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Nonlinear analysis of 3D reinforced concrete frames: 
effect of section torsion on the global response
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Abstract. In this paper the formulation of an efficient frame element applicable for nonlinear analysis
of 3D reinforced concrete (RC) frames is outlined. Interaction between axial force and bending moment is
considered by using the fibre element approach. Further, section warping, effect of normal and tangential
forces on the torsional stiffness of section and second order geometrical nonlinearities are included in the
model. The developed computer code is employed for nonlinear static analysis of RC sub-assemblages
and a simple approach for extending the formulation to dynamic cases is presented. Dynamic progressive
collapse assessment of RC space frames based on the alternate path method is undertaken and dynamic
load factor (DLF) is estimated. Further, it is concluded that the torsional behaviour of reinforced concrete
elements satisfying minimum standard requirements is not significant for the framed structures studied.
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1. Introduction

In 3D multi-story multi-bay reinforced concrete frames, cross sections can be subjected to normal

(i.e., axial force and bending moment) and tangential (i.e., shear and torsion) forces, simultaneously.

For coupling of these normal and tangential forces, three types of sectional models including fully

coupled models (Bairan and Mari 2007), membrane models such as the modified compression field

theory (MCFT) of Vecchio and Collins (1986) and the combination of them (Navarro Gregori et al.

2007) could be employed.

Progressive collapse is an important issue in structural failure, and has been since the partial

collapse of the Ronan point apartment building in 1968. Since this time, a significant amount of

research has been devoted to progressive collapse analysis of structures (Ellingwood and

Leyendecker 1978, Khandelwal et al. 2008, Kim and Park 2008, Mohamed 2009, Yagob et al.

2009). One procedure for investigating potential for progressive collapse is based on alternative path

method (APM), which has been integrated into several building codes (GSA 2003, DoD 2005), and

adopted by different researchers for numerical modelling (Kaewkulchai and Williamson 2004, Bao
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et al. 2008). Moreover, APM procedures have been used by a few researchers for experimental

study on progressive collapse (Sasani and Sagiroglu 2008b, Yi et al. 2008). In the APM approach,

one or more columns are assumed to fail and are removed from the structural model with the

remaining structure analysed to determine whether other members (or the structure) will fail or not.

The progressive collapse assessment of planar frames based on APM procedure has been focus of

extensive studies (Kaewkulchai and Williamson 2004, Bao et al. 2008, Khandelwal et al. 2008, Yi et

al. 2008), whereas only a few studies have been undertaken on the progressive collapse assessment

of 3D frames and these studies mostly ignore the torsion effect at section level or adopt simplifying

assumptions, such as reduced effective torsional stiffness, to take account of interaction between

normal and tangential forces (Izzuddin et al. 2008, Sasani 2008, Sasani and Kropelnicki 2008,

Mohamed 2009). On the other hand, some researchers have used continuum-based finite element

models for collapse analysis of reinforced concrete framed structures subjected to abnormal loads

such as blast, which are numerically very time-demanding (Gong et al. 2009, Weerheijm et al. 2009).

In undertaking of a space frame progressive collapse analyses, most models use linear elastic

elements with lumped nonlinearity (Sasani 2008, Sasani and Sagiroglu 2008a, b). In this paper an

element with distributed nonlinearity and formulated based on force interpolation concept and

Navier-Bernoulli hypothesis is employed to capture the structure response. Obviously, by adopting

the Navier-Bernoulli hypothesis the applicability of the formulation is limited to members with

flexural behaviour, which is the case for most ordinary framed reinforced concrete structures, the

focus of this paper. Moreover, a simple and efficient method based on a combination of the variable

angle truss model and the modified compression field theory (MCFT) is used to establish the

torque-twist relationship of a RC section, including the effect of interaction between tangential and

normal forces. The developed element is used to study the effect of torsion on the potential

progressive collapse of RC space frames.

2. Torque-twist curve of section subjected to pure torsion

The torque-twist curve for members in torsion reported in Valipour and Foster (2009b) is adopted

in this paper with extension to cyclic loading. The curve is described briefly below. Test results on

reinforced concrete members under pure torsion show that the torque-twist curve (Fig. 1) consists of

four branches; line OA is a pre-cracking stage and point A corresponds to the cracking torsion; line

AB shows the sudden jump in the section twist after cracking and the space truss analogy is used to

capture point F; the position of point B is determined based on the tension stiffening concept and

curve BC is taken to be parabolic; line CD, and the position of point D, is determined based on the

concept of torsional ductility.

Thin-walled tube theory can be used to calculate the cracking torque Tcr (Hsu 1984)

(1)

where Ac is the gross area of concrete, uc is the perimeter of the concrete cross-section and 

denotes the cracking strength of concrete and is taken as equal to tensile strength of the concrete, ft.

The factor  on the right side of Eq. (1) takes account of the reinforcing steel on the

cracking load, where ρ is the total volumetric ratio of the reinforcement and n is the modular ratio

( , where Es and Ec are the elastic modulus of steel and concrete, respectively).

