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In-plane vibrations of cracked slightly curved beams
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Abstract. In-plane vibrations of slightly curved beams having cracks are investigated numerically and
experimentally. The curvature of the beam is circular and stays in the plane of vibration. Specimens made
of steel with different lengths but with the same radius of curvature are used in the experiments. Cracks
are opened using a hand saw having 0.4 mm thickness. Natural frequencies depending on location and
depth of the cracks are determined using a Brüel & Kjaer 4366 type accelerometer. Then the beam is
assumed as a Rayleigh type slightly curved beam in finite element method (FEM) including bending,
extension and rotary inertia. A flexural rigidity equation given in literature for straight beams having a
crack is used in the analysis. Frequencies are obtained numerically for different crack locations and
depths. Experimental results are presented and compared with the numerical solutions. The natural
frequencies are affected too much due to larger moments when the crack is around nodes. The effect can
be neglected when it is at the location of maximum displacements. When the crack is close to the
clamped end, the decrease in the frequencies in all modes is very high. The consistency of the results and
validity of the equations are discussed.
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1. Introduction

Curved beams are used in roofs, pipes, gears, electric machinery, pumps and turbines, bridges,
reactor vessels i.e., from aeronautics to shipping industry to construction. It is important to
understand dynamic behavior of these systems. Vibrations of curved beams with and without crack
were investigated by many scientists. Love (1944) presented the equations of motion and their
solutions. Ibrahimbegovi  (1995) considered forced vibrations of a beam with an arbitrary shape.
Khan and Pise (1997) studied buried curved piles which was an example of fixed-free boundary
condition. Kang and Bert (1997) applied differential quadrature method (DQM) by considering
bending moment, radial loading and warping effects. Walsh and White (1999) investigated wave
propagation for constant curvature by combining flexure and extensional effects. Tong et al. (1998)
investigated free and forced vibrations of a circular curved beam assuming inextension of the
neutral axis. Krishnan et al. (1995) studied free vibrations for different boundary conditions and
subtended angles. Chidamparam and Leissa (1995) included extensional effects by considering
tangential and normal loadings in pretensioned curved beam. Krishnan and Suresh (1998) calculated
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natural frequencies for classical boundary conditions including shear stress and rotary inertia using
finite element method (FEM). Exact solutions of free in plane vibrations including extension, shear
and rotary inertia were obtained by Tüfekçi and Arpac  (1998). De Rosa and Franciosi (2000)
obtained exact and approximate solutions for inextensional case by using another version of DQM.
Raveendranath et al. (2000) applied FEM by combining polynomial displacement field and
considered free vibrations. Oh et al. (2000) obtained frequencies and mode shapes for different
curves, cross sections and boundary conditions. Özyi it et al. (2004) used FEM (Petyt 1990) to
investigate in-plane and out-of-plane vibrations and discussed mode shapes. Some studies included
stretching of the neutral axis in transverse vibration, nonlinear behavior and internal resonances (Öz
et al. 1998, Öz and Özkaya 2005, Öz and Pakdemirli 2006).
Crack propagation is important for fatigue behavior and also for dynamic response of structures.

