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Abstract. The aim of this research is a comprehensive review and evaluation of beam theories resting
on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by
DCB specimen. A compliance based approach is used to calculate critical strain energy release rate
(SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on
Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form
solution is presented for compliance versus crack length, effective material properties and geometrical
dimensions. Effective flexural modulus (Efx) and out-of-plane extensional stiffness (Ez) are used in all
models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical
solutions are compared with experimental results available in the literature for unidirectional ([0o]6) and
antisymmetric angle-ply ([±30o]5, and [±45

o]5) lay-ups. TB on WEF is a simple model that predicts more
accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB
on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens,
whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse
shear deformation and root rotation on SERR value in composite DCB specimens.
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1. Introduction 

Delamination is one of the common forms of failure modes in laminated composites that occurs

due to the lack of reinforcement in the thickness direction and existence of interlaminar stresses

likely to debond layers. It is very important to consider delamination failure during the composite

structures design because it reduces mechanical properties and limits the safe life of a component.

So, a designer needs to know the interlaminar fracture toughness of composite laminates in order to

design damage tolerant structures. One typical procedure for assessing the propensity for a

delamination to grow is to compare the strain energy release rate (SERR), G, to its critical value or

toughness, Gc. Double Cantilever Beam (DCB) specimen is widely used for determining critical

strain energy release rate, GIc under mode-I delamination loading (Benzeggagh et al. 1991). Testing
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to determine the fracture toughness for each possible laminate configuration would be expensive

and time-consuming work. In recent years, extensive research has been conducted on many aspects

of delamination failure by analytical solutions for DCB specimen. One of the privilege ideas,

because of its simplicity, is using classical beam theory (CBT) or Euler-Bernoulli beam (EB) to

predict SERR. In early research the cracked part of DCB specimen is considered as a cantilever

beam that fixed at crack tip. Bathias and Laksimi (1985) proposed a modified model for GI, which

takes into account the shearing force, owing to specimen rotation at the crack tip. Weatherby (1982)

included a rotational spring at crack tip and gave an expression for compliance. The mentioned

models have high offset from experimental results and far from reality. Thus, to increase the

accuracy, Kanninen (1973) modeled one arm of a DCB specimen of isotropic materials as an EB on

Winkler elastic foundation (WEF). This method was extended by Williams (1989) to the

transversely isotropic DCB specimen. William’s model is only evaluated for unidirectional

laminates. Ozdil and Carlsson (1999) then used Kanninen’s model (1973) for angle-ply laminates by

estimating out-of-plane stiffness with laminate homogenization method instead of transversely

isotropic assumption. In classical beam theory, straight lines normal to the neutral beam axis are

assumed remain straight and normal after deformation. This implies that the effect of transverse

shear deformations are neglected, a condition that is justified for slender beams. Two sources of

errors, assumption of zero slope and displacement at the beam root, are possible. Kondo (1995),

therefore, analyzed the unidirectional DCB specimen by utilizing a Timoshenko beam (TB)

supported by a WEF. Although the Winkler model has given satisfactory results in many practical

problems, it may be considered a crude approximation of the true mechanical behavior of the

foundation material. This situation gave rise to the development of the so-called two-parameter

elastic foundation models (Shirima1 and Giger 1992). Williams (1989) considered the rotational

stiffness of the foundation (Pasternak foundation) for unidirectional laminate and concluded that

root rotation due to low shear stiffness is the main factor causing composite DCB specimens to

deviate from the cantilever beam theory. Olsson (1992) reviewed the analyses of the DCB specimen

based on the elementary beam models for graphite-epoxy composites, concluding that plane strain

solution of Whitney (1985) is the most accurate compared with the finite element solution.