Tcr 1 n 1–( )ρ+[ ]
Ac

2

uc

-----⎝ ⎠
⎛ ⎞ fcr=

fcr

1 n 1–( )ρ+[ ]

n Es/Ec=
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Adopting the Saint-Venant’s theory of elastic torsion for a rectangular section of height h, and

width w, gives the section torsional constant J1 as (Young and Roark 2001)

(2)

and the twist , at the point of cracking point is then calculated from

(3)

where Gc is the shear modulus of concrete and is taken as  and ν is the Poisson’s

ratio. 

According to the space truss analogy, after full torsional cracking, the reinforcing steel controls

the stiffness and torsion is resisted by a truss action of compressive struts and tensile stresses in

reinforcement (Hsu 1984), with no shear transferred along the crack surface. For the analysis of RC

solid members, the solid section must be substituted with a hollow section of effective thickness, te,

and the bars are assumed to be distributed evenly over the section perimeter.

Adopting the thin-walled tube theory of torsion, for the equivalent hollow section, and satisfying

the equilibrium of the horizontal and vertical forces, for a typical element taken from the walls of

the equivalent hollow section gives (Rahal and Collins 1996)

, , (4)

(5)

where a0 is the thickness of the equivalent compressive struts, Ao is the effective area of the

equivalent cross section, uo is the effective perimeter of the cross section (Fig. 2), fl and ft denote

the stress in longitudinal and transverse reinforcing steel, respectively, Al is the total area of

longitudinal reinforcement, At is the area of one leg of a transverse steel bar, s is the average

J1 wh
3 1

3
--- 0.21

h

w
---- 1

h
4

12w
4

------------–⎝ ⎠
⎛ ⎞–≅ h w≤( )

ψ1

ψ1

Tcr

GcJ1

-----------=

Gc Ec/2 1 ν+( )=

T 2Ao

Al fl

uo

---------
At ft

s
---------= uo uc 4a0–= Ao w a0–( ) h a0–( )=

tanθ
At ft

s
---------

uo

Al fl
---------=

Fig. 1 Outline of the torque-twist curve for a section under pure torsion 
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spacing of transverse reinforcing and θ is the inclination angle of the compressive struts with

respect to element longitudinal axis. The torsional constant Jh for the thin walled tube is

(6)

The position of the key points (i.e., A, B, C and D) on the torque-twist curve (see Fig. 1) can be

obtained by defining appropriate values for Ao and uo in Eqs. (4) and (5), and is explained in the

following sections.

Point A in Fig. 1 represents the first cracking and point F represents the fully cracked state and

the corresponding torsional stiffness can be obtained by adopting the Collins and Lampert (1971)

approach. This implies that the torsional stiffness is approximately that of a tube with the same

dimensions and an effective wall thickness of . Accordingly, the torsional

stiffness, GJF, and corresponding twist, ψF, can be calculated by adopting the area enclosed by the

stirrup centrelines as being the effective area. Substituting te into Eq. (6) gives

(7)

(8)

where Gs is the elastic shear modulus of the steel bars and Ah and uh denote the area and perimeter

bounded by centreline of the stirrups, respectively.

In Eq. (7) the torsional stiffness of the cracked section is calculated by taking account of the

reinforcing steel stiffness and ignoring the influence of the concrete between the cracks. This leads

to an underestimation of section stiffness and can, in part, be attributed to the tension-stiffening

effect. A simple approach, inspired from the modified stress-strain relationship of steel proposed by

CEB-FIP model code 1990, is used to take account of this tension stiffening. In the model used in

this study, the twist at point B can be obtained from 

Jh 4te Ao

2
/uo( )=

te Al/uo( ) At/s( )=

GJF 4Gs

Ah

2

uh

-----⎝ ⎠
⎛ ⎞ At

s
----

Al

uh

-----⋅=

ψF

Tcr

GJF

---------=

Fig. 2 Outline of a concrete strut and equivalent rectangular stress block 
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where (9)

where ρt is the ratio of transverse reinforcement and λ is a multiplier between 0.4 and 0.6 (Valipour

2009, Valipour and Foster 2009b). 

Based on Lampert and Thurlimann’s (1968) method the ultimate torsional capacity of the section

(point C in Fig. 1) can be determined by assuming that the concrete within the core, that is at a

depth greater than te from the surface, is virtually unstressed and the principal compressive strain

over the effective strut thickness varies linearly with the highest strain at the exterior surface, as

shown in Fig. 2 (Mitchell and Collins 1974). The wall thickness of the equivalent hollow section,

a0, is calculated based on an equivalent rectangular stress block (see Fig. 2) and the stress resultant

in the compressive strut is obtained from 

(10)

where  is the maximum compressive strength of diagonally cracked concrete and .

Further 

(11)

(12)

where fcp is the concrete compressive strength, S is a compressive strength reduction factor for the

concrete strut according to the modified compression field theory (MCFT) and ε1 is the average

tensile strain normal to the direction of the struts and is a function of load and the strut orientation.

