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Abstract. Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization
of concrete is commonly accepted in general engineering applications, a detailed description of the
material heterogeneity using a mesoscale model becomes desirable and even necessary for problems
where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of
local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation
into the underlying mechanisms affecting the bulk material behaviour under various stress conditions.
Extending from existing mesoscale model studies, where use is often made of specialized codes with
limited capability in the material description and numerical solutions, this paper presents a mesoscale
computational model developed under a general-purpose finite element environment. The aim is to
facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and
advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic
analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure;
a process for the generation of the FE mesh, considering two alternative schemes for the interface
transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time
integration approach. The development of the model and various associated computational considerations
are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-
static and dynamic loadings will be presented in the companion paper (Part 2). 

Keywords: concrete; multi-phase material; material heterogeneity; mesoscale model; nonlinear analysis;
explicit time integration.

1. Introduction

Concrete is the most widely used construction material. Due to its multi-phase composition and

the quasi-brittle mechanical behaviour, modelling of concrete for structural engineering analysis has

been a classical challenge for several decades. Some more recent experimental and numerical

studies have focused on the confinement effect, multi-axial loading, softening and dynamic

behaviour of the material (e.g., Attaerd and Setunge 1996, Imran and Pantazopoulou 1996,
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Martinez-Rueda and Elnashai 1997, Breitenbucher and Ibuk 2006, Nemecek and Brittnar 2004, Tu

and Lu 2009). 

An analysis involving the nonlinear response of concrete is often carried out numerically. In a

numerical model, the mechanical behaviour of concrete may be described on different physical

scales, ranging from homogenised continuum to a microscopic description where the particulates in

the cement paste may be explicitly modelled (Emery et al. 2007). The selection of an appropriate

level of modelling for concrete depends on the scale of observation, characteristics of response,

degree of accuracy sought, as well as an affordable computational cost (e.g., Lu 2009).

Generally speaking, modelling of concrete in macroscale with homogenized material properties is

computationally economical, and can be suited for a wide range of applications (e.g., Shugar et al.

1992, Riedel et al. 1999, Malvar et al. 1997, Tu and Lu 2009). Because the constitutive laws in

such models are derived from the nominal stress-strain response of standard material specimens

whose sizes are at least 3-4 times of the largest aggregates in the composite, the applicability of the

macroscopic model are generally limited to problems in which the global response is of primary

interest in the analysis. Modelling of concrete in mesoscale, on the other hand, permits a direct

description of the material heterogeneity and hence allows for a realistic prediction of the

development of damage within the multi-phase material. Hence, such a model can be applied to

assist in investigating the bulk material behaviour of concrete in a variety of complex stress

conditions, and may also be used to analyze the concrete response involving drastic spatial and time

variations of stress and strain. 

For the mesoscale modelling of concrete, two main alternative approaches have been employed in

the literature, namely the lattice models (Schlangen and van Mier 1992, Lilliu and van Mier 2003,

Cusatis et al. 2003a, b, Leite et al. 2004, Nagai et al. 2005) and the continuum based FE models

(Huet 1993, Sadouki and Wittmann 1998, Wang et al. 1999, Kwan et al. 1999, Eckardt et al. 2004,

Tregger et al. 2007). In addition, the use of discrete element method (DEM) has also been studied

(e.g., Shui et al. 2008). A key issue associated with the lattice models and the DEM is the difficulty

in determining the equivalent model parameters. The determination of the modelling parameters in a

continuum based FE model, on the other hand, is relatively straightforward. 

A number of studies on the mesoscale modelling of concrete using a continuum FE model can be

found in the existing literature. Wang et al. (1999) used the take-and-place procedure to generate the

random aggregate structure in 2D and developed a scheme using the advancing front algorithm for the

creation of the FE mesh. In the model, the interface transition zone (ITZ) was represented by a four-

noded zero-thickness interface element. The model was applied to simulate a simple case of concrete

under uniaxial tension. The overall results appear to be realistic, however the predicted tensile strength

was less satisfactory. Eckardt et al. (2004) presented a similar mesoscale modelling procedure, but

disregarded the ITZ and instead considered a rigid bond at the mortar-aggregate interface. Similar

treatment of the interface was also adopted in a study by Wriggers and Moftah (2006). De Schutter

and Taerwe (1993) described a divide-and-fill strategy for the generation of the concrete mesoscopic

structure. Leite et al. (2004) developed a stochastic-heuristic algorithm for an improved generation of

the three-dimensional concrete mesoscale structure. van Mier and van Vliet (2003) presented the so-

called random particle drop method to deal with a higher aggregate volume fraction.

Despite the above mentioned accomplishments, extension of these works to more general

applications has been largely hindered by the fact that most of the proposed procedures are

implemented in dedicated programs, where there is usually a limited choice concerning the material

constitutive models while the capability in handling complex loading conditions is often lacked.
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Consequently, it has been difficult to conduct systematic investigations into the concrete failure

mechanisms under various loading conditions using such a mesoscale model.