From the literature, among the factors, like shear deformation, root rotation, mode mixity, residual

stresses, curved crack front, geometrical nonlinearity, etc, the two factors, shear deformation and

root rotation, seem to have significant effect on SERR of mode-I delamination. Therefore, the main

goal of the present study is investigating the contributions of transverse shear deformation, elastic

foundations or root rotation on various laminate lay-ups by using beam theories. To assess the

accuracy of the available models in predicting compliance and SERR of DCB specimen, Euler-

Bernoulli beam on Winkler elastic foundation (EB on WEF), Timoshenko beam as a first-order

shear deformable theory on WEF, and Timoshenko beam on Pasternak elastic foundation (TB on

PEF) are considered. In multidirectional laminates, the idea of effective properties i.e., effective

flexural stiffness (Efx) and out-of-plane extensional stiffness (Ez) are taken into account. The

analytical results are then compared with available experimental data of glass/polyester

unidirectional and angle-ply DCB specimens in Ozdil and Carlsson (1999). As a result, comparisons

among the beam models resting on elastic foundation allow an understanding to be developed for

the relative roles of shear deformations, and elastic foundations or root rotation on the fracture

behavior of unidirectional and multidirectional composite laminates.
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2. Problem statement

A convenient approach for determining the fracture toughness of mode-I delamination in

unidirectional laminated composites is DCB specimen test according to ASTM D5528 (Fig. 1)

(Ozdil and Carlsson 1999, ASTM D5528). Various analytical models are proposed in the literature

to estimate SERR. Most of these models work with compliance method which is defined as the

ratio of opening displacement of crack mouth (δ) to applied load at that point (P). 

(1)

Having a relationship between compliance and crack length, the critical SERR, GIc, which is a

measure of the fracture toughness of a bonded interface and available for propagating the crack, is

obtained by differentiating the compliance with respect to crack length (Irwin and Kies 1954,

Ewalds and Wanhill 1989).

(2)

where P is the applied load, b is the specimen width, a is the crack length, and C is the compliance.

3. Review of elementary theories

3.1 Cantilever Beam Theory (CBT)

The most popular way of describing a DCB specimen is by analyzing a rigidly fixed cantilever

beam in pure bending. For a symmetrical orthotropic cantilever beam having a rectangular section

with uniform force applied to the end of the specimen (Fig. 2), and two assumptions: (1) the beam

to be fixed at the crack tip (no end-rotation at crack tip), (2) the cracked part to be completely rigid;

the compliance due to only the bending moment is expressed as

C
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P
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P
2
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ad
-------=

Fig. 1 Configuration of DCB specimen (a0: Initial crack length, b: specimen width)
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(3)

where Efx is effective bending modulus of the laminate along beam axis that it is obtained from

classical lamination theory (CLT) with plane stress assumption as 

, (4)

where , and [D] are extensional, coupling and bending stiffness of a laminate that can be

found in (Tsai 1980). Thus, GI can be obtained from Eq. (2) 

(5)

3.2 Modified beam theory with bending and shear at end

By considering effect of shear force at the end of beam and assuming bending displacements by

 and shear displacements by , the total displacement is given by . From the

classical beam theory, corrected for shear with a shear correction factor k that is chosen 5/6 in this

study, the compliance of the cracked part is given by (Olsson 1992)

(6)

where  is shear modulus. The mode-I SERR can be written as

(7)

3.3 Modified beam theory with rotational spring at crack tip

Weatherby (1982) included a rotational spring stiffness, , at the crack front and

obtained the following expressions for compliance and SERR

(8)
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Fig. 2 Deformation of the cracked region as a rigidly cantilever beam (Olsson 1992)
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(9)

Despite of some modifications in elementary theories, GI has more offsets from the practical

results yet. In order to predict SERR of DCB specimen with more accuracy, the idea of using

beams resting on elastic foundations is proposed by Kanninen (1973). The Winkler model has its

advantages in obtaining fast solutions, sometimes analytical, to more complicated structure

problems. In the whole following models, by exploiting symmetry, only one half of the DCB

specimen is modeled as configuration shown in Fig. 3. As a matter of fact, the beam is divided into

two regions: a cracked region (I: ), and an uncracked region (II: ). The cracked

region is modeled as an unsupported beam under a point load at the tip end of region I, whereas the

uncracked region II is modeled as a linear beam on an elastic foundation. Since the deflection of

each arm at the point of load application is , the DCB specimen compliance can be

written

(10)

Thus, the displacement function, , should be calculated.