Re-writing the truss model equations derived in the previous section with consideration to the

MCFT yields

, (13)

(14)

In Eqs. (13) and (14) the equivalent rectangular compressive block height for normal strength

concrete is calculated by using a factor taken from AS-3600 (2009). It is noteworthy that the state

of stress in concrete and steel is unknown and Eq. (13) needs to be solved iteratively.

Using strain compatibility equations, Mitchell and Collins (1974) showed that 

(15)

where φ is the transverse curvature of a concrete strut (see Fig. 2) and ψ is the section twist angle.

From linear strain distribution over the strut thickness, and Eq. (15), we have

 (16)

where  can be obtained based on the CFT approach of (Rahal and Collins 1996) and is given

by

ψ2 λψ1 1 λ–( )ψF+= λ 0.6 0.2/exp 1000ρt( )–=

fdte α1f2maxa0=

f2max α1 0.9=

f2max Sfcp=

0.4 S≤ 1
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-------------------------- 1.0≤=
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---------
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--------+ α1f2maxa0 α1f2maxβ1te= = uo 2 h w 2a0–+( )=

β1

0.85    fcp 28≤

0.85 0.007 fcp 28–( )    28 fcp≤–⎩
⎨
⎧

=

φ ψ sin2θ=

ψ ψ3 C( )

ε2max

tesin2θ
-----------------= =

ε2max
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(17)

and where  is the strain corresponding with uniaxial compressive strength of the concrete and S

can be obtained from Eq. (12). Finally, having calculated θ, te and , the twist corresponding

with point C on the torque-twist curve in Fig. 1 can be obtained from Eq. (16).

If the ultimate torsional capacity corresponding to point C in Fig. 1 is associated with yielding of

the steel, the failure mode is taken to be ductile and a value of  is used to construct the

CD branch of the torque-twist curve. Otherwise, it is taken that the failure mode is non-ductile and

the CD plateau (see Fig. 1) in the torque-twist curve does not exist.

3. Strain in the longitudinal and transverse steel

With regard to experimental results (Hsu 1984), it is assumed that the longitudinal and transverse

bars are strained just beyond point A and that over branch OA the strain caused by torsion in the

reinforcing bars is negligible. Moreover, it is assumed that the variation of strain with respect to

section twist follows a linear function. Accordingly, if the twist and strain  corresponding to

point C are known, the strain can be obtained by 

 (18)

where  represents the strain in the longitudinal (transverse) reinforcement. 

Using the truss model compatibility equations, the strain in the longitudinal and transverse bars

corresponding to ultimate torque (point C in Fig. 1) can be obtained from (Hsu 1984) as

(19)

(20)

where η is the average of ηl and ηt defined in Fig. 2. Similar relationships in terms of reinforcing

steel bars area and stresses have been derived by Rahal and Collins (1996).

4. Interaction of tangential and normal forces

Application of interaction diagrams is an efficient and reasonably accurate tool to determine the

ultimate capacity of a section under combined forces. The interaction diagram does not, however,

define the variation of section stiffness at different states and, consequently, is not applicable for

practical analysis of statically indeterminate framed structures. By adopting some simple

assumptions consistent with principles of the truss model, the torque-twist curve of a section under

pure torsion developed in Section 2 is modified to construct the torque-twist relationship for a

section subjected to a combination of tangential and normal forces. The outline of the modified

torque-twist curve, compared with the original torque-twist curve, is shown in Fig. 3.

The first assumption is that the initial cracking torque is only affected by the bending moment and

axial force. This is not completely correct for members experiencing some level of cracking due to

ε2max 1.5Sεc0=

εc0

ε2max

ψD 1.5ψC=

ε3l 3t( )

εl t( ) ε3l 3t( ) ψ ψA–( )/ ψC ψA–( )=

εl t( )

ε3l

α1β1Ao

2
f2max

Tuuocotθ
----------------------------- η–⎝ ⎠
⎛ ⎞ε2max=

ε3t

α1β1Ao

2
f2max

Tuuotanθ
----------------------------- η–⎝ ⎠
⎛ ⎞ε2max=
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shear, such as thin-walled hollow sections, but this effect is limited to early stage of the response

and has only a minor effect on the ultimate capacity. With regard to this assumption, axial and

flexural cracks of width (w) greater than five times characteristic crack width , where

 and where Gf is the fracture energy and ft is the tensile strength of concrete

(Cornelissen et al. 1986), do not contribute to the torsional strength of the member. The initial

cracking torque, TA, is then calculated as 

(21)

where  and  are the effective area and perimeter of the cracked section, respectively.

The twist corresponding to point A is obtained by assuming that the stiffness of the section before

initial cracking remains unchanged (J1 is obtained from uncracked geometry). Hence

(22)

The second assumption is that the value of the full cracking torque, , is not affected by

other forces (see Fig. 3), while the twist corresponding to point B is calculated from

(23)

where  is calculated according to the procedure outlined in Section 2.

