
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experiments. A plot of each mode shape is presented in Fig. 9. The symbols “−” and “+” represent

the out-of-plane displacement in different directions on the specimens, and “0” indicates a zero

displacement or a node line. From the results shown in Fig. 8, the buckling mode of the specimen

was determined to be mode (1, 1), since the trend line of this mode intersects the N
x
 axis at the

lowest value. It is observed that ω*2 varies linearly with the applied load in the tensile loading

range, as expected. The relationship between both parameters in the compressive loading range is

not as linear as the relationship in the tensile loading range. This nonlinear relationship in the

compressive loading range was also observed in other specimens, and was previously reported by

Lurie and Monica (1952). This behavior is contradicted by the result from the numerical simulation

shown in Fig. 3. It is speculated that the nonlinear behavior is a result of a premature curvature

which develops before buckling of the specimen. For this reason, the buckling load was determined

using only vibration data of the specimen subjected to tensile loading. 

The second part of the experiment focused on determining the buckling load. After plotting the

relationship of ω*2 vs. N
x
, as previously seen in Fig. 8, and determining the buckling mode, the

specimen was reloaded under increased levels of tensile loading. At each load level, a vibration test

was performed to determine the natural frequency of the loaded plate. Only the natural frequencies

of the relevant mode shape, i.e., the buckling mode, were collected. A plot of ω*2 versus N
x
 in the

tensile loading range was generated and extrapolated to determine the measured buckling load.

Because the measurement of natural frequency is very sensitive to boundary conditions, the

experiment was repeated 20 times by loosening and re-tightening the machine screws on the

clamped supports. An average of the measured buckling load is reported as the buckling load

obtained from VCT.

4. Experimental results and discussion

All 12 specimens were tested to determine natural frequencies for each vibration mode. For each

vibration mode, the square of the natural frequency was plotted against an applied load to determine

buckling load and buckling mode.

 

4.1 Buckling mode

The experimental buckling mode is determined from the vibration mode whose trend line

Fig. 9 Vibration mode shapes of the experiments shown in Fig. 8



Experimental determination of the buckling load of rectangular plates 343

intersects the N
x
-axis at the lowest load level. For all specimens, buckling modes determined from

the experiment correspond very well to the numerical solutions. The plots of ω*2 vs. N
x
 for all

specimens are similar to that of aluminum specimen #3, which is shown in Fig. 8. The relationship

between both parameters is linear throughout both the tensile loading range and the low-load

compressive loading range. In the high-load range, most of the experimental results showed that the

squares of the natural frequencies do not vary linearly with the in-plane loads. In Fig. 8, nonlinear

behavior is observed when the applied compressive load is greater than approximately 30 kN/m. To

investigate the cause of this nonlinear behavior, the maximum out-of-plane displacement of the

specimen subjected to compressive loading was measured and plotted, as shown in Fig. 10. From

the figure, it is apparent that the out-of-plane displacement is observed as soon as the compressive

load is applied. In the low-load range, i.e., N
x
 lower than 25 kN/m, the measured out-of-plane

displacement is less than 0.3 mm. The out-of-plane displacement is more pronounced as the applied

load approaches 30 kN/m. From linear buckling theory, the out-of-plane displacement cannot exist

before the specimen has buckled. So this out-of-plane displacement could be considered to be a

premature deformation in the experiment, reflecting imperfections in either the specimen or the test

setup. The in-plane compressive load level at which the square of the natural frequency begins to be

nonlinear corresponds very well with the load level where the out-of-plane displacement of the

specimen is well-defined. Other specimens also exhibited a similar correlation between the load

level where a distinct out-of-plane displacement is observed, and the load level where a nonlinear

behavior between ω*2 and N
x
 is observed. It is reasonable to draw the conclusion that ω*2 does not

vary linearly with the in-plane load in the high compressive loading region because of the

premature out-of-plane displacement developed there. Therefore, the proposal to use vibration data

in the tensile loading range to identify buckling load is justified. 

 

4.2 Buckling load

The buckling loads determined from VCT for aluminum and stainless steel specimens are

compared with numerical solutions in Tables 2 and 3, respectively. The experimental buckling load

is determined from a plot of vibration data in the tensile loading range. In Tables 2 and 3,

dimensions of the specimens are presented in the first three columns. The next three columns

compare experimental buckling loads of CCCC specimens with numerical solutions which are used

as benchmarks. The last six columns show the experimental results of CCCF and CFCF specimens.