4. Euler-bernoulli beam on Winkler elastic foundation

The Euler-Bernoulli beam theory is the simplest beam theory, and it is based on the following

displacement field 

, , (11)

, and u3 denote the displacement components along the longitudinal axis, width, and height

of the beam, respectively. The superscript “E” denotes the quantities in Euler-Bernoulli beam theory.

In this theory, the transverse shear deformation is neglected. The governing bending equation of an

Euler-Bernoulli beam on Winkler elastic foundation can be written as (Yavari et al. 2001, Hetenyi

1946)

(12)

where , ke, and  are the flexural rigidity, foundation modulus, and transverse load density,
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Fig. 3 Winkler elastic foundation model of the DCB Specimen (Ozdil and Carlsson 1999)
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respectively. For the beam with a constant flexural stiffness and , Eq. (12) may be written

as

(13)

where . Since the elastic foundation incorporates the elasticity of the

uncracked part of the DCB specimen, the foundation modulus may related to the out-of-plane

extensional stiffness (Ez) of the laminate. In most of earlier studies on DCB specimen, Ez is equaled

to E2 by assumption of transversely isotropic material. The foundation spring stiffness per unit

length, ke, is obtained by computing the stiffness for a bar which is EA/L. Here A = b times one

unit length and L is the distance from the specimen symmetry plane z = 0 to the neutral axis of the

beam at z = h/2. Thus, the foundation stiffness is given by 

(14)

The model used in Eq. (13), the simplest model for an elastic foundation, is called Winkler model.

For a Winkler foundation, it is assumed that at any point the pressure the foundation exerts on the

beam is proportional to the deflection of the beam at that point and is independent of the deflection

of the other parts of the foundation. This is an acceptable approximate model for many engineering

applications (Yavari et al. 2001). The appropriate boundary conditions are those for a shear force P

acting on the left-hand end of the beam and a free end condition at the right-hand end. Using the

prime notation to indicate differentiation with respect to x, these can be written in accordance with

Fig. 3 configuration as

, , , (15)

Kanninen (1973) solved Eq. (13) by considering the two intervals (−a, 0) and (0, c) separately,

then matching the values of deflection and it’s the first three derivatives at . By obtaining the

displacement function for cracked region, and assuming the length of the undelaminated region, c,

much larger than beam thickness for simplicity, compliance is obtained from Eq. (10) as (Ozdil and

Carlsson 1999)

(16)

Using Eq. (2) results in

(17)

5. Timoshenko beam on Winkler elastic foundation

In this section, the governing differential equations of Timoshenko beam on Winkler elastic

foundation (TB on WEF) are reviewed. The Timoshenko beam theory (TB) is the simplest shear

deformation beam theory; it has the following displacement field assumptions (Reddy 1999, Wang

et al. 2000)
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(18)

where u1, u2 and u3 are displacement components along the x, y, z axes, respectively; ψ and w

denote the rotation of the cross-section about the y-axis and the transverse beam deflection,

respectively. The superscript “T” denotes the quantities in Timoshenko beam theory. The

conventional beam equations including shear deformation are defined as

, (19)

where  is the bending moment of the beam,  is the transverse shear force of the beam.