The effect of normal forces on the ultimate torque, Tu, is considered by reducing the total area of

longitudinal bars and defining the effective area of longitudinal bars  based on the ultimate

tensile strength of the longitudinal bars. If n denotes the number of longitudinal bars and  and

 denote the area and ultimate strength of longitudinal bar i, respectively, the effective area of

longitudinal bars, , can be obtained from 

 (24)

wch( )
wch Gf /ft=

TA 1 n 1–( )ρ+[ ]
Aceff

2
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--------
⎝ ⎠
⎜ ⎟
⎛ ⎞

fcr=
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uceff

ψA

TA

GcJ1

-----------=
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ψB λψA 1 λ–( )ψF+=
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Fig. 3 Outline of the torque-twist curve for a section under torsion, axial force and bending moment
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and where  is the stress in bar i caused by any co-existing normal forces. Accordingly, when the

ultimate torsional capacity of a section and corresponding twist are calculated, the value of Al in

Eqs. (4), (5) and (13) is replace by . 

The shear effect on the ultimate torsional capacity is taken into account by a direct approach

inspired from torque-shear interaction relationships. Among the applicable shear-torsion interaction

equations that are available in the literature, the elliptical form of (Klus 1968) is adopted in this

study. The ultimate torque, TC, and corresponding twist, , are then calculated from 

(25)

(26)

where  and  are the ultimate torque and twist calculated based on , respectively.

In this study the ultimate shear strength of a section, Vu, is obtained from AS-3600 (2009) as

(27)

(28)

(29)

in degrees (30)

where Ast is the cross sectional area of fully anchored longitudinal reinforcement provided in the

tensile zone, Asv is the cross sectional area of the shear reinforcement, d is the section effective depth,

 is the angle between concrete compressive struts and the longitudinal axis of the member, which

is interpolated between 30o to 45o depending on shear force level. Further, 

 is a factor taking account of section size, β2 is a factor taking account of axial force and for

members subjected to significant compression . For members under axial tension

, where N and Ag denote the axial force and section gross area, respectively.

It is noteworthy that the simple shear model adopted in this formulation can capture the possible

shear failure in case it dominates the response and the interaction between shear and torsion with

reasonable accuracy. The shear deformation, however, is not taken into account which of course is

not that significant for ordinary frame elements with the span to depth ratio of more than 4 as the

main focus of this paper. 

The outline of the flowchart and adopted algorithm for constructing the modified torque-twist

curve can be found in Valipour (2009).

5. Total secant formulation of element

Fig. 4(a) shows a 2-node frame element AB with 3 translational and 3 rotational DOFs. If the

torsional degrees of freedom are taken to be uncoupled from the other DOFs, the total form of the

equilibrium equation for configuration Ax after deformation (see Fig. 4b), yields

fsi

Aleff

ψC

TC Tu 1 V/Vu( )2
–=

ψC ψu 1 V/Vu( )2
–=

Tu ψu Aleff

Vu Vu min Asv fytd/s( )cotθv+=

Vu min β1β2wd
Astfcp

wd
------------⎝ ⎠
⎛ ⎞

1/3

=

Vu max 0.2fcpwd=

θv 2
V Vu min–

Vu max Vu min–
-------------------------------+⎝ ⎠

⎛ ⎞ 15
o( )=

θv

β1 1.1 1.6 d/1000–( )=

1.1≥
β2 1 N/14Ag+=

β2 1 N/3.5Ag 0≥–=
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(31)

(32)

where b(x) is the force interpolation matrix,  is the vector of nodal

generalised force (without torsional DOF) at end A, D(x) is a vector of total section internal forces,

 is a vector of total section forces solely due to the element loads

and  refers to the undulation effect, which is the deflection of the

element with respect to the rotated axis of the element after deformation (Carol and Murcia 1989).

Adopting a perfect bond assumption and the Navier-Bernoulli hypothesis, the total normal strain

of the fibres in local x-x direction, , can be obtained from

(33)

where  denotes the component of strain related to axial force and bending, based on the

Navier-Bernoulli assumption and  and  are the section total axial strain and

curvatures about local z- and y-axes, respectively, and  denotes the torsion related strain

component and it is only non-zero for fibres in the equivalent box domain  (see Fig. 2). 

Decomposing the total strain to elastic, , and inelastic, , components, the constitutive law can

be expressed in the total secant form (Fig. 5)

(34)

where Ee is the total secant modulus of the unloading curve.