Fig. 10 Plot of applied load vs. out-of-plane displacement of the specimen shown in Fig. 8
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(It should be noted that the experimental CFCF result of stainless steel specimen #6 is inapplicable,

because the specimen was permanently bent during the compressive test.) Each experimental

buckling load presented in Tables 2 and 3 is an average value based on a set of 20 experiments. The

discrepancy between the experimental buckling load and the benchmark solution is presented as a

percentage difference, as shown in the columns denoted by “% Diff.” Average and standard

deviations of the percent difference between experimental and numerical solutions of specimens

with the same boundary conditions are shown at the bottom of the tables. Since the experimental

buckling loads are an average value from 20 experiments, standard deviations shown in the last row

are calculated from 120 experiments for each set of boundary conditions − except stainless steel

specimens with CFCF boundary conditions, which underwent only 100 experiments. For aluminum

specimens shown in Table 2, the percent difference of the measured buckling loads from the

benchmarks varies from −5.95% to 4.10%. However, the averages of the discrepancies for

specimens with the same boundary conditions, shown at the bottom of the table, are less than ±2%.

It is also observed that the average percent difference is independent of the size, thickness and

boundary condition of the specimen. In general, the buckling load of an aluminum specimen

obtained from VCT matches the numerical solution very well. On the other hand, measured

buckling loads of stainless steel plates do not agree as well with the numerical ones. As shown in

Table 3, the percent discrepancies of the measured buckling loads of CCCF and CFCF specimens

are comparable to those of aluminum plates. The average differences of buckling load for both

boundary conditions are less than 1%. However, the average difference of 11.41% for CCCC

specimens is fairly high compared with other experiments. It is also evident that the measured

buckling load of a thicker plate deviates from the expected solution more than does that of a thinner

one. Specifically, the percent differences of the thicker plates (specimens #2, 4 and 6) vary from

13.45% to 16.15% – a greater variance than those of the thinner plates (specimens #1, 3 and 5)

which are all less than 10%.

4.2.1 Imperfection of boundary conditions

From the experimental results of CCCC stainless steel specimens, it is speculated that the

boundary condition of those specimens significantly deviates from the theoretical one. For a

clamped support, the specimen should be fixed with zero out-of-plane displacement and zero slope

on the boundary. After careful consideration, it was hypothesized that the supports on the unloaded

edges were liable to be the cause of the observed imperfection. These supports are restrained by two

support holders which are clamped on the guided columns, as shown in Fig. 5. Ideally, the support

holder will not rotate around the guided column, so that the specimen remains tightly secured by the

clamped supports. However, if the bending moment on a specimen’s edge is sufficiently high, the

support holder could be rotated by the reaction moment, resulting in a movement of the support in

the out-of-plane direction. As a result, an imperfection of the clamped boundary condition could be

observed by monitoring the movement of the support bar on the unloaded edge. An additional

measurement was conducted on both aluminum and stainless steel specimens to investigate the

perfection of the clamped boundary condition. Specimens #1 and 2 were mounted on the test frame

and loaded with tensile loading, similar to that of the vibration test to determine natural frequencies.

A dial indicator was placed in the middle of a clamped support to monitor the motion of the support

after the specimen was loaded with tensile loading. A plot of the displacement in the out-of-plane

direction of the support, versus applied tension, is presented in Fig. 11. Ideally this displacement

should not exist at any load level. However, this displacement can be detected if: (a) the specimen
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is not perfectly flat; or (b) the tensile load is not uniformly applied. It should also be noted that the

nominal sizes of specimens #1 and 2 are identical, but that specimen #1 is thinner than specimen

#2. It can clearly be seen that the displacements of the supports on the stainless steel plates are

considerably greater than those on the aluminum plates. Furthermore, the measured displacements

of thinner plates are less than those of thicker plates. This out-of-plane displacement of the support

indicates the imperfection of that support. So, based on the test frame used in this study, it can be

concluded that aluminum specimens are better supported by a clamped boundary condition on the

unloaded edges than are the stainless steel specimens. Similarly, a clamped support on a thinner

specimen is closer to an ideal boundary condition than that on a thicker specimen. Although all

specimens were clamped with the same supports and comparable clamping force, they were

probably not subjected to similar boundary conditions because of differences in the plates’ bending

stiffness. The bending stiffness of a stainless steel plate is greater than that of an aluminum plate, as

is a thicker plate compared with a thinner plate. Because of the imperfections of plates and loading