Crack location, type and depth can affect the frequencies and mode shapes. Crack problems in
straight beams were investigated widely. Here are some references: Chondros et al. (1998)
developed continuous crack theory, Kisa et al. (1998) combined finite elements and component
mode synthesis methods, Fernández-Sáez et al. (1999) proposed simple methods for frequencies and
calculated approximate frequencies, Bovsunovsky and Matveev (2000) studied dynamic
characteristics analytically for a closing crack, Khiem and Lien (2001) calculated frequencies of
multiple cracked beam by modeling the cracks as rotary springs using transfer matrix method.
Saavedra and Cuitino (2001) presented dynamic behaviors using strain energies given by linear
fracture mechanics theory, and Zheng and Kessissoglou (2004) used FEM to calculate natural
frequencies and free vibrations. Yang et al. (2001) presented, for rectangular cross sectional straight
beams, equivalent flexural rigidity for Mode 1 crack case and used in crack identification. There are
some studies on the cracked curved beams. Tracy (1975) presented stress intensity factor and
Andrasic and Parker (1980) used weight functions, both used mapping-collocation technique to
determine the solutions for various geometries and loading conditions. Kapp et al. (1980) discussed
stress intensity factor for C-shaped specimen. Müller et al. (1993) obtained stress intensity factors
and strain release rate, and applied to the circular curved beams. Krawczuk and Ostachowicz (1997)
calculated natural frequencies of a clamped-clamped arch with an open transverse crack. Nobile
(2000) applied strain energy density factor theory (S-theory) to determine crack initiation and
direction for straight beams with edge crack. Nobile (2001) studied crack propagation in curved
beams using S-theory for mixed mode crack problem and obtained approximate stress intensity
factor, and compared with that obtained by Müller et al. (1993). Cerri and Ruta (2004) detected
localized damage by frequency data of the cracked curved beam. They modeled the crack with a
rotary spring attached to both ends and assumed flexural rigidity of the beam was decreasing in the
crack zone. Viola and Tornabene (2005) applied generalized differential quadrature techniques to the
in-plane free vibrations of thin and thick nonuniform circular arches in undamaged and damaged
configurations by modeling an open crack as an elastic hinge with rotational constant. Viola et al.
(2005) again modeled crack section with an elastic spring and analyzed the problem with an exact
analytical method in closed form and differential quadrature method, and presented natural
frequencies and mode shapes for different boundary conditions. Alves and Hall (2006) discussed
system identification of a concrete arch dam with loss of stiffness in the foundation rock under the
action of an earthquake simulation using a finite element model. This was an experimental and
numerical study which related decrease in frequencies to loss of stiffness due to cracks. Öz and Da
(2006) used the flexural rigidity equation derived by Yang et al. (2001) as an approximation for an
open crack in slightly curved beams and presented FEM results for frequencies and mode shapes for
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In-plane vibrations of cracked slightly curved beams 681

different crack locations and sizes and boundary conditions. Viola et al. (2007) studied multi-
stepped and multi-damaged arches and modeled cracks with elastic rotational hinges. Cerri et al.
(2008) performed experiments with cracked curved arches and compared with the results of
analytical solutions in which the crack is modeled as a torsional spring. Lotfollahi Yaghin and
Hesari (2008) used wavelet analysis to detect a crack in an arch concrete dam.
In this study, the in-plane vibrations of a circular curved beam with a Mode 1 open transverse

crack are investigated. In the first section, the results of finite element analysis are presented by
Rayleigh beam assumption. In modeling the slightly curved beam, extension of neutral axis,
bending, and rotary inertia effects are included. Crack is modeled with a flexural rigidity function.
In literature it is mostly modeled as an elastic torsional spring in curved structures. Here flexural
rigidity function proposed for straight beams with an open transverse crack given by Yang et al.
(2001) is used to compare with experimental results. In the experiment, the cracks are made with a
hand saw by opening 0.4 mm thick cracks. The beam is freely vibrated after hitting its tip with a
hammer and the accelerations are recorded using accelerometers fixed by a magnet, then the
spectrums are obtained. The variation of natural frequencies with different crack depths and
locations is discussed. Comparisons are made between FEM results and experimental ones. The
difference between results is discussed.

2. Finite element method

In Fig. 1, the circular slightly curved beam is shown. The cross section is rectangular; it is a small
part of a large circle. Arc length is denoted with L and coordinate is s, R is radius of curvature, γ is
elemental arc angle (used in the matrices, see the appendix), EI is flexural rigidity, ρ is volume
density and A is the cross sectional area. u and v are tangential and transverse displacements,
respectively. The crack location and the depth are c and a, respectively. The crack is at the upper
surface and its depth is measured in radial direction. Finite element formulation is given by Özyi itgo

Fig. 1 Clamped free slightly curved beam
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et al. (2004) and similar equations can be found in the literature.
The elastic (U) and kinetic (T) energies of the slightly curved Rayleigh beam can be written as

follows (Öz and Da  2006)

, (1)

here (·) denotes differentiation with respect to time (t). In-plane strain (ε), curvature change (β), and
net cross sectional rotation (κ) in Eq. (1) are defined as follows

(2)

In a straight beam longitudinal and transverse motions are independent in linear vibration
assumption. But in curved beams, circumferential and radial motions are dependent and it is
expressed by Eq. (2). According to these equations, extensible vibrations are included. In FEM, the
following cubic interpolation functions are used.