D x( ) b x( )QA D
*

x( ) Dund x( )+ +=

b x( )
1– 0 0 0 0

0 x 0 1– 0

0 0 x– 0 1–

=

QA Q1  Q2  Q3  Q4  Q5[ ]T=

D
*

x( ) P
*

x( )  Mz

*
x( )  My

*
x( )[ ]T=

Dund x( ) 0  Q1vy′ x( )  Q1vz′ x( )[ ]T=

ε x( )

ε x( ) εN B– εW+ εr x( ) yκz x( )– zκy x( )– εW+= =

εN B–

εr x( ) κz x( ), κy x( )
εW

Ξ
εe εp

σ Ee ε εp–( )=

Fig. 4 (a) 2-node frame element AB, (b) Projection of deformed configuration Ax, in x-y and x-z plane 
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The complete stress-strain relationship of concrete and steel bars, together with unloading/

reloading rules adopted in this paper, is shown in Fig. 5. Since the softening of concrete under

tension and compression is taken into account the constitutive law scaling approach is adopted to

restore the objectivity of results (Coleman and Spacon 2001).

Substituting Eqs. (33) and (34) into section equilibrium equations, yields

(35)

(36)

(37)

(38)

where  is the secant stiffness matrix of the section,  is the residual plastic force

vector for the section,  is the section force vector due to torsion-warping and

 is the generalized total strain vector of the section. The secant

flexibility matrix of the section, , is obtained by inverting the section secant stiffness matrix

and then Eq. (35) can be rearranged as

(39)

The section integrals in Eqs. (36) to (38) are calculated numerically by fibre element discritisation. 

If  and  denote the secant stiffness matrix and torsional stiffness of the element AB,

respectively, adopting the torsions as independent of the other forces, we have

D x( ) k
e

s x( )d x( ) Dp x( ) DW x( )–+=

k
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f
e
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e
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K
e

e k
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Fig. 5 (a) CEB-FIP model for compressive concrete (hardening) with linear softening, (b) bi-linear stress-
strain relationship adopted for steel bars 
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(40)

, I: Identity matrix (41)

Applying the virtual work principle for the cantilever configuration AB that is subjected to a

virtual load vector at the free end, then from Eqs. (31) and (39) (Valipour 2009)

(42)

(43)

, (44)

(45)

(46)

(47)

, (48)

(49)

where,  and  are the flexibility and stiffness sub-matrix of end A,  denotes the nodal

generalised plastic deformation at end A,  is the generalised displacement at end A due to

torsional warping,  is the vector of nodal generalised deformation at end A due to element loads

and  is a vector of nodal generalised deformations due to the undulation effect. The vector

 is a vector of generalised nodal forces at end A

due to P-∆ effects,  is a vector containing the end nodal forces due to element distributed load,

 is the reaction vector at clamped end B due to element load and  is

a 1 by 5 null matrix. 

Since in the force-based element no displacement shape function is used, a more elaborate

approach is needed when compared to displacement-based approach for updating the element

(structure) deflected shape. Adopting the small strains and slope within the Navier-Bernoulli beam

theory leads to the following strain-displacement relationships for an arbitrary section located at
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distance x along the element axis projected in x-y (x-z) plane (Fig. 4)

(50)

(51)

In this study, a composite Simpson integration method is employed to numerically determine the

integrals along the element axis (Valipour and Foster 2008). Using the composite Simpson’s

scheme, the integrals on the right side of Eqs. (50) and (51) can be easily calculated for the odd

numbered longitudinal sections. For the even numbered sections, a piecewise parabolic interpolation

of curvature function is used. A Simpson scheme with (2n + 1) integration point along the element

divides the element to n equal sub-elements. If it is assumed that the curvature varies parabolically

along each sub-element, then integrals in Eqs. (50) and (51) can be calculated analytically for the

even numbered sections.

It was determined in Valipour and Foster (2008) that the total secant solution method offers better

stability compared with the tangent approach and can handle the stress-strain relationships that have

a horizontal plateau, such as the torque-twist adopted in this study.

6. Modified torque-twsit curve for cyclic loading

The modified sectional torque-twist curve, together with predefined variation of strain in steel

bars, constructs the framework for cyclic torque-twist relationship (see Fig. 6). With regard to

Fig. 6, and consistent with the damage model adopted for the concrete material, it is assumed that

the unloading/reloading branch before the reinforcement yielding (point  in Fig. 6) follows

from the total secant modulus. After yielding of the reinforcement, the unloading/reloading branch

follows a line with a slope equal to the initial modulus of the torque-twist curve and full unloading

is based on the concept of kinematic hardening. 

vy′ x( ) q8 q2–( )/l q4–{ }x x s–( )κz s( ) sd
0

x

∫–=

vz′ x( ) q9 q3–( )/l q5–{ }x x s–( )κy s( ) sd
0

x

∫–=

ψy Ty,( )

Fig. 6 Unloading/reloading rules for cyclic torque-twist curve
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If  denotes the plastic twist, the section torque-twist after yielding can be re-written as

(52)

Accordingly, the element plastic force vector, Qp, given in Eq. (44) is modified as follows

(53)

where  denotes the element plastic deformation due to torsion and  is the element

torsional stiffness.

The cyclic torque-twist relationship shown in Fig. 6 is overly simplified for cases in which a

frame element is subjected to high range of unloading/reloading cycles, such as seismic loadings.