This paper aims to extend the mesoscale modelling framework to analysis involving complex

stress-strain and load conditions, including dynamic loading. To this end, the development of the

mesoscale model, currently limited to 2D, is oriented towards implementation in a general purpose

finite element environment. The complete procedure consists of three main stages, namely,

generation of the concrete mesoscopic structure, generation of the mesoscale FE mesh, and FE

nonlinear analysis. The paper is organized along the line of the above three aspects, with brief

descriptions of the relevant background theories and elaborations of important computational

considerations. In particular, two alternative approaches to modelling the ITZ, namely a cohesive

interface model and an equivalent layer of solid elements model, are discussed in detail and the

corresponding modelling effects are examined. In view of the highly localized nonlinearity in a

mesoscale model analysis, an explicit time integration scheme is adopted for quasi-static as well as

dynamic analyses. Some associated numerical issues are scrutinized and appropriate counter

measures are explored. It should be mentioned that although ANSYS codes are employed to carry

out the finite element analysis in the present study, the modelling procedure and essential numerical

considerations are applicable with many other general-purpose finite element programmes as well. 

Numerical studies using the mesoscale model on the static and dynamic behaviour of concrete

will be presented in the companion paper (Lu and Tu 2011).

2. Generation of concrete mesoscopic structure and FE mesh

At the mesoscopic level, concrete can be regarded as being composed of three distinct

constituents (phases), namely, coarse aggregate, mortar matrix and interfacial transition zone (ITZ).

Fig. 1(a) shows a typical section view of the concrete mesoscopic structure from a physical sample

(Grote et al. 2001), while a numerically generated model, which will be discussed later, is depicted

in Fig. 1(b). 

In the present study, the generation of such a complex 2D mesoscopic geometric structure is

carried out using Matlab. The geometric information about the aggregates (shape, size, location) and

mortar areas obtained in Matlab is written into a macro command file, which is then imported into a

mesh generator, herein using ANSYS pre-processor, for the generation of the FE mesh.

Fig. 1 Typical cross-section view of concrete mesoscopic geometry
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2.1 Generation of coarse aggregates

The generation of aggregates to resemble the random sizes, shapes and spatial distribution in

actual concrete is a complicated process. In order to be realistic, a set of physical requirements

governing the particulate packing should be satisfied. Once the aggregate structure is formed, the

mortar matrix can be generated readily to fill up the space not occupied by the aggregate particles. 

In normal concrete, the coarse aggregates are generally defined to consist of particles having a

nominal size greater than 4.75 mm (Wriggers and Moftah 2006), and they occupy around 40-50%

of the mixture volume. In a 2D model, the volumetric proportion is represented by the area ratio.

Actual aggregates may appear in different shapes depending on their source of origin; the naturally

formed gravels have a rounded shape whilst crushed stone aggregates have an angular or polygon

shape. In the present study, we shall consider mainly the polygon-shaped aggregates. Other special

shapes, such as round or elliptical, are relatively simple to generate, and they may also be

approximated by polygons with specially chosen shape parameters.

The aggregate size distribution is commonly described using Fuller Curve

(1)

where P is the volume percentage of aggregates below size d, dmax is the maximum size of the

aggregate particle. The exponent n generally takes a value in the range of 0.45-0.70 (Wriggers and

Moftah 2006). With Eq. (1), the area ratio of aggregates in a given size range can be calculated.

In the numerical simulation, the grading curve expressed in Eq. (1) can be descretized into a

certain number (denoted by imax) of segments, each covering a size range of . Thus the

amount (area in 2D) of aggregates within each grading segment is 

(2)

where Aa is the total amount (area) of aggregates in concrete. 

Wang et al. (1999) presented a comprehensive procedure using a commonly adopted take-and-

place method to generate the random geometric structure of aggregates. The basic idea of the take-

and-place method is to create the aggregates in concrete in a repeated manner, one at a time, until

the target amount of aggregates is fulfilled. The “take” process generates an individual aggregate in

accordance with the random size and shape descriptions, in the local coordinate system. The “place”

process subsequently positions the aggregate into the predefined concrete area in a random manner,

subjected to the prescribed physical constraints. 

The above methodology is also adopted in the present study. The procedure is summarized in a

flowchart shown in Fig. 2, which is programmed in the present study using MATLAB. After the

total amount of aggregates, aggregate size range, grading segments, and aggregate shape parameters

are specified, the take and place process is executed in a sequential manner, starting with the largest

aggregate size group [d1, d2] (for easy packing), and carrying on until the smallest size group is

completed. Once an aggregate, Aij, is generated, it is immediately placed into the concrete area by

aligning the local polar origin of Aij with a randomly chosen position in the concrete. For the

placement to be valid, four physical conditions have to be satisfied simultaneously, namely, a) the

aggregate must wholely be within the concrete area, b) there is no overlapping, and c) no

intersection between any two aggregates, and d) there is a minimum space between any two

P d( ) 100.0 d/dmax( )n×=

di di 1+,[ ]

Aa i,

P di 1+( ) P di( )–

P dmax( ) P dmin( )–
---------------------------------------- Aa×=
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aggregates. The minimum space requirement is aimed to represent the phenomenon that each

aggregate particle is coated with a mortar film having a certain thickness. 

