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Abstract. Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-
torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral
displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown
experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-
distortional mode of buckling is interestingly directly coupled with other various deformation
characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of
twist of top and bottom flanges, and consequently good results have been obtained as a result of
application of the Meck’s method on lateral displacement together with each of the aforementioned
deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains,
vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-
distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of
these deformation variables may still yield reliable predictions for the critical buckling load.
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1. Introduction

 

Meck (1977) proposed a skewed version of the standard Southwell Plot (Southwell 1932) for

experimental determination of the buckling load in problems of lateral-torsional buckling. He

believed that the problem of lateral-torsional buckling is more complicated that flexural buckling

and it is necessary to consider both lateral displacement (δL) and rotation (φ) of the section. In fact,

Meck’s version of the Southwell Plot may be seen as reflecting the physical inter-dependence of

lateral flexure and torsion in the structure under test, and is regarded as the “natural” generalization

of the Southwell Plot to the case of lateral-torsional buckling (Mandal and Calladine 2002).

Based on his analysis of lateral-torsional buckling, Meck suggested to make a plot of (φ/M)

against δL, and another of (δL/M) against φ; and that the respective slopes of the straight-line

portions of these two plots will be 1/α and 1/β, and consequently Mcr will be the geometric mean of

the slopes of the two plots (Eq. (1)).

 

(1)Mcr αβ( )
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=
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In addition, Mandal and Calladine (2002) demonstrated that in general δL tends to be proportional

to φ as deformations increase in case of lateral-torsional buckling and came up with the following

equation.

 

(2)

 

In a recent reported study on lateral-distortional buckling of I-beams (Zirakian 2008), as a result

of analysis of the experimental data it was interestingly found that in this mode of buckling, lateral

displacement (δL) tends to be proportional to web transverse strain (εT) as deformations increase.

This key finding was also verified theoretically by taking advantage of the theoretical model

developed for lateral-torsional buckling mode. Consequently, based on this finding, good predictions

were obtained for the critical buckling load as a result of application of Meck’s method on δL and

εT. It should be noted that lateral-distortional buckling mode is evidently more complicated than

lateral-torsional buckling mode, since in the distortional mode lateral instability of the beam is

accompanied by cross-section distortion.

In continuation of the aforementioned experimental research work, a further step was taken lately

(Zirakian 2010) and the relationship between lateral displacement (δL) and various deformation

variables, viz. web transverse strain (εT), web longitudinal strain (εL), vertical deflection (δV), and

angles of twist of top and bottom flanges (θTF and θBF), in I-beams undergoing elastic lateral-

distortional mode of buckling was investigated through finite element studies. In this study (Zirakian

2010), plots of δL against εT, εL, δV, θTF, and θBF were made and it was observed that the data-points

in all cases, apart from the initial few, generally lie on straight lines. In other words, δL was found

to be proportional to εT, εL, δV, θTF, and θBF. Time and again, by taking advantage of Meck’s (Meck

1977, Mandal and Calladine 2002) approach proposed for the case of lateral-torsional buckling

mode, these proportionality findings were accompanied by theoretical verifications. Finally, the

application of the Meck Plot method resulted in reliable predictions for the critical buckling load in

all considered cases. As a result, it was shown that in Meck’s plotting method lateral displacement

(δL) can even be used together with other deformation variables, i.e., εT, εL, δV, θTF, and θBF, and

still good and reliable predictions may be obtained for the critical buckling load.

In the present research work, one further step is taken in order to complement and generalize the

δLc/φc α/β( )
0.5

const.+→

Table 1 Considered combinations of deformation variables

Case First deformation variable (d.v.1) Second deformation variable (d.v.2)

1 web transverse strain (εT) web longitudinal strain (εL)

2 web transverse strain (εT) vertical deflection (δV)

3 web transverse strain (εT) angle of twist of top flange (θTF)

4 web transverse strain (εT) angle of twist of bottom flange (θBF)

5 web longitudinal strain (εL) vertical deflection (δV)

6 web longitudinal strain (εL) angle of twist of top flange (θTF)

7 web longitudinal strain (εL) angle of twist of bottom flange (θBF)

8 vertical deflection (δV) angle of twist of top flange (θTF)

9 vertical deflection (δV) angle of twist of bottom flange (θBF)

10 angle of twist of top flange (θTF) angle of twist of bottom flange (θBF)
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prior research results. Accordingly, the relationship between web transverse strain (εT), web

longitudinal strain (εL), vertical deflection (δV), and angles of twist of top and bottom flanges (θTF
and θBF), including ten cases as shown in Table 1, is firstly examined in case of elastic lateral-

distortional buckling of I-beams with various initial geometrical imperfections, support conditions,

cross-sections, and types of loading, and subsequently the use of the Meck Plot method in all of the

considered cases is investigated.