(3)

(4)

where . Displacement vector for a finite element is 

(5)

where , . After applying FEM, one can obtain elemental mass and stiffness
matrices (see the appendix). Around the crack, the stiffness should decrease. In many articles
mentioned in the introduction, the crack is modeled with springs. However an equivalent flexural
rigidity for Mode 1 open transverse case in a straight cracked beam for rectangular cross sections
(b × h) was presented by (Yang et al. 2001) and used by (Öz and Da  2006) for slightly curved
beams in calculating natural frequencies and mode shapes for different end conditions using FEM.
Here, the same equivalent flexural rigidity (EI

c
) for the cracked beam will be used

(6)

where

,

, (7)
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The flexural rigidity Eq. (6) can be inserted into the stiffness matrix and it becomes more
effective around crack. Ratio of the flexural rigidity of uncracked beam to that of cracked one is
such that it has less effect at points far away from the crack and the effect increases as the point
becomes closer to the crack and the flexural rigidity becomes minimum at the crack (Öz and Da
2006, Yang et al. 2001) as shown in Fig. 2 for a single crack for three different crack depths. As the
depth becomes larger, the ratio becomes smaller. The ratio approaches to unity away from the crack
which is the uncracked case. The numerical solutions are presented in reference (Öz and Da  2006)
for different end conditions. These equations can be used to study multiple cracks with different
depths. The Eqs. (6) and (7) are solved for different crack parameters. Variation of the flexural
rigidity ratio for two cracks is shown in Fig. 3. It is assumed that the cracks do not affect each
other. Experimants are performed for the cracks which are not close to each other.

3. Experimental results and finite element solutions

In this section the experimental setup will be explained and the results will be presented in
comparison with the numerical solutions. In the experiment, steel specimens with E = 207 GPa and
ρ = 7850 kg/m3 is used. The specimens have radii of curvature of R = 1.284 m and 2.864 m. The
members are fixed at one end and the other end is free (clamped-free boundary condition). The
specimens are prepared at the workshop. For the specimens having radius of 2.864 m, base b = 16
mm, height h = 2.2 mm and the lengths are, L = 0.1, 0.2, 0.3, 0.4 and 0.5 m respectively. For the
specimens having radius of 1.284 m, base b = 15 mm, height h = 2.4 mm and the lengths are, L =
0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8 m respectively. The setup is shown in Fig. 4. The measurement
device is Brüel & Kjaer 4366 type accelerometer located at c = L/10 from the support in each test.
Voltage calibration coefficient is 4.14 mV/ms-2. The total weight of the accelerometer, cable and
magnet is 89 g. Prosig P5500 device is used to transfer the data to the computer and DATS 4.2.21/2

sç

sç

Fig. 2 Variation of the flexural rigidity ratio with the
crack location and depth. a = h/10 (....), 2h/10
(---), 3h/10 (⎯), the crack location c = 0.5L
where arc length L = 1 m (Öz and Da  2006) sç

Fig. 3 Variation of the flexural rigidity ratio with the
crack locations and depths. a = 2h/10 and 3h/
10, the crack location c = 0.3L and c = 0.7L
respectively and arc length L = 1 m 
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software is used in data processing e.g., FFT. The sampling frequency is 1000 Hz and total number
of data acquired is 3000. 
In the first part of the experiment, the smooth specimens are clamped at one end and the free

vibrations are investigated. This case is the uncracked case. In the second part, 0.4 mm wide crack
is opened using a hand saw. The experiments are performed for single crack, two cracks and three
cracks at different locations. The experimental acceleration and spectrum graphs are given in Figs. 5
and 6 for L = 0.4 m, R = 2.864 m, h = 2.2 mm, b = 16 mm for no crack case. The mass of the
curved beam is 110.53 gr which is 25% heavier then the measurement system. The natural
frequencies measured and numerically calculated are presented in Tables 1 and 2 for different beam
samples. The dimensions are given in the tables. Also in the second column of the tables are the
weights of the beam specimens. The weight of the measurement system has a decreasing effect on
the frequencies. But since the measurement device is attached close to the clamped end, it slightly
affects the behavior. In the first mode there is a resemblance between the values obtained

Fig. 4 Experimental setup

Fig. 5 Acceleration data for no crack case, for L =
0.4 m, R = 2.864 m, h = 2.2 mm, b = 16 mm

Fig. 6 Spectrum for no crack case, for L = 0.4 m,
R = 2.864 m, h = 2.2 mm, b = 16 mm 
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experimentally and numerically using the assumption given in Eqs. (6) and (7). In long beams, the
results are consistent with each other in the first and second frequencies. As the length of the
specimen gets smaller the results differ since the finite element model is not valid for short curved
beams. As the specimens get smaller, the member looks like a vibrating straight plate instead of a
curved beam. FEM is used for only slightly curved members. Also as the length gets smaller, the
mass of the specimen becomes smaller than that of the measurement system. Together with the
statements mentioned in the previous paragraph, these effects are decreasing experimental natural
frequency values.