It is worth pointing out that it is neither economical nor necessary to check each newly placed

aggregate against all existing aggregates for overlapping and intersection. Such checking may be

confined to a local region surrounding the new aggregate. In the present study the checking region

is defined by a diameter equal to four times the largest aggregate, which proves to be sufficient.

If a failure occurs in any of the above checking procedures, the place process is repeated for the

same aggregate with another randomly selected alignment position. If a successful placement cannot

be achieved after a given number of trials, the generation process is terminated, and a totally new

round of generation will be started using a reduced gap size. A typical execution of the above

procedure to achieve a successful outcome will take just a few minutes of computing time using a

duo-core, 2.7 GHz and 3.2 GB-RAM PC. 

2.2 Generation of FE mesh 

To mesh the mesoscopic structure of concrete properly, the aggregate polygons should be regarded

as the physical boundaries for the surrounding mortar material in the FE model, and different

material parts should maintain continuity at their interfaces. A meshing algorithm capable of dealing

with the large number of internal boundaries of different shapes and sizes as in the concrete

mesoscale structure is very complex and an in-house development of a program for such a task can

Fig. 2 Flowchart of generating random aggregate structure using take-and-place method
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be costly. As a matter of fact, some general-purpose commercial FE programs have already been

equipped with such a meshing capability. In the present study, we employ the pre-processor in

ANSYS to mesh the mesoscale FE model of concrete. The procedure is detailed in what follows.

After the generation of the mesoscopic geometric structure as described in Section 2.1, the data is

fed into the meshing processor. The concrete domain Ac and the areas representing all the

aggregates  are then created. The areas that are not taken by the aggregates belong to the mortar

material, denoted by Am. Am is actually a complex multi-connectivity region. In the ANSYS pre-

processor, Am can be generated by applying the “overlapping” Boolean operation between all 

and the entire concrete area Ac. 

Meshing of the aggregate areas  and the mortar area Am is performed one after the other using

their respective material properties. It is important to note that a correct identification of the area

numbers associated with Am and  needs to be made prior to the meshing operation. This is to

ensure that the mortar and aggregate parts are effectively separated and the mesoscale structure is

well preserved in the FE model. 

The above-generated mesh will automatically have shared nodes at the interface between the two

materials. If the interfacial transition zone (ITZ) surrounding the aggregates is to be modelled

explicitly, for example by zero-thickness interface elements such as the Goodman model (Kwan et al.

1999), a duplicate set of nodes will be required at the interface locations. An alternative way of

modelling the ITZ is to use a thin layer of solid elements having grossly equivalent properties as the

ITZ. This approach avoids the use of the zero-length elements and hence does not require a

Aa

i

Aa

i

Aa

i

Aa

i

Fig. 3 Illustration of FE mesh for mesoscale model of concrete (Standard specimen size = 150 × 150 mm) 
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duplicate set of nodes at the interface. 

A more detailed description of the two different ITZ modelling approaches and a comparison of

their performances will be given in later sections. Fig. 3 illustrates a typical FE mesh of the

mesoscopic structure of a concrete cube specimen, including the two different representations of the

ITZ. 

The numerical nonlinear analysis in this study is performed using LS-DYNA (2007), which is a

transient FE analysis program and is suitable for dynamic as well as static analysis. It should be

pointed out that a similar procedure can be applied when another general purpose FE solver is

employed for the nonlinear FE calculations.

In the next section, a scheme of using the explicit time integration approach for solving the highly

nonlinear response problem associated with the mesoscale concrete model will be presented and

discussed. 

3. Analysis of highly nonlinear static problems using explicit time integration

approach

A mesoscale model of concrete may be used to investigate the underlying mechanisms governing

the behaviour of concrete material under a variety of loading conditions. However, even under a

quasi-static uniaxial compression or tension condition, the response within the mesoscale structure

of the material can be very complex due to the involvement of localized deformations associated

with fracture. As loading continues a large number of microcracks will develop in the mortar and

ITZ, followed by the formation of a few macrocracks due to the coalescence of microcracks. These

macrocracks can propagate in the concrete in an uncontrollable or unstable manner, leading to the

stress softening of the material as observed in physical experiments. 

In the mesoscale model, the process of fracture initiation and coalescence will manifest as

localized severe nonlinearity and material degradation, and this can create considerable numerical

difficulties in achieving a converged solution if an iterative nonlinear solution approach is adopted.