 

 

 2. Finite element analysis

 

Finite element analysis using ABAQUS (2005) was employed in this work to develop lateral-

distortional buckling solutions and capture the various deformation variables of the considered I-

beams. The details of the three studied structures including the support conditions, dimensions, and

loading configurations are provided in Table 2.

The cross-section components of the I-beam were modeled using the S4R5 shell element. No

transverse stiffeners were considered over the beam span; that is, the web was modeled as

unstiffened. Moreover, the material properties adopted for the beam were E = 200 GPa, ν = 0.3,

Fy = 345 MPa, and G = 0.385E.

Geometric nonlinear and linear elastic material analysis solutions were conducted on the beams

with curvature and twist as initial geometrical imperfections. The details of the applied initial

lateral crookedness and twist of the beams are given in Table 3. It should be noted that the

considered initial out-of-plumbness imperfection in case of the simply supported I-beam was

Table 2 Details of the considered Ibeams

Beam Loading and support conditions
hw

(mm)
tw

(mm)
bft

(mm)
bfb

(mm)
tf

(mm)
L

(mm)

B1 900 5 240 240 20 7000

B2 600 5 100 210 20 7500

B3 700 5 210 100 20 5000

Table 3 Applied initial imperfections of the Ibeams

Beam Location
δLo

(mm)
δVo

(mm)
φo

(rad)

B1 midspan 20 20 0.04363

B2 midspan 7.5 7.5 0.04363

B3 free end 10 10 0.02618
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scaled to L/350, which is somewhat larger than the accepted fabrication tolerance of L/1000. In

fact, the intention was to assess the deleterious effect of a larger initial crookedness than the

tolerance limit would permit. This was considered to represent an extreme case of crookedness in

practice.

The various considered deformation variables were measured at the midspan of the simply

supported (B1) and fixed-ended (B2) as well as the free end of the cantilever (B3) beams.

Lastly, the considered I-beams had compact flanges and slender webs, and consequently

underwent lateral-distortional mode of buckling. The MLDB/My and MLDB/MLTB ratios are provided in

Table 4. MLDB was estimated by applying the Southwell Plot on the lateral displacement of the top

flange at the measurement location. From the table, the occurrence of elastic as well as distortional

buckling is evident.

 

 

3. Relationship between deformation variables

 

As it was mentioned before, in the previous study (Zirakian 2010), it was demonstrated that

lateral displacement (δL) of the I-beams undergoing elastic lateral-distortional buckling is directly

coupled with web transverse strain (εT), web longitudinal strain (εL), vertical deflection (δV), and

angles of twist of top and bottom flanges (θTF and θBF), and accordingly δL was used in the Meck

plots together with the other aforementioned deformation variables. The first objective of this

comprehensive study is to examine the relationship between each of two of εT, εL, δV, θTF, and θBF
without considering the commonly-used deformation characteristic, i.e., δL.

To achieve the aims of this part of the study, d.v.1 is straightforwardly plotted against d.v.2. The

respective plots of the ten considered cases for B1 are provided in Fig. 1. Similar plots for B2 and

B3 are obtained; however, the results of B1 are only presented for brevity. The linear equations

obtained using the least squares method as well as the respective R-squared values are also

displayed in the figures.

As it is seen in the figures, the data points in all cases, apart from the initial few, eventually lie on

straight lines and the two deformation variables become proportional to each other. The R-Squared

values also indicate that the resulting lines match pretty well with the data points.

In accordance with the experimental and theoretical observations and results of the previous

studies (Zirakian 2008, 2010), these proportionality findings now enable us to apply the Meck Plot

method and confidently expect to obtain reliable predictions for the critical buckling moment in all

cases. This is indeed the second objective and the main focus of this paper which is discussed in the

next section.