conditions, such as preexisting curvatures and uniformity of tensile loading, specimens have a

tendency to move in the out-of-plane direction. With an ideal boundary condition, all of this motion

will be suppressed by the clamped support. It is confirmed by additional measurement that the

support cannot completely restrain the specimen, as shown in Fig. 11. Specimens with lower

stiffness, i.e., aluminum plates and thinner plates, are better supported with a clamped boundary

condition. Thus, the buckling loads of CCCC stainless steel specimens are not easily predicted

compared with those of other specimens, because the boundary conditions of these specimens

significantly diverge from an ideal boundary condition. In addition, the supports on thinner

specimens (#1, 3 and 5) resemble a near-ideal boundary condition more closely than do those of

thicker ones. This assertion is supported by the plot in Fig. 11, and explains the obtained percentage

differences of the CCCC stainless steel specimens. 

Any imperfection of the clamped supports, i.e., rotation of the support holder, will be encountered

only on the unloaded edges. The clamped supports on the loaded edges are mounted on crossheads

#2 and #3, which are only allowed to move along two guided columns. With the described

arrangement, both crossheads cannot be rotated as long as the guided column remains straight; so

the supports on these edges closely resemble an ideal clamped boundary condition. Therefore, this

setup of the boundary conditions of the CFCF specimens allowed accurate identification of the

Fig. 11 Plot of support displacement vs. in-plane tension of CCCC specimens
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buckling loads of CFCF specimens, using VCT. For CCCF boundary conditions, even though one

of the unloaded edges was supported with a clamped boundary condition, the experimental buckling

loads from VCT still matched the numerical solutions very well. The unloaded edges on the CCCF

specimens are clamped on one side and free on the other side. The free edges of these specimens

are allowed to deform or bend; consequently, the bending moment on the other unloaded edges is

probably not high enough to nullify a clamped boundary condition. 

The experimental results demonstrate that the measured buckling loads of all of the CCCC

stainless steel specimens are higher than the theoretical ones: i.e., the percent differences are

positive. This observation is contradicted by the fact that the specimens were not perfectly clamped,

so their buckling loads should have been lower than those of the numerical solutions. However, this

contradiction is rational because the measured buckling load is obtained from the measured

vibration data. Because of the divergent boundary conditions, the specimens are not perfectly

restrained; so their boundary conditions lie somewhere in between simple support and clamped

support. Thus, the measured natural frequencies of the specimens subjected to tensile load are lower

than those of the perfectly clamped specimens. The degree of divergence of the boundary conditions

is greater when the specimen is loaded with higher in-plane load. As a result, the slope of the trend

line of ω*2 vs. N
x
 is lower than expected, and the intersection of the trend line with the N

x
-axis is

farther away from the origin than it should be. Therefore the buckling load obtained from VCT

using vibration data in the tensile loading region is higher than that found in theory.

In conclusion, specimens used in this study were either supported with a clamped support or had

a free boundary condition. The clamped boundary conditions on the loaded edges, as well as the

free boundary conditions on the unloaded edges, were appropriately set up. Imperfection of the

clamped boundary condition on the unloaded edge was reduced if the boundary condition on the

other edge was a free boundary condition. The imperfection of the support was also minimized on

the aluminum specimens because of the plates’ lower degree of stiffness. Only CCCC stainless steel

plates were not well supported by the intended clamped boundary condition. This observation

clarifies the fact that the VCT-measured buckling loads of these specimens diverge from the

numerical solutions. Buckling loads of other sets of specimens are accurately indicated using the

proposed technique.

 

4.2.2 Deviation of the buckling load

The average percent differences of the measured buckling loads from the numerical solutions are

very low for most of the experiments with properly prepared boundary conditions. However the

standard deviations of the percent differences for each group of specimens are, on the other hand,

fairly high. The standard deviation for specimens with the same material and boundary condition is

shown in the last rows of Table 2 and 3. Unlike the average percent discrepancies, the standard

deviations are not significantly different. For CCCC and CCCF specimens, the standard deviations

of the percent difference varied from 4% to 6.5% for both materials. The standard deviations of

CFCF specimens were 3.38% and 3.76% for aluminum and stainless steel plates, respectively.