Table 1 The natural frequencies for R = 2.864 m, h = 2.2 mm, b = 16 mm, no crack

L (m) m (gr) Method f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

0.5 138.16
Test 7.34 41.00 95.00 203.0

FEM 7.31 45.60 128.0 251.0

0.4 110.53
Test 11.33 55.40 142.0 300.0

FEM 11.41 71.32 200.0 392.0

0.3 82.90
Test 20.00 85.00 245.5 380.0

FEM 20.28 126.9 355.6 697.0

0.2 55.26
Test 48.30 194.0 336.5 432.0

FEM 45.63 286.0 800.0 1568

0.1 27.63
Test 149.0 360.0 402.0 455.0

FEM 183.0 1143 3197 6257

Table 2 The natural frequencies for R = 1.284 m, h = 2.4 mm, b = 15 mm, no crack

L (m) m (gr) Method f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

0.8 226.08
Test 2.70 17.40 53.60 96.50

FEM 3.14 18.69 53.66 106.0

0.7 197.82
Test 3.50 23.00 56.00 121.0

FEM 4.09 24.64 70.35 138.7

0.6 169.56
Test 4.34 29.70 78.80 150.0

FEM 5.56 33.82 96.09 189.1

0.5 141.30
Test 6.65 38.50 121.7 225.4

FEM 7.99 49.06 138.8 272.8

0.4 113.04
Test 10.70 51.50 193.0 330.0

FEM 12.47 77.12 217.4 427.0

0.3 84.78
Test 20.20 86.30 150.0 261.4

FEM 22.15 137.8 387.0 759.0

0.2 56.52
Test 35.70 71.50 176.5 250.0

FEM 49.80 311.0 872.0 1709
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In Tables 3 and 4, natural frequencies of cracked members are presented and compared with those
of uncracked one. Here only single crack case is discussed. The frequencies decrease as the crack
depth increases. When the crack is closer to the free end, the frequencies become closer to those of
uncracked case. One can see better this behavior in Table 4.
In Tables 5 and 6, the experimental results and comparison of the first five natural frequencies for

cracked and uncracked cases are given for two cracks and three cracks, respectively. The locations
and depths are arbitrary. Some results are the same up to 2 digits.

Table 3 Natural frequencies, R = 2.864 m, h = 2.2 mm, b = 16 mm

c (m) Type f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

L = 0.992 m
a = h/10

0.092

Test 1.70 10.00 30.00 60.00

FEM 1.85 11.46 32.36 63.57

FEM uncr. 1.86 11.47 32.37 63.58

L = 0.993 m
a = h/10

0.893

Test 1.80 19.00 41.00 62.00

FEM 1.85 11.44 32.29 63.44

FEM uncr. 1.86 11.44 32.30 63.45

L = 0.690 m
a = h/10

0.490

Test 3.80 21.00 58.00 100.0

FEM 3.837 23.85 67.05 131.58

FEM uncr. 3.838 23.86 67.08 131.61

L = 0.400 m
a = h/10

0.200

Test 11.00 62.00 139.0 272.0

FEM 11.41 71.28 200.0 391.7

L = 0.400 m
a = 2h/10

Test 10.00 61.00 135.0 250.0

FEM 11.40 71.16 199.9 391.0

FEM uncr. 11.41 71.32 200.0 391.9

L = 0.300 m
a = 2h/10

0.100

Test 20.00 100.0 235.0 500.0

FEM 20.25 126.8 354.71 696.8

L = 0.300 m
a = 3h/10

Test 20.00 98.00 210 696.0

FEM 20.19 126.6 353.5 696.35

FEM uncr. 20.28 126.9 355.6 696.84

Table 4 Natural frequencies, R = 1.284 m, h = 2.4 mm, b = 15 mm, L = 0.8 m, a = h/10

c (m) Type f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

0.100
Test 2.30 15.33 42.00 90.00

FEM 3.12 18.65 53.63 105.96

0.700
Test 2.33 17.00 41.00 91.00

FEM 3.13 18.68 53.65 105.97

uncracked FEM 3.14 18.69 53.66 105.97
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The experimental three crack case (0.095 m, 0.195 m, 0.295 m) is depicted in Figs. 7 and 8 for
L = 0.8 m, R = 1.284 m, h = 2.4 mm, b = 15 mm. The depths of all cracks are equal, e.g.,
a = 0.22 mm.
The results are good (slightly different) up to the third mode, later there is considerable difference

between the frequencies obtained experimentally and numerically. The reason is that both shear
deflection and rotatory inertia decrease the natural frequencies. The effect of shear deflection is
more important than that of rotatory inertia. The higher are they, the more the natural frequencies
are affected (Géradin and Rixen 1997). At higher modes, their effects become more important. In
addition to those, transverse and rotatory inertia of the accelerometer are also important so that the
natural frequencies obtained experimentally are less than those obtained numerically. Shear is