For this reason, and in view of an accommodation for dynamic analysis, an explicit time integration

approach (hereafter referred to as ETIA) is adopted as the solution engine. Convergence can

generally be ensured with the ETIA by considering an appropriate stable time step. A successful

implementation of such a strategy for application in a quasi-static setting requires several important

considerations; chiefly the choice of loading history, configuration of the hourglass control, and

mass scaling. These will be elaborated in the subsections that follow.

3.1 Configuration of loading history

The ETIA essentially solves a dynamic equilibrium equation set at each incremental time step.

When this approach is employed to perform a quasi-static analysis, the loading scheme should be

carefully specified so that the inertia effect becomes negligible. A rule of thumb for checking the

adequacy of loading is that the kinetic energy of the whole model is sufficiently lower than the

internal energy, preferably below 5% (Pan et al. 2006). In addition, the time for the force to rise

from zero to the expected magnitude should be long enough (say 10 times) as compared to the

fundamental period of the system. 

In the present study, a displacement controlled loading scheme by imposing a velocity boundary
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condition is used to load the concrete specimen. Such a loading scheme allows for the realization of

the complete response history of the specimen, including the nonlinear strength degradation

(softening) phase. To minimize the spurious oscillations, a gradually increased velocity history, as

opposed to a step increase pattern, is adopted, as shown in Fig. 4. Controlling parameters that need

to be specified include the rise time and the cap velocity. Fig. 5 compares the computed stress-strain

responses under a quasi-static compression when five different loading velocities are used in the

simulation. The results tend to become stable when the cap velocity is reduced, in this case to an

order of 0.05 m/s. At this juncture, it is worth mentioning that some special numerical schemes,

such as a dynamic relaxation method (e.g., Rericha 1989), may be incorporated to achieve a more

efficient explicit time integration computation in solving static problems. 

3.2 Pertinent numerical considerations 

In an explicit FE calculation, the element formulation with a single integration point is usually

used to control the computational cost. The use of this type of elements also helps to avoid the

numerical problems that could happen to fully-integrated elements in case of large deformations, for

instance shear locking and solution instability. However, such elements can be susceptible to the

problem arising from the so-called “hourglass” modes. The occurrence of these anomalous modes is

due to the one-point integration scheme, such that when the diagonally opposite nodes have

Fig. 4 Two different loading patterns and the resulting stress-strain responses

Fig. 5 Stress-strain responses obtained using different loading velocities 



Mesoscale modelling of concrete for static and dynamic response analysis part 1 205

identical velocities, the algorithm will return a false zero strain and stress. 

In order to eliminate these modes while maintaining the actual global response, an artificial

hourglass-resisting force is usually applied to the elemental nodes. Typically, two different types of

algorithms are available for the hourglass control; one based on the stiffness and the other based on

viscosity formulations. An hourglass coefficient (Qhg) needs to be specified. Different choices of Qhg

can affect the simulation results significantly if the development of the hourglass modes becomes

severe. A stiffness-based hourglass control scheme is generally recommended for the analysis of

problems under slow loadings (e.g., quasi-static loading), while a viscosity-based scheme may be

more appropriate for relatively fast loading scenarios (LS-DYNA 2007). For the mesoscale analysis

of concrete in the present study, trial analysis tends to show that Qhg has little effect on the

predicted concrete strength, but has sensible effect on the softening response, such that the

calculated response tends to become more ductile as Qhg increases. 

Fig. 6(a) shows a comparison of the stress-strain results of concrete under uniaxial compression

when different choices of Qhg are used in a stiffness-based hourglass control scheme. It can be seen

that the elastic response (especially the Young’s modulus) is not sensitive to the choice of Qhg.

However, the inelastic response, including the peak strength and the descending branch, is affected

significantly. With an increase of Qhg the peak strength increases while the softening becomes less

steeper (more ductile). It is interesting to note that in all cases the hourglass energy remains within

10% of the peak system internal energy, which would appear to be acceptable in accordance with

the general guideline. The numerical simulation results herein suggest that such a recommendation

is not necessarily valid in a mesoscale analysis. 

For a comparison, Fig. 6(b) shows a set of computed stress-strain curves when a viscosity-based

hourglass control is employed. It can be found that the stress-strain response is not as sensitive to

different values of Qhg as in the stiffness based scheme. The results are comparable to those using a

stiffness-based control with Qhg ranging in 0.001-0.01. In the subsequent numerical investigations,

the stiffness based hourglass control with Qhg = 0.001 is used.

Another numerical consideration is the possible use of mass scaling to control the computational

cost when using an explicit scheme for a quasi-static analysis. As generally understood, to ensure a

stable and accurate solution, the time step in an explicit FE analysis must be small, usually on the

order of micro seconds. The mass scaling technique works by introducing artificial mass to the

original model to purposely scale up the vibration period of the model, thus increasing the stable

Fig. 6 Effects of hourglass controls with different schemes
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time step. This scheme can be particularly effective in an FE analysis in which the time step is

governed by a relatively few very small elements, in which case only limited artificial mass needs

to be added.