 

 

Table 4 Ratios of MLDB /My and MLDB /MLTB

Beam MLDB /My  MLDB /MLTB

B1 0.72 0.82

B2 0.88 0.90

B3 0.62 0.84
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Fig. 1 Relationship between deformation variables (B1)
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4. Application of the Meck Plot method

 

According to Meck’s prescription, plots are made of d.v.2/M versus d.v.1 and of d.v.1/M versus

d.v.2 for the ten considered cases for B1, B2, and B3. It is found that the points in all cases tend to

eventually lie on a straight line, and according to Eq. (1), the product of the inverse slopes of the

straight-line portions in the two aforementioned plots is equal to the square of the critical moment.

In addition, based on the linear relationship between the deformation variables in all cases as well

as the results of the previous studies (Zirakian 2008, 2010), we may take advantage of the

theoretical model developed for the case of lateral-torsional buckling and re-write Eq. (2) in a

general form as

 

(3)

 

d.v.1/d.v.2 α/β( )
0.5

const.+→

Fig. 1 Continued
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Table 5 Linear equations obtained from plots and Eq. (3) - B1

Case Linear equations from plots           

    

Table 6 Linear equations obtained from plots and Eq. (3) - B2

Case Linear equations from plots  

      

Table 7 Linear equations obtained from plots and Eq. (3) - B3

Case Linear equations from plots  

      

d.v.1/d.v.2 α/β( )
0.5

const.+→

 

d.v.1/d.v.2 α/β( )
0.5

const.+→

 

d.v.1/d.v.2 α/β( )
0.5

const.+→
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where α and β are the reciprocal slopes of the straight-line portions of plots of d.v.2/M versus d.v.1

and of d.v.1/M versus d.v.2, respectively. The two sets of linear equations for B1, B2, and B3

obtained from the two approaches, are summarized in Tables 5, 6, and 7, respectively.

From the tables it is evident that, regardless of a few cases in Table 7 where δV is used with the

other deformation variables, in almost all cases the linear equations obtained from the plots are

approximated well by Eq. (3). In other words, the agreement between the estimates of  in

Eq. (3) and the equivalent values in the obtained linear equations from the plots, which are

underlined in the tables as well, is generally good. This agreement, in fact, indicates that: first, Eq.

(3) which is the general and adapted form of Eq. (2) to the case of lateral-distortional buckling

works well by yielding good results; and second, the agreement serves as a theoretical verification

for the validity of our findings regarding the proportionality between the deformation variables.

Finally, the ratios between Meck Plot predictions as well as the ultimate failure loads are given in

Table 8 for the ten considered cases for B1, B2, and B3. In spite of some scatter in the results due

to application of various deformation variables, it can be seen from the table that the “modified”

Meck Plot method has yielded reliable predictions for elastic lateral-distortional buckling of the I-

beams. However, it is notable that in case of the cantilever beam (B3), the Meck Plot predictions

are relatively large compared to the ultimate failure loads in cases where δV is used with the other

deformation variables.

 

 

5. Discussion

 

It is important to note that the proportionality between the various deformation variables is the

key finding of the present research which finally results in a great extension in the application of

the extrapolation techniques.

The possibility of extension of theoretical model developed for lateral-torsional buckling mode to

the case of lateral-distortional buckling may be considered as another feature of this study, since it

provides a theoretical verification of the key findings of the present research.

α/β( )
0.5

Table 8 Meck Plot predictions

Case
B1 B2 B3

MMeck/Mu qMeck/qu PMeck/Pu

1 1.02 1.14 1.04

2 1.07 1.19 1.67

3 0.95 1.05 1.07

4 1.07 1.03 1.08

5 1.03 1.29 1.65

6 0.97 1.15 1.05

7 1.17 1.11 1.04

8 1.10 1.20 1.67

9 1.17 1.16 1.68

10 1.20 1.04 1.09
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In order for further evaluation of validity as well as accuracy of the Meck Plot predictions for the

various considered cases, these predictions are compared with the estimates of the three Southwell

(Southwell 1932), Massey (Massey 1963), and Modified (Trahair 1969) Plot methods by using the

lateral displacement of the top flange (δL) as the commonly-used deformation variable in these three

methods. The results of this comparison are tabulated in Table 9. The application as well as

performance of the Southwell, Massey, and Modified plotting techniques have been discussed and

evaluated elsewhere (Zirakian 2010); however, herein it is intended to make a comprehensive

evaluation of accuracy of the Meck Plot predictions in the various cases by considering the

estimates of these three established plotting techniques.