Table 5 Natural frequencies, R = 2.864 m, h = 2.2 mm, b = 16 mm, L = 0.795 m

c (m) Depth (mm) Type f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

0.1-0.2

0.24-0.24
Test 2.33 17.33 43.33 90.33

FEM 2.89 17.93 50.48 99.06

0.48-0.48
Test 2.33 14.33 41.33 87.33

FEM 2.88 17.93 50.44 98.97

0.6-0.7

0.24-0.24
Test 2.33 17.33 47.67 89.67

FEM 2.89 17.94 50.47 99.05

0.48-0.48
Test 2.33 14.00 47.00 89.66

FEM 2.89 17.93 50.41 98.90

uncracked
Test 3.00 18.00 50.48 99.08

FEM 2.89 17.94 50.49 99.10

Table 6 Natural frequencies, R = 1.284 m, h = 2.4 mm, b = 15 mm, L = 0.8 m, c = 0.095, 0.195, 0.295 m

Depth (mm) Method f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

0.22-0.22-0.22
Test 2.67 17.00 47.67 90.14

FEM 3.13 18.68 53.64 105.95

0.44-0.44-0.22
Test 2.33 17.00 41.00 90.35

FEM 3.13 18.67 53.61 105.88

0.66-0.44-0.22
Test 2.33 16.67 41.00 90.25

FEM 3.12 18.66 53.61 105.90

0.66-0.44-0.44
Test 2.33 17.00 41.50 90.67

FEM 3.12 18.65 53.58 105.86

0.66-0.66-0.66
Test 2.30 15.33 41.50 91.00

FEM 3.11 18.64 53.48 105.74

uncracked
Test 2.70 17.40 53.60 96.50

FEM 3.14 18.69 53.66 106.00
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excluded in FEM solution and lumped mass effect is also excluded. Also structural damping and air
friction change (decrease) the frequencies and they are not included in FEM. Torsional vibrations
are not included in FEM but it has some effect in the measurements. Experimental values are
dependent on all of these parameters and properties.
Some analysis can be performed directly using FEM. In Fig. 9, variation of the first natural

frequencies are shown for a clamped-free member with R = 1.284 m, L = 0.8 m, h = 0.0024 m,
b = 0.0150 m. Crack depths are a = h/10, a = 2h/10 and a = 3h/10. When the crack is close to the
clamped end, it has higher effect on the frequencies. As the crack is close to the free end, the
frequencies become closer to the uncracked case. Increasing the depth decreases the frequencies
further. Comparing with Table 4, at c = 0.1 and 0.7 m, the experimental values are 2.30 and 2.33 Hz,
respectively. For c = 0.1 m, the difference is 27% and for c = 0.7, the difference is 25% in the first

Fig. 7 Acceleration data for three crack case (0.095 m,
0.195 m, 0.295 m), for L = 0.8 m, R = 1.284 m,
h = 2.4 mm, b = 15 mm 

Fig. 8 Spectrum for three crack case (0.095 m,
0.195 m, 0.295 m), for L = 0.8 m, R = 1.284 m,
h = 2.4 mm, b = 15 mm

Fig. 9 Variation of the first natural frequency with crack location and depth, a = h/10 (....), a = 2h/10 (- - -),
a = 3h/10 (⎯)
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mode between experimental and numerical results. In the second mode, for c = 0.1 m, the difference
is 18%, for c = 0.7 m, the difference is 9%. In the third mode, for c = 0.1 m, the difference is 22%,
for c = 0.7 m, the difference is 24%. In the fourth mode, for c = 0.1 m, the difference is 15%, for
c = 0.7 m, the difference is 14%.
The second, third and fourth mode variations are shown in Figs. 10-12. Similar conclusions can

be drawn. The crack at the point of maximum displacement does not affect the frequencies too
much as seen in the figures (Krawczuk and Ostachowicz 1997). If the moment is a maximum at
some other locations (e.g., nodal points and clamped end), the frequencies will be very much lower
than those of the uncracked one because of large moment due to higher stress concentration
(Krawczuk and Ostachowicz 1997, Öz and Da  2006). The greatest effect is at the locations close to
the clamped end. In the second mode, at c ≅ 0.43, in the third mode at c ≅ 0.25 and 0.57 m, in the
fourth mode at c ≅ 0.17, 0.40, and 0.63 m, the frequencies decrease too much e.g., these points are

sç

Fig. 10 Variation of the second natural frequency
with crack location and depth a = h/10 (....),
a = 2h/10 (- - -), a = 3h/10 (⎯) 