Trial analysis with the mass scaling approach on the current mesoscale concrete model reveals

that it is possible to scale up the time step by 2-4 times without affecting adversely the stress-strain

relationship of the concrete specimens. However, the detailed fracture pattern may be affected to

some extent, particularly for uniaxial tension cases. Therefore, for the numerical investigations in

the present study, the mass scaling is not actually applied. Nevertheless, the mass scaling method

can be an option in practical applications of mesoscale analysis.

4. Material models and other modelling considerations

4.1 Material models for mortar and coarse aggregate

At the mesoscopic level, damage and the nonlinear behaviour occur primarily in the mortar matrix

and along ITZ. Many different constitutive models have been used for modelling the mortar

material in a mesoscale concrete analysis. Most of these models adopt a simplified formulation. For

example, in the paper by Kwan et al. (1999) the biaxial response of mortar was decomposed into

two simple uniaxial stress-strain relations, and the accumulation of the material damage was solely

based on the failure strains associated with the uniaxial test data. 

In the present study, we employ the “Concrete Damage Model” (material #72 in LS-DYNA) to

model mortar. This material model is capable of describing the material failure due to tension, shear,

as well as compression under various stress conditions, and it also includes pressure and strain-rate

dependent features (Malvar et al. 1997, 2000). The model has been tested extensively (e.g., Tu and

Lu 2009), and is found to be a suitable candidate for quasi-static as well as dynamic applications. 

One particular aspect worth highlighting is the treatment of stress softening under tension. In a FE

model with a local material description, when an area is subjected to tension, localization will

normally occur in a single row of elements. As such, the FE results become mesh dependent if the

stress softening law in the material model is an invariant with respect to the element size. This is

because the energy required in the actual cracking process is proportional to the area of the

fractured surfaces, whereas in a FE model the internal energy due to crack formation is calculated

by integrating the stress-strain response over the element volume. To appropriately represent the

fracture energy in the FE model, the above two energy terms must be equal, i.e.  

(3)

where Gf is the fracture energy per unit area, AF is the area of the fracture surface in an element,

and hc is the nominal dimension of the element in the direction perpendicular to the fracture surface.

In a constant stress element the above equation reduces to

(4)

Eq. (4) indicates that the stress-strain law must be made dependent on the mesh size in order to

achieve a realistic, mesh-independent bulk behaviour of the model. 
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In the Concrete Damage Model under consideration, the stress-softening related model parameters

are automatically adapted to each individual element size in the FE model such that Eq. (4) is

satisfied. In addition, the model introduces a user-defined localization width “lw” to enable another

layer of control over the fracture energy, such that in situations where the localization in the FE

model may deem to span more than one element width due to particular stress conditions, the fracture

energy associated with each element is reduced by a factor of ( ) before it is applied in Eq. (4). 

The coarse aggregates usually have a significantly higher strength than mortar. In general loading

conditions such as quasi-static compression and tension, the aggregates are expected to experience

no damage or very limited inelastic response. Therefore, it is reasonable to use a linear elastic

material model to model the aggregates. Such a simplified treatment is also adopted in some

previous studies (Wriggers and Moftah 2006). For some extreme loading conditions such as shock

and blast, damage may occur within the aggregates. Under this circumstance, a nonlinear material

model may become necessary and this can be realized within the current mesoscale model in a

straightforward manner. 

4.2 Interface transition zone (ITZ) modelling

In the multi-phase composition of concrete, ITZ refers to the very thin layer of material

immediately surrounding the coarse aggregates. The material in the ITZ is known to be

mechanically weaker than the normal mortar, due to factors such as loose compaction and the

presence of a high level of void. It is generally recognized that ITZ plays a crucial role in the

concrete fracture process; therefore, an adequate representation of the ITZ is an important subject in

the mesoscale model.

Past research has found that the thickness associated with the ITZ in concrete is of a similar order

as the median size of the cement grains, which is typically in the range of 10-30 micrometer

(Garboczi and Bentz 1997). An exact incorporation of such a thin layer of material in the mesoscale

FE model is impractical; instead, using zero initial thickness elements (hereafter referred to as

interface elements) is deemed to be a rational representation. 

Several issues can affect the performance of using zero-thickness elements approach for the ITZ.

When such elements are subjected to compression in the thickness direction, cross-penetration of

the element nodes could occur, causing unexpected numerical error and even instability in the

overall simulation results. Moreover, the general constitutive models (cohesive models) for the

interface elements are formulated primarily to model interface fracture, and they may not represent

well the shear response and the interaction between shear and compressive stresses. Therefore for

the analysis in general stress conditions, more sophisticated interface element models will be

required and this is beyond the scope of the present paper.

As an alternative to the zero-thickness interface element model, in the present mesoscale

modelling framework we propose to use an equivalent (thin) layer of solid elements to represent the

ITZ. This approach can readily avoid the difficulties associated with the interface elements

mentioned above, while still retains the essential mechanisms of the ITZ in the loading process.