However, for the potential progressive collapse analysis of frames, where just the first few

unloading/reloading cycles are important, the model performance appears reasonable for capturing

the global response of a structure.

7. Implementation of the formulation for dynamic analysis

The recursive total form of the dynamic equilibrium equations for a disretised system at the

instant t + ∆t is 

(54)

(55)

where  and  are the mass, damping and total secant stiffness matrices of the

structure with superscript (i − 1) denoting the iteration number,  is the external nodal force

vector and  and  denote displacement, velocity and acceleration vectors of the

structure, respectively. After time discretisation of Eq. (54) using a standard method such as the

Newmark or θ-Wilson (Bathe 1997), the recursive equations are solved by following a direct

iterative scheme (Valipour and Foster 2009a).

In the numerical examples presented in this paper, wherever required, a proportional damping in

the form of  is adopted.

8. Numerical examples

8.1 Introduction

In this section four numerical examples are used to demonstrate the performance of the model,

assess its accuracy and determine the importance of including the modelling of torsion in assessing

the structure response of 3D regular building frames. Further to the examples presented below, the

reader is referred to (Valipour and Foster 2009b) and (Valipour 2009) demonstrating the validity of

the static torsional model for various beam-beam sub-assemblages subjected to various

combinations of bending, shear and torsion.
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Fig. 7 Outline of the T-specimens, section and reinforcing details for Hsu and Burton (1974) and Collins and
Lampert (1971) tests 
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8.2 Nonlinear analysis of T sub-assemblages

In this example, the T-specimens taken from Hsu and Burton (1974) and Collins and Lampert

(1971) tests are analysed. The geometry of the specimens and sections, the reinforcing details,

loadings and material properties are given in Fig. 7. The tensile strength of concrete is taken as

 and the strain corresponding to the compressive strength of concrete is . 

The T-specimen is modelled by three modified flexibility-based elements, one element for

ft 0.33 fcp= εc0 0.0022=

Table 1 Maximum loading capacity of the specimens and torsional capacity of the spandrel beams in Hsu and
Burton (1974) and Collins and Lampert (1971) tests

Maximum loading capacity of 
specimen (kN)

Torsional capacity of spandrel 
beam (kN·m)

Failure mode

A3 B2 S1 S3 A3 B2 S1 S3 A3 B2 S1 S3

Experiment 151 126 248 292 5.35 4.54 77.5 111.5 F# F# F# S##

Present study 156 124 232 278 5.55 4.73 75.1 103.1 F# F# F# F-S*

*Flexural-shear failure
#Flexural failure
##Shear failure

Fig. 8 (a) Load versus spandrel beam torque, (b) torque versus twist of the spandrel beam for specimens A3
and B2 in Hsu and Burton (1974) test
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modelling of the floor beam and two elements to represent each half of the spandrel beam. A

composite Simpson’s method with 19 integration points over both section depth and width is used

in the analytical model and the distance between longitudinal integration points is limited to

200 mm. 

The maximum loading capacity of the specimens, torsional capacity of the spandrel beams and

failure mode of different specimens obtained from the analytical model are compared with the

experimental data in Table 1. The load versus spandrel beam torque and the torque versus twist of

the spandrel beams for specimens A3 and B2 are shown in Fig. 8 and the load versus torque

imposed at the mid-span of the spandrel beam and the load versus twist of the spandrel beam for

specimens S1 and S3 are shown in Fig. 9. It is observed that the results of the analytical model

correlate well with the experimental results. Furthermore, in order to show the efficiency and

accuracy of the proposed model compared with more expensive continuum-based finite element

models, the T-specimens are modelled in ATENA-3D (Cervenka et al. 2002). In ATENA, the 3D

Nonlinear Cementitious Material model, which is basically a fracture-plastic constitutive law, is

used for modelling concrete behaviour and discrete reinforcement with a linear elastic-hardening 1D

stress-strain relationship employed to model the longitudinal and transverse steel bars (Cervenka et

al. 2005). The relative size of the brick elements used in ATENA model is limited to 30 mm for

specimen A3 and B2 and 50 mm for specimens S1 and S3.

The total analysis time for the model with frame elements to construct the equilibrium path with

Fig. 9 (a) Load versus torque imposed at the mid-span of the spandrel beam, (b) load versus twist of the
spandrel beam for specimens S1 and S3 in Collins and Lampert (1971) test
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10 unequal load steps was less than 3.2 seconds for all of the specimens, compared with 674

seconds for the ATENA model. This demonstrates the efficiency of the formulation developed in

this study. The average number of iterations required for convergence of flexibility frame model

varies from 6 to 11 iterations at different loading stages.

8.3 Progressive collapse test of a 5-bay, 3-storey RC frame

In this example the potential progressive collapse of a 3-storey building, of plan and reinforcing

details shown in Fig. 10, is studied. The storey height is h = 3.4 m and the structure has been

designed based on the AS3600 (2009) for a dead load of G = 5 kN/m2, including structure self-

weight, perimeter wall load of G = 5 kN/m, live load of Q = 3.0 kN/m2 and a uniform lateral wind

pressure of W = 1.2 kN/m2. 