Equilibrium equations can be expressed in terms of the displacements as

(20)

Two regions similar to EB on WEF model are considered:

Region I: cracked region ( )

For the cracked region, moment and shear force can be expressed in terms of the tip load P as

, (21)

The generalized displacements of the cracked region can be obtained by integrating Eq. (21). For

region I ( ) 

(22)

(23)

Region II: uncracked region ( )

For the case of the uncracked portion, the beam is supported by an elastic foundation with

extensional elastic coefficients (ke). Based on Timoshenko beam theory, the governing equations of

beam deformations in region II ( ) are given with Eq. (20). They are two coupled linear

second order differential equations that can be simplified in one equation. Differentiating from

Eq. (20a) with respect to x yields
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(25)

Substituting Eqs. (20b) and (25) into Eq. (24) yields 

(26)

where , . Also, the boundary conditions (B.C.’s) for two regions are

(27)

(28)

Furthermore, the continuity conditions (C.C.’s) at x = 0 are

(29)

The equilibrium conditions (E.C.’s) at x = 0 are as the following

(30)

By imposing conditions and using a symbolic mathematics software (e.g., Mathematica or Maple),

the explicit expressions for rotation and displacement at the crack tip are obtained. Due to relatively

being lengthy of final expression for displacement, therefore, they are omitted in this paper. Kondo

(1995) by assuming deflection and rotation dissipate as , reduced the unknown constants

instead of using boundary conditions at x = c. Finally, the compliance equation versus crack length

was obtained as

(31)
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energy release rate was reported as
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tip that is initially normal to the centroidal axis of an arm in a beam-like geometry. After loading,

two types of rotation can occur. First, the angle between the section and the centroidal axis can

change. This is the shear strain effect at the crack tip. The other type of rotation occurs when the

centroidal axis and the section rotate together. This is called “root rotation”. Therefore, Williams

(1989) proposed beam on an elastic foundation model for estimating the end rotation correction for

unidirectional DCB specimen. The free arm of length a is loaded with P at one end and the end

section beyond the crack is modeled as a beam on an elastic foundation with stiffness per unit

length characteristics of ke in extension and kr in rotation. Thus, the governing equilibrium equations

of a Timoshenko beam on a two-parameter elastic foundation, when all the mechanical properties of

the beam are constant, was reported as 

(33)

where GA and EI are shear and flexural stiffnesses, respectively; and ke is extensional stiffness of

foundation defined in Eq. (14) and kr is the rotational moduli of the foundation with assumption

bending moment Pa is applied to crack tip is defined as 
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where

(39)

Case 2: , then  where  and 

In this case, roots are complex. Compliance equation was obtained as

(40)

where

, (41)

Case 3: , then 

In this case, Compliance relation is equal to

(42)

where

, (43)

Because of the complexity of solutions, Williams (1989) simplified all three case in one equation

with the assumption of h/a << 1.

6. Results and discussion

In this study, [0o]6 unidirectional and [±θ]5 (θ = 30o, 45o) angle-ply laminates are taken into

account to assess different models. The strain energy release rates of these three lay-ups are

measured experimentally by Ozdil and Carlsson (1999) and are frequently used by other researchers

i.e., Hamed et al. (2006) and Gordnian et al. (2008). The presented compliance relations in previous

sections depend on Efx, Ez, Gxz, h, a, and b parameters. h, a, and b are half-thickness, crack length,
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Carlsson (1999) using the laminate homogenization method of Hyer and Knott (1994). For the
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Carlsson (1999). During the calculation of effective moduli, it should be noted that for the particular

laminates considered in this research, [±θ]5 laminate, the beams of delaminated region consist of

 and  lay-ups.

To compare the accuracy of the different beam models on elastic foundation in predicting

compliance and SERR, these values at crack initiation are presented in Table 3. It should be noted

that for estimating SERR, load at crack initiation as well as initial crack length are needed.
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Therefore, loads at each crack length are measured from the available load-displacement

experimental curves in Ozdil and Carlsson (1999). In Table 3, EB, TB, WEF, and PEF stand for

Euler-Bernoulli beam, Timoshenko beam, Winkler elastic foundation, and Pasternak elastic

foundation, respectively. The initiation fracture toughness using experimental compliance calibration

was reported for , , and  lay-ups in Ozdil and Carlsson (1999).