Detailed considerations of the material properties used for the equivalent ITZ elements, and a

comparison of the simulation results using the two different ITZ modelling approaches will be

presented in Section 5. 

When using the equivalent ITZ approach, the equivalent ITZ layer is composed of the elements

that immediately surround the aggregates, and will be modelled as a separate part. These ITZ

lw/hc
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elements must be identified from the overall model first. There may be different ways to do this,

and a convenient approach is to use a “selecting elements by path” function which is available in

ANSYS and other FE pre-processing tools. To pick out elements surrounding an aggregate, the path

can be defined effectively by a polygon which is a slightly expanded version of the actual

aggregate. Such paths can be conveniently generated during the creation of the aggregates in the

take-place procedure. Fig. 7 depicts some example paths and the ITZ elements thus identified. 

4.3 Finite element model configuration and mesh gird size 

Quadrilateral elements are used in most part of the concrete. Some triangular elements may be

required at a few highly irregular locations such as in-between two or more very closely spaced

coarse aggregates. 

Because the concrete material model used in the present study is restricted to 3D solid elements,

the current 2D mesoscale model is analyzed in a thin plate configuration, with a single layer of

elements in the out-of-plane direction. To maintain the virtue of a 2D problem, the element

thickness is chosen to be equal to the nominal mesh size in the 2D plane so that the characteristic

dimension of the elements is identical to that evaluated from the 2D geometry. A 2D plane stress or

plane strain condition may be simulated readily by restraining the out-of-plane movement on one

side (plane stress) or both sides (plane strain), respectively.

The nominal mesh grid size (element size) is chosen to be about 1.0 mm. This choice is a result

of trade-off between the need to adequately mesh all individual phases and the computational cost.

A convergence study indicates that such element size generally ensures the mesh convergence as far

as the overall behaviour and the characteristic damage patterns are concerned. 

5. Comparison and discussion of the two ITZ modelling schemes

As described in Section 4.2, two alternative modelling schemes are considered for modelling ITZ,

namely a zero-thickness interface element scheme, and an equivalent layer of solid element scheme.

This section provides a comparison between using these two different schemes and discusses their

performances.

Fig. 7 Illustration of example paths and ITZ elements identified through these paths
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A cubic concrete specimen of 150 mm is modelled for uniaxial compression and tension. The

nominal concrete strength is 30 MPa. Further details about the configuration of the model and other

model settings can be found in the companion paper (Lu and Tu 2011). The ITZ properties in

association with the cohesive material model are based on a previous study (Kwan et al. 1999). 

The ITZ material properties are not precisely known in the literature due to the difficulty in

conducting reliable experiment on these properties. But it is generally accepted that the ITZ material

has a strength about 50% of the mortar strength. This value is adopted herein when the interface

(cohesive) element is used. In the equivalent ITZ model, however, considering that the equivalent

layer is an equivalent mixture of the real ITZ and the adjacent mortar, it is deemed rational to adopt

an averaged strength, i.e., 75% of the mortar strength for the equivalent ITZ.

The cohesive model used here for the interface elements is a typical cohesive model which is

suited for modelling the interface failure involving interaction between mode I and mode II

fractures (LS-DYNA 2007). This element model considers the irreversible damage and allows for

an independent definition of the constitutive relations for different fracture modes of tension and

shear. The compression behaviour is treated as elastic and is calculated using a penalty based

algorithm similar to that adopted for a general contact model. Fig. 8 shows schematically the

constitutive laws used in the cohesive material model. The constitutive laws used for modelling of

mode I and mode II fractures are depicted by the curves in the “traction-δI” and “traction-δII”

planes, respectively, where δI and δII denote respectively the normal and tangential separation

distance. The mode mixity β is defined as β = δII /δI. δF is the ultimate mix-mode displacement and

is a function of (β, T, S) and the fracture energy associated with model I and II fractures. When the

element is subjected to compression, the model implements a penalty algorithm to work out a

repulsive force to avoid inter-node penetration. However, it should be pointed out that it is difficult

and problematic to determine an appropriate penetration stiffness factor (PSF) to effectively avoid

the inter-node penetration. A larger PSF can generally effect to minimize the penetration problem,

but it may also cause the corresponding numerical calculation to become unstable. 

Fig. 9 compares the simulated stress-strain response under uniaxial compression using respectively

the interface element and equivalent element models for the ITZ. It can be immediately observed

that the numerical model in which the ITZ is modelled by the interface element fails to produce a

realistic compressive response of concrete. On the other hand, the model using the equivalent ITZ

Fig. 8 Illustration of mix-mode constitutive law for cohesive elements (after LS-DYNA 2007)
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scheme shows a superior performance in predicting the compressive stress-strain relationship as well

as the peak strength. 