The material properties are , , , ×

 and . The concrete strain corresponding to compressive strength of

unconfined concrete is  and the ultimate strain of unconfined compressive concrete is

. The effect of confinement on the concrete strength and stiffness is considered by

adopting the Mander et al. (1988) model. 

In the model, each column and each beam in the y-y direction is modelled with 1 element and in

x-x direction each beam consists of 3 elements. The section of column is divided to 17 fibres over

fy 400 MPa= Es 2.0 10
5

MPa×= fcp 28 MPa= E0 2.8=

10
4

MPa ft 2.0 MPa=

εc0 0.002=

εcu 0.01=

Fig. 10 Plan of the 3-storey building and the sections reinforcing details
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both depth and width and for beams the section is divided to 19 fibres over depth and 13 fibres

over width. The distance between longitudinal integration points varies between 250 mm to

300 mm.

The load combination considered for progressive collapse assessment includes the dead load plus

25% of the live load, which is consistent with GSA (2003) provisions. First a static analysis for the

structure under a load combination of G + 0.25 Q was carried out and the internal nodal forces on

the top of the columns B-1, C-1 and C-2 were determined. In the next step, three scenarios were

considered. In scenario-1 column B-1 is removed, in scenario-2 column C-1 is removed and in

scenario-3 column C-2 is removed. For each scenario, nodal forces of the removed columns are

imposed on the top joints with opposite sign. These nodal forces are then removed over a period of

1 msec and the ensuing dynamic response of the structure, under the load combination G+0.25Q,

captured.

The Newmark scheme with a maximum time step of 4 msec was used for the dynamic analysis.

Adopting a Rayleigh damping, with a mass and initial stiffness multiplier of 

(equivalent to modal damping factors of ζ1 = 0.004 and ζ4 = 0.008 for the first and fourth modes),

the history of vertical displacement for joints B-1 and C-1 on the first level corresponding with

scenario-1 and scenario-2, is given in Fig. 11. With regard to the AS3600 (2009) provisions for

linear elastic analyses, the column bending stiffness were multiplied by 0.8 and the beams bending

and torsional stiffnesses were multiplied by a factor of 0.4. Comparing the maximum displacement

obtained from a dynamic analysis with that of the static analysis results suggests a dynamic load

factor (DLF) of the order of 1.8 to 2.0 for linear and a DLF between 1.3 and 1.6 for nonlinear

analysis which is consistent with the commonly accepted dynamic load factor of 2 as accepted in

various design manuals (GSA 2003, US DoD 2004). Furthermore, the DLF for different scenarios is

reported in Table 2.

In Fig. 12, the dynamic history of the vertical displacement for scenario-1 and scenario-2, with

and without damping and including linear (initial) and nonlinear torsional stiffness, are compared to

show the importance of damping and torsion on the nonlinear dynamic response of the structure. It

is noteworthy that adopting a reasonable value for the damping factor can improve the stability of

the numerical analysis, removing the noise from the response and resolving some convergence

issues. With regard to Fig. 12, it is observed that the difference between maximum displacements

predicted by models with linear torsion (l/torsion) and nonlinear torsion (nl/torsion) is less than 8%

a b 0.001= =

Fig. 11 History of vertical displacement for joint (a) B-1 in the scenario-1, (b) C-1 in the scenario-2
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in this example and it can be concluded that the torsional response of elements has only a minor

effect on the global response of the structure. The total time of analysis for the linear, non-linear

with linear torsion and non-linear with non-linear torsion on a PC with a 3.0 GHz dual-core

processor and running Windows Vista are 0.6, 69 and 95 minutes, respectively.

8.4 Potential progressive collapse analysis of a 6-storey frame

In this example, progressive collapse analysis of the 6-storey building shown in Fig. 13 is

presented. The storey height is h = 3.2 m and the building was designed using the principles of

AS3600 (2009) for a dead load of G = 5 kN/m2, perimeter wall load of G = 5 kN/m, live load of

Q = 2.0 kN/m2 and a uniform lateral wind load of W = 1.5 kN/m2. The material properties are:

fy = 400 MPa, Es = 2.0 × 105 MPa, fcp = 30 MPa, E0 = 3.0 × 104 MPa and ft = 2.1 MPa. The concrete

strain corresponding to compressive strength of unconfined concrete was  and the

ultimate strain of unconfined compressive concrete was taken as .

In the analytical model, each column was modelled with 1 element with 21 fibres over both the

section depth and width. Each beam in x-x direction was modelled with 1 element and in the y-y

direction 3 elements were used. For the beams, the section depth and width are divided to 19 and

13 fibres, respectively. The distance between longitudinal integration points varies between 280 mm

to 310 mm.