Fig. 11 Variation of the third natural frequency with
crack location and depth a = h/10 (....),
a = 2h/10 (- - -), a = 3h/10 (⎯)

Fig. 12 Variation of the fourth natural frequency with crack location and depth a = h/10 (....), a = 2h/10 (- - -),
a = 3h/10 (⎯)



690 H. R dvan Özi

nodal points. The decrease in natural frequencies was emphasized by Öz and Da  (2006)
numerically using the relation presented in the current study and also by Cerri and Ruta (2004),
Viola et al. (2005) and Cerri et al. (2008) in which springs were used to model the crack and by
Yaghin and Hesari (2008) who mentioned the effect of local stiffness difference in a simulation
study of a damaged arch dam.
Let’s consider two crack case and discuss the natural frequency variation numerically with the

crack location and depth. For the member with R = 1.284 m, L = 0.8 m, h = 0.0024 m, b = 0.0150
m, the depths of two cracks are the same, a = h/10, but the first one is at 0.1L, the second crack is
assumed to be between 0.2L and L, The variation of natural frequencies are presented in Figs. 13-16.
When the crack is around the nodal points, the frequencies decrease too much. Since some nodal
points are before 0.2L, they are not seen in the figures.

sç

Fig. 13 Variation of the first natural frequency with
crack locations at c1= 0.1L, c2= 0.2L-L,
depths a1= a2= h/10 

Fig. 14 Variation of the second natural frequency
with crack locations at c1= 0.1L, c2= 0.2L-L,
depths a1= a2= h/10

Fig. 15 Variation of the third natural frequency with
crack locations at c1= 0.1L, c2= 0.2L-L,
depths a1= a2= h/10 

Fig. 16 Variation of the fourth natural frequency
with crack locations at c1= 0.1L, c2= 0.2L-
L, depths a1= a2= 0.00022 m, h/10
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Similar analysis can be performed for three crack cases, no figures will be given here but the data
can be observed in Table 6.

4. Conclusions

The subject of the paper is the in-plane dynamics of slightly curved cracked circular beams. The
beam is clamped at one end and has a transverse open crack or cracks on it. The cracks do not
propagate during vibrations. An approach proposed for straight beams is used in calculating the
effect of cracks on the natural frequencies of a slightly curved beam. In the numerical solution
Rayleigh type beam is considered. Bending, extension and rotation effects are included in the
vibrations but shear effect is excluded. Thin cracks are opened by a hand saw at different locations.
Acceleration data is recorded and processed to obtain the frequencies. Experimental and finite
element solutions are compared to examine the proposed approach for different crack locations,
numbers of cracks and depths. Increasing the crack depth decreases the frequencies. As the number
of crack increases, the frequencies decrease fast. When the crack is opened around nodes, the
natural frequencies are affected too much due to larger moments. Its effect is negligible when it is at
the location of maximum displacements. The greatest effect is at the locations close to the clamped
end. Since the moment is zero at the free end, there is no effect due to the crack. The results of
FEM and those obtained by experimentation show better consistency for longer beams. When the
length of the beam becomes shorter, e.g., it becomes a plate instead of a beam; the values become
more different since the FEM becomes invalid. Also the weight of the measurement system (mass
and rotatory inertia) affects the frequencies. Its effect is more important in shorter beams. The shear
effect in the curved member is also important since it is excluded in FEM. The reasons for
difference between experimentally and numerically obtained frequencies can be summarized as
follows: the validity of flexural rigidity equation obtained for straight beams and its usage for a
slightly curved beam especially for multi crack case, mass and rotatory inertia of the measurement
system, degree of validity of FEM for shorter beams, shear effect, structural damping, air friction,
torsional vibration behavior in longer beam samples. This study can give information for the need
of equations to be used for curved beams to improve results.
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Appendix: Elemental stiffness and mass matrices are given below

In extensional direction: 

In bending:
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In translation:

In rotation:

 

 