The poor performance of using the cohesive interface element may largely be attributable to the

inability of this model in representing the shear fracture strength of the ITZ under a compressive

stress condition. As generally known, the shear fracture strength of the ITZ in concrete-like

materials is strongly dependent on the normal stress at the interface. With the presence of a

compressive stress, the shear strength is expected to increase significantly, for example by 2-3 times

at a moderate compressive stress level (Nagai et al. 2005). Unfortunately, this important mechanism

is not well represented in a general cohesive material model as used herein. 

It can be expected that the above-mentioned issues with the cohesive model have minor

consequence in analyzing concrete under uniaxial tension, as the level of compressive stress in the

ITZ would become insignificant. Fig. 10 shows the comparison between the predicted tensile stress-

strain curves using cohesive interface element and the equivalent ITZ models. The results agree

well. The simulated tension crack pattern with the cohesive interface element for the ITZ is shown

in Fig. 11. A single crack across the whole width of the specimen is observed, as expected. 

Fig. 9 Uniaxial compressive stress-strain relationships produced by mesoscale concrete model with two
different ITZ modelling schemes

Fig. 10 Uniaxial tensile stress-strain relationships produced by mesoscale model with two different ITZ
modelling schemes
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6. Conclusions

This paper presents the development of a mesoscale model with the aim to cater to analysis under

complex stress-strain and general loading conditions, including dynamic loading. The mesoscale

model is currently limited to 2D, but the model framework is not restrictive and can be readily

extended to a 3D environment when the generation of 3D mesoscale geometry becomes attainable. 

In the proposed framework, the mesoscopic geometric structure of concrete is generated using an

established take-and-place algorithm, coded in the present study using MATLAB. The mesoscale

geometry data is subsequently taken into a FE meshing processor (ANSYS) to perform the complex

FE meshing task. Considerations are given to ensure an adequate meshing of the multi-connectivity

concrete domain and identify elements belonging to the 3 different phases for the material property

assignment. Advanced nonlinear material models, such as the Concrete Damage Model and the

cohesive interface model, can be readily incorporated to model the mortar matrix and the ITZ. To

overcome the numerical problems in solving the mesoscale response, which involves highly

localized nonlinearity and material softening, an explicit transient analysis approach is adopted for

the analysis under quasi-static as well as dynamic loading conditions. 

Because of the crucial role the interface transition zone (ITZ) plays in the fracture and failure

process of concrete, a dedicated study is carried out to investigate the performance of two

alternative modelling approaches for the ITZ, namely the zero-thickness interface element approach

and an equivalent layer of solid elements approach. It is found that the interface element approach

with a generic cohesive material model appears to be problematic for general applications,

especially when compressive stresses are involved. 

Detailed implementation examples using the proposed mesoscale model and a numerical

investigation into the concrete behaviour under both static and dynamic loading conditions will be

presented in the companion paper. 

Fig. 11 Simulated fracture pattern of concrete under uniaxial tension using interface elements for ITZ (Note:
the colour scale indicates damage with 1.0 being total damage)



212 Zhenguo Tu and Yong Lu

Acknowledgements

The research was conducted while Dr. Zhenguo Tu was working at The University of Edinburgh

as a post-doctorial research associate. 

References

ANSYS Academic Research, V. 11.0.
Attaerd, M.M. and Setunge, S. (1996), “Stress-strain relationship of confined and unconfined concrete”, ACI
Mater. J., 93(5), 432-442.

Breitenbucher, R. and Ibuk, H. (2006), “Experimentally based investigation on the degradation-process of
concrete under cyclic load”, Mater. Struct., 39, 717-724.

Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003a), “Confinement-shear lattice model for concrete damage in
tension and compression: 1. Theory”, J. Eng. Mech., 129(12), 1439-1448.

Cusatis, G., Bazant, Z.P. and Cedolin, L. (2003b), “Confinement-shear lattice model for concrete damage in
tension and compression: 2. Computation and validation”, J. Eng. Mech., 129(12), 1449-1458.

De Schutter, G. and Taerwe, L. (1993), “Random particle model for concrete based on Delaunay triangulation”,
Mater. Struct., 26, 67-73.

Eckardt, S., Hafner, S. and Konke, C. (2004), “Simulation of the fracture behaviour of concrete using continuum
damage models at the mesoscale”, Proceedings of ECCOMAS, Jyvaskyla.

Emery, J.M., Hochhalther, J.D. and Ingraffea, A.R. (2007), “Computational fracture mechanics of concrete
structures: a retrospective through multiple lenses”, FraMCos-6, Catania, Italy, June. 

Garboczi, E.J. and Bentz, D.P. (1997), “Analytical formulas for interfacial transition zone properties”, J. Adv.
Cement Base. Mater., 6, 99-108.

Grote, D.L., Park, S.W. and Zhou, M. (2001), “Dynamic behavior of concrete at high strain-rates and pressures:
I. Experimental characterization”, Int. J. Impact Eng., 25, 869-886.