Table 3 shows that predicted results by EB and TB on elastic foundations are more accurate and

acceptable than predicted ones by elementary theories. Although experimental results have a wide

range of deviation, but TB on WEF is predicting initial compliance and SERR very well in all

laminates lay-ups. Williams solution (1989) is depended on the compliance matrix components (Sij)

of a laminate. As a result, the effective moduli are not used for Williams relation. 

In general, compliances and SERR are underestimated in all lay-ups when beam theories (i.e., EB

and TB) resting on elastic foundation are used. Among the beam models, TB on WEF is predicting

SERR well than the other models. This is in contrast to previous report of Ozdil and Carlsson

(1999) that claim EB on WEF was in very good agreement with those experimental compliances.

This comparison shows that shear deformation is an important factor in unidirectional and, in

0
o[ ]6 ±30

o[ ]5 ±45
o[ ]5

Table 1 Mechanical properties of unidirectional E-glass/polyester (Ozdil and Carlsson 1999)

E1, GPa E2 = E3, GPa ν12 = ν13 ν23 , GPa , GPa

34.7 8.5 0.27 0.5 4.34 2.83

Table 2 Geometry and calculated values of modulus for glass/polyester laminates with b = 20 mm

Lay-up

2h, mm * 4.4 7.3 7.3

Ez, GPa** 8.5 9.37 9.85

Efx, GPa*** 34.7 19.22 12.32

*h is half-thickness of DCB specimen.
**Ez is effective out-of-plane extensional modulus of a laminate.
***Efx is effective flexural modulus of a laminate.

G12 G13= G23

6
]0[

� ±30
o

[ ]5 ±45
o

[ ]5

Table 3 Comparison of initial compliance (µm/N) and SERR (J/m2) for DCB specimen

[0o]6,
a = 33 mm, P = 46 N

[±30o]5,
a = 30 mm, P = 64 N

[±45o]5,
a = 32 mm, P = 51 N

Compliance SERR Compliance SERR Compliance SERR

Ozdil et al. (1999), Experiment 61 282±42 13 214±14 29 176±32

Beam Models

Completely clamped EB 39.44 189.67 11.56 118.33 21.87 133.37

Completely clamped TB 39.86 190.34 11.78 119.1 22.12 133.87

Modified EB
(rotational spring at crack tip)

39.88 190.43 11.8 119.2 22.14 133.93

EB-WEF, Ozdil (1999) 47.03 213.27 15.1 141.41 27.35 154.76

TB-WEF, Kondo (1995) 50.31 223.11 16.38 149.3 28.97 160.84

TB-PEF, Williams (1989) 43.11 201.23 12.97 124.57 26.12 148.5
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particular, angle-ply laminates. However, errors between analytical and experimental results are

negligible for unidirectional and angle-ply with  DCB specimens, whereas errors are

significant in  angle-ply laminate. It means that in angle-ply laminates other factors in

additional to shear deformation and root rotation are effective. Mode mixity, residual stresses, non-

uniformity of SERR distribution along the delamination front seem to have the most contributions.

In unidirectional laminates, the stiffnesses of adjacent plies are the same, so the mode partitioning is

unambiguous. But in angle-ply laminates partitioning of SERR, due to oscillatory character of

stresses and displacements near the two different layers, is more likely. Ozdil and Carlsson (1999)

reports that Davidson et al. (1996) using a 3D finite element analysis of DCB specimens shows the

mode II and mode III contributions to the total SERR are negligible (<1%). Residual stresses due to

thermal gradients during cooling of plies can arise in multidirectional laminates. If the two cracked

regions and the uncracked region to be symmetric about their own midplanes, the residual effect can

be eliminated (Andersons and König 2004). For the special DCB specimens of this study, the beams

of delaminated region have  and  lay-ups that the coupling

matrix ([B]) is equaled to zero, while the full laminate is unsymmetric ( ). So, it can be

concluded that residual stresses can affect slightly on SERR in angle-ply lay-ups. The other main

factor may affect on the SERR is the non-uniformity of SERR along the delamination front. It is

desirable for data reduction that the SERR distribution along the crack front is uniform (Andersons

and König 2004). Hence, it is suggested that the stacking sequence of the laminate should be