These deviations are somewhat less than those of the specimens with CCCC and CCCF boundary

conditions. The standard derivation of the percent difference indicates the precision or repeatability

of the measurements. In the experiment, to obtain a buckling load a specimen was clamped by

tightening machine screws, and then tested for natural frequencies under an increasing tensile

loading. The supports on the specimen were then loosened and retightened again for the next

experiment. Hence, the boundary conditions of the specimens for each measurement are not
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identical. Additional tests were conducted by repeating the experiment without loosening the

machine screws (i.e., the same boundary conditions were maintained). The resulting measured

buckling loads were not significantly different. Therefore, the measured buckling load of one

experiment deviates from those of other experiments because of the nonidentical boundary condition

between each experiment. It is also noteworthy that the boundary condition on the unloaded edges

of a CFCF specimen is free, or unsupported. So the boundary condition on these edges is identical

for all experiments. Accordingly, the boundary conditions of CFCF specimens deviate less, from

experiment to experiment, than do those of specimens with other boundary conditions. As a result,

the standard deviations of the percent differences of CFCF specimens are markedly less than those

of specimens with other boundary conditions. 

The distribution of the percent differences in the experiments with properly-set boundary

conditions is presented as a histogram, shown in Fig. 12. The experimental results of CCCC

stainless steel plates are not included in the plot because of their ill-defined boundary conditions.

There are a total of 580 comparisons between the measured and numerical buckling loads. It can be

seen that the histogram resembles a symmetrical bell curve, with the tip of the curve at around 0%.

The average percent difference from 580 comparisons is −0.18%, with a standard deviation of

5.05%. A total of 397 comparisons, or approximately 68%, have a percentage difference between

measured and numerical buckling loads within ±5%. 

In conclusion, the accuracy of using VCT with vibration data in the tensile loading region to

identify the buckling load of plates is very well demonstrated. The precision or repeatability of the

experimental technique is quite acceptable, given the fact that the boundary conditions of the

specimens in this study were not precisely identical. In practice, the precision of using VCT can be

maximized if the boundary conditions of the specimens are suitably arranged. The advantage of

using VCT is that the technique is applicable for specimens with any boundary conditions. As long

as the specimen in the vibration test is supported in the same manner as in the buckling problem,

the buckling load obtained from VCT should be accurate and precise, regardless of the boundary

conditions of the specimen.

Fig. 12 Histogram of the percentage difference between measured and predicted buckling loads of the
experiment (not including CCCC of stainless steel)
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5. Conclusions 

The relationship between the natural frequency and the buckling load of a rectangular thin plate is

addressed in this study. It is shown that the square of the natural frequency of a loaded plate varies

linearly with the in-plane load. By comparing the governing equations of both problems, the natural

frequency of the plate decreases to zero when the applied in-plane load approaches the buckling

load of the plate. The derived relationship can be utilized as a technique to identify the buckling

load and buckling mode of the structure. Due to a premature curvature which usually develops

before buckling, the use of vibration data in the tensile loading range, where the premature

curvature is negligible, is proposed in this study. To verify the accuracy of the technique, the

experiment was performed on a test frame in which the specimens were loaded and tested for

natural frequencies. Both aluminum and stainless steel specimens with CCCC, CCCF and CFCF

boundary conditions were included. The measured vibration data was plotted against the in-plane

load to determine the buckling load and buckling mode. The square of the measured natural

frequency varies linearly with the applied load, as expected. The experimental results show that all

buckling modes obtained from VCT agree very well with the numerical solutions, while most of the

measured buckling loads also conform to the numerical solutions. The buckling loads of CCCC

stainless steel specimens were not clearly indicated using the proposed technique. The imperfection

of the boundary conditions in this group of specimens is believed to be the primary factor in the

high percentage difference between the measured and numerical buckling loads. If the experiments

using stainless steel specimens with CCCC boundary conditions are excluded, the average percent

difference between measured buckling loads and numerical solutions is -0.18%, with a standard

deviation of 5.05%. The obtained percent difference resembles a normal, bell-shaped distribution.

The standard deviation is fairly high because of the variation in boundary conditions from one

experiment to another. 

In conclusion, the experimental study demonstrates the accuracy and reliability of using vibration

data in the tensile loading range to determine buckling load. Boundary conditions of the specimen

have a considerable effect on the precision of the measured buckling load. The proposed technique

of identifying the buckling load of a plate has an advantage over static methods, in that this method

does not require human judgment to draw lines in the pre- and post-buckling regions. However, the

boundary conditions of the specimen must be carefully set in order to obtain an accurate and precise

measurement. The measured natural frequency of the specimen is sensitive to the boundary

conditions and, hence, is a critical parameter in applying VCT to the plate buckling problem.
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