Huet, C. (1993), “An integrated approach of concrete micromechanics”, Micromechanics of Concrete and
Cementious Composite, Presss Polytechniques et Universitaires Romandes, Lausanne.

Imran, I. and Pantazopoulou, S.J. (1996), “Experimental study of plain concrete under triaxial stress”, ACI Mater.
J., 93(6), 589-601.

Kwan, A.K.H., Wang, Z.M. and Chan, H.C. (1999), “Mesoscopic study of concrete II: nonlinear finite element
analysis”, Comput. Struct., 70, 545-56. 

Leite, J.P.B., Slowik, V. and Mihashi, H. (2004), “Computer simulation of fracture process of concrete using
mesolevel models of lattice structures”, Cement Concrete Res., 34(6), 1025-1033.

Lilliu, G. and van Mier, J. (2003), “3D lattice type fracture model for concrete”, Eng. Frac. Mech., 70, 927-941.
LS-DYNA (2007), Keyword User’s Manual, Version 971, Livermore Software Technology Corporation.
Lu, Y. (2009), “Modelling of concrete structures subjected to shock and blast loading: an overview and some
recent studies”, Struct. Eng. Mech., 32(2), 235-250.

Lu, Y. and Tu, Z.G. (2011), “Mesoscale modelling of concrete for general FE analysis - Part 2: Numerical
investigation under static and dynamic loading conditions”, Struct. Eng. Mech., 37(2), 215-231.

Malvar, L.J., Crawford, J.E. and Morrill, K.B. (2000), “K&C concrete material model release III-automated
generation of material model input”, K&C Technical Report TR-99-24-B1.

Malvar, L.J., Crawford, J.E. and Wesevich, J.W. (1997), “A plasticity concrete material model for Dyna3D”, Int.
J. Impact. Eng., 9-10(19), 847-873.

Martinez-Rueda, J.E. and Elnashai, A.S. (1997), “Confined concrete model under cyclic load”, Mater. Struct., 30,
139-147.

Matlab (1999), The Language of Technical Computing, The Mathworks Inc.
Nagai, K., Sato, Y. and Ueda, T. (2005), “Mesoscopic simulation of failure of mortar and concrete by 3D
RBSM”, J. Adv. Concrete Tech., 3(3), 385-402.

Nemecek, J. and Bittnar, Z. (2004), “Experimental investigation and numerical simulation of post-peak behaviour



Mesoscale modelling of concrete for static and dynamic response analysis part 1 213

and size effect of reinforced concrete columns”, Mater. Struct., 37, 161-169.
Pan, F.X., Zhu, J.S., Helminen, O.A. and Ramin, V. (2006), “Three point bending analysis of a mobile phone
using LS-DYNA explicit integration method”, Proceedings of the 9th International LS-DYNA Users
Conference, 1331-1342.

Rericha, P. (1986), “Optimum load time history for non-linear analysis using dynamic relaxation”, Int. J. Numer.
Meth. Eng., 23, 2313-2324.

Riedel, W., Thoma, K. and Hiermaier, S. (1999), “Penetration of reinforced concrete by BETA-B-500--numerical
analysis using a new macroscopic concrete model for hydrocodes”, Proceeding of the 9th International
Symposium on Interaction of the Effect of Munitions with Structures, Berlin, Germany.

Sadouki, H. and Wittmann, F.H. (1998), “On the analysis of the failure process in composite materials by
numerical simulation”, Mater. Sci. Eng., 104, 9-20.

Schlangen, E. and van Mier, J. (1992), “Simple lattice model for numerical simulation of fracture of concrete
materials and structures”, Mater. Struct., 25, 534-942.

Shiu, W., Donze, F. and Daudeville, L. (2008), “Compaction process in concrete during missile impact: a DEM
analysis”, Comput. Concrete, 5(4), 329-342.

Shugar, T.A., Holland, T.J. and Malvar, L.J. (1992), “Applications of finite element technology to reinforced
concrete explosive containment structures”, 25th DoD Explosive Safety Seminar, Anaheim, CA.

Tregger, N., Corr, D., Graham-Brady, L. and Shah, S. (2007), “Modeling mesoscale uncertainty for concrete in
tension”, Comput. Concrete, 4(5), 347-362.

Tu, Z.G. and Lu, Y. (2009), “Evaluation of typical concrete material models used in hydrocodes for high
dynamic response simulations”, Int. J. Impact. Eng., 36, 132-146. 

van Mier, J. and van Vliet, M. (2003), “Influence of mircostructure of concrete on size/scale effects in tensile
fracture”, Eng. Fract. Mech., 70(16), 2281-2306.

Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), “Mesoscopic study of concrete I: generation of random
aggregate structure and finite element mesh”, Comput. Struct., 70, 533-544. 

Wriggers, P. and Moftah, S.O. (2006), “Mesoscale models for concrete: Homogenisation and damage behaviour”,
Finite Elem. Anal. Des., 42, 623-636. 