θ 45
o

=

±30
o[ ]5

+θ/ θ– /+θ/ θ– /+θ[ ] θ– /+θ/ θ– /+θ/ θ–[ ]
B[ ] 0≠

Fig. 4 Effect of crack length on the normalized SERR on various beams on EF models
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designed so that longitudinal-transverse bending coupling of the delaminated legs is minimized. In

angle-ply lay-ups, this coupling is more dominated than unidirectional ones. By increasing bending-

bending coupling, the behavior of DCB specimen changes between plane strain and plane stress

conditions. According to Olsson (1992), the crack length to specimen width ratio shows a moderate

state (neither plane strain nor plane stress), whereas effective flexural modulus is obtained with

plane stress assumption in all models. Also, by comparing EB on WEF and Williams solution, it

can be concluded that TB on PEF compliances approach to EB on WEF ones with changing lay-up

angle. It shows Williams’s model, in addition to complicated expressions and complex roots, is too

stiff in unidirectional DCB specimens because of considering rotational foundation stiffness.

To investigate the influence of crack length on SERR for various beam models on elastic

foundation, a parametric study is carried on the normalized SERR. Fig. 4 shows normalized SERR

that normalization has been done with classical beam theory (CBT) versus crack length to thickness

ratio (a/h). It can be observed from Fig. 4 that the SERR values obtained from different beam

theories resting on various elastic foundations approach those of CBT as the crack length increase.

For short crack lengths (i.e., ), shear deformation effect is significant on SERR (Prasad

and Kumar 2009). Also, by increasing laminate angle from 0o to 45o the shear deformation effect on

SERR decrease. For example, at , the difference between normalized SERR in EB on WEF

and TB on WEF models are 12.94%, 8.95%, and 6.97% in 
 

and  respectively.

7. Conclusions 

The accuracy of various beam theories (Euler-Bernoulli and Timoshenko beams) on different

elastic foundation (Winkler and Pasternak elastic foundations) for analysis of Double cantilever

beam (DCB) is taken into account. In other words, the contributions of two main factors, transverse

shear deformation and root rotation, are investigated on the compliance and strain energy release

rate (SERR) in unidirectional and angle-ply laminates. In each case, a closed-form solution for

compliance versus crack length is presented using effective flexural modulus (Efx) and out-of-plane

extensional stiffness (Ez). The results have been compared with those available experimental data in

Ozdil and Carlsson (1999). The predicted compliance and SERR values from TB on WEF are in

good agreement with those determined experimentally. Although TB on WEF predicts initiation of

SERR in all lay-ups, TB on PEF as a general case, by increasing laminate angle shows better

compliances for angle-ply lay-ups, especially . It should be noted that warping of the beam

occurs owing to the shear force and to the non-uniformity of the stresses at the crack tip region.

This limits the accuracy of the analytical approaches to problems involving relatively small strain.

Ozdil and Carlsson (1999) suggested EB on WEF predicts good compliances for both

unidirectional and angle-ply lay-ups while this study shows contrary to this claim. Williams (1989)

concluded that root rotation due to low shear stiffness is the main factor causing composite DCB

specimens to deviate from the cantilever beam theory. However, in this research it is observed that

other factors with the exception root rotation, e.g., residual stress, mode mixity, and non-uniformity

of SERR distribution along delamination front, for delamination modeling of angle-ply laminates

will definitely be effective. Also, the behavior of laminated DCB specimens is assumed to be linear

elastic in a state of plane stress, whereas obtaining effective properties in terms of real state of

specimen as well as considering crack tip plastic or craze/damage zone might provide a better

prediction of delamination fracture toughness.

15 a/h 25< <

a/h 5=

0
o[ ]6 ±30
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