As it is seen in the table, in spite of some scatter in the results due to the application of various

deformation variables and extrapolation techniques as well as consideration of various loading,

cross-section, and support conditions, regardless of the few aforementioned cases of B3, the

agreement between the predictions of the Meck Plot method with those of the other Plots is by and

large satisfactory. Therefore, this indicates that the application of the Meck Plot method with the

combination of various deformation variables may result in reliable and sufficiently accurate

predictions for elastic lateral-distortional buckling of I-beams.

Table 9 Comparison of Meck Plot with Southwell, Massey, and Modified Plot predictions

Beam
Ratio of plotting 

methods

Case

1 2 3 4 5 6 7 8 9 10

B1

1.10 1.05 1.18 1.05 1.09 1.15 0.96 1.02 0.96 0.93

1.02 0.97 1.09 0.97 1.01 1.07 0.89 0.95 0.89 0.86

1.02 0.97 1.09 0.97 1.00 1.06 0.89 0.94 0.89 0.86

B2

0.89 0.86 0.98 0.99 0.79 0.89 0.92 0.85 0.88 0.98

0.92 0.88 1.00 1.02 0.81 0.91 0.94 0.87 0.90 1.01

0.92 0.88 1.00 1.02 0.81 0.91 0.94 0.87 0.90 1.01

B3

0.99 0.62 0.97 0.96 0.63 0.99 1.00 0.62 0.62 0.95

0.99 0.62 0.97 0.96 0.63 0.99 1.00 0.62 0.62 0.95

0.99 0.62 0.96 0.96 0.62 0.98 0.99 0.62 0.61 0.95

Southwell

Meck
-----------------------

Massey

Meck
------------------

Modified

Meck
---------------------

Southwell

Meck
-----------------------

Massey

Meck
------------------

Modified

Meck
---------------------

Southwell

Meck
-----------------------

Massey

Meck
------------------

Modified

Meck
---------------------
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All in all, the findings of the present and prior studies indicate that the application of the

extrapolation techniques for experimental determination of the critical buckling load of structures

does not actually need to be limited to the use of certain and just a few deformation variables, since

it has been shown that the various deformation variables of structures may be directly coupled with

each other and consequently yield similar and acceptable predictions.

 

 

6. Conclusions

 

The proportionality between various deformation variables including the web transverse and

longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of I-beams

undergoing elastic lateral-distortional buckling with initial geometrical imperfections is investigated

comprehensively in ten different cases as well as three different beam configurations with various

loading, cross-section, and support conditions, and it is found that in all cases deformation variables

are directly coupled.

By extending the lateral-torsional buckling theoretical model to the case of lateral-distortional

buckling, regardless of a few cases, the proportionality between the various deformation variables is

verified theoretically as well.

Ultimately, the Meck Plot method is applied on the various combinations of the different

deformation variables, and consequently good predictions are generally obtained in all considered

cases except a few cases of the cantilever beam where the vertical deflection is used with the other

deformation variables.
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Notations

bfb : bottom flange width
bft : top flange width
E : Young’s modulus of elasticity
Fy : yield stress
G : shear modulus of elasticity
hw : distance between flange centroids
L : length of beam
M : applied major axis end moment
Mcr : critical value of M
MLDB : lateral-distortional buckling moment
MLTB : lateral-torsional buckling moment
MMeck : extrapolated critical moment obtained from Meck Plot
Mu : ultimate failure moment
My : yield moment
P : point load applied at the free end of the cantilever beam
PMeck : point load obtained from Meck Plot
Pu : ultimate failure point load
R : Pearson product moment correlation coefficient
q : intensity of the uniformly distributed load acting on the fixed-ended beam
qMeck : intensity of the uniformly distributed load obtained from Meck Plot
qu : intensity of the ultimate failure uniformly distributed load
tf : flange thickness
tw : web thickness
α : reciprocal slope of the straight-line portions of plots of d.v.2/M versus d.v.1
β : reciprocal slope of the straight-line portions of plots of d.v.1/M versus d.v.2
δL : lateral displacement of the beam
δLc : lateral displacement at the center of the beam, measured from the unloaded configuration
δLo : initial lateral displacement (imperfection)
δV : vertical (in-plane) deflection of the beam
δVo : initial vertical displacement (imperfection)
εL : web longitudinal strain, measured at mid-height
εT : web transverse strain, measured at mid-height
φ : rotation of the section in lateral-torsional buckling mode
φc : rotation of the section at the center of the beam, measured from unloaded configuration in

lateral-torsional buckling mode
φo : initial twist (imperfection)
ν : Poisson’s ratio
θBF : angle of twist of bottom flange
θTF : angle of twist of top flange