εc0 0.0022=

εcu 0.01=

Table 2 Maximum displacement obtained from different type of analysis and calculated DLF for different
scenarios 

Maximum displacement from different analyses (mm)

Linear analysis Non-linear analysis DLF (with damping)

Static Dynamic Static
Dynamic Linear

 analysis
Nonlinear 
analysisn/l torsion l/ torsion

Scenario-1 38.2 72.5 54.7 87.9 79.5 1.88 1.61

Scenario-2 37.5 66.2 52.5 69.7 65.0 1.77 1.33

Scenario-3 29.6 59.3 40.2 51.9 49.0 2.00 1.29

Fig. 12 Effect of damping and variable torsional stiffness on the history of vertical displacement for joint (a)
B-1 in the scenario-1, (b) C-1 in the scenario-2 
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The load combination considered for progressive collapse assessment was G + 0.25 Q. Two

scenarios based on instantaneous removal of columns C-1 (scenario-1) and C-2 (scenario-2) on the

ground floor are studied. The procedure for the progressive collapse analysis is as per that used in

the previous example.

The Newmark scheme with variable time steps and a maximum time step of 4 msec was used for

the dynamic analysis. Adopting a Rayleigh damping with a mass and initial stiffness multiplier of

 (equivalent to modal damping factors of ζ1 = 0.003 and ζ8 = 0.015 for the first and

eighth modes), the history of vertical displacement for joints C-1 and C-2 on the first level and

corresponding with each scenario are monitored. The results from the nonlinear dynamic analysis

and from a linear elastic analysis are plotted in Fig. 14. For the linear analysis, the effective

stiffness was taken as 0.4 times the gross stiffness for the beams, and 0.8 times the gross stiffness

for the columns. Comparing the maximum displacement obtained from a dynamic analysis with

static results shows a DLF of 1.7 and 1.9 for scenario-1 and 2, respectively, which is consistent with

the value of DLF = 2 as adopted in various design manuals (GSA 2003, US DOD 2004). 

In Fig. 15, the history of displacements is plotted for scenarios 1 and 2 with two different levels

of damping and for the cases of linear and nonlinear torsion. It is noteworthy that adopting high

levels of damping may underestimate the displacement response of the structure, which is not the

case for linear elastic analysis. With regard to Fig. 15, it is observable that the difference between

a b 0.001= =

Fig. 13 Plan of the 6-storey building and the sections reinforcing details 
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maximum displacements predicted by models with linear torsion (l/torsion) and nonlinear torsion

(nl/torsion) is less than 5% in this example and it can be concluded that the torsional response of

elements has only a minor effect on the global response. The total time of analysis for the linear

model, nonlinear model with linear torsion and nonlinear model with nonlinear torsion on a PC with

a 3.0 GHz dual-core Intel processor and running Windows Vista was 1.1, 178 and 283 minutes,

respectively.

8.5 3D model of a 3-storey 1-bay frame

In this final example, the behaviour of a 3-storey building analysed by Shi et al. (2008) using LS-

DYNA is studied. The plan of the building and outline of the model prepared in LS-DYNA are

shown in Fig. 16. The storey height is h = 3.0 m and dimensions of all columns are 300 × 300 mm

beams 200 × 300 mm all with 2% longitudinal reinforcement with yield stress of fy = 335 MPa and

10 mm diameter hoop reinforcement at 200 mm spacings with the yield stress of fyh = 235 MPa. The

slab is 150 mm thick with 2% longitudinal reinforcement in each direction (1% in each layer). The

weight of the infill walls was taken as 0.8 kN/m2 and live load is Q = 4.0 kN/m2. 

The load combination used for progressive collapse assessment is G + 0.25 Q according to GSA

(2003) and a progressive collapse assessment is undertaken with the removal of the middle ground

Fig. 14 History of vertical displacement for joint (a) C-1 in the scenario-1, (b) C-2 in scenario-2 

Fig. 15 Effect of damping and variable torsional stiffness on the history of vertical displacement for joint (a)
C-1 in the scenario-1, (b) C-2 in the scenario-2  
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floor column. The properties of concrete were taken as fcp = 32 MPa, ft = 2.0 MPa, εc0 = 0.002 and

εcu = 0.01. The strain rate effects on the concrete and steel bars behaviour are taken into account

using the dynamic increase factor approach (Valipour et al. 2009).

For the LS-DYNA analysis, the concrete was modelled using MATERIAL 72 and steel bars with

MATERIAL 003. The strain rate effect was taken into account and 3D solid elements with a size of

50 mm on each side were used (Shi et al. 2008). 

In the frame model, each column is modelled with 1 element with 11 Simpson integration points

along the element axis. In the y-y direction, each beam is modelled with 1 element with 13

integration points along the element axis and in the x-x direction, each beam consists of 4 equal

elements with and 9 integration points along each element. Further, the section depth and width are

divided to 11 fibres and nonlinear torsion model is adopted within 3D frame model. Each bay of the

one-way slab is modelled by 3 equivalent beams of 1500 mm width and 150 mm depth and the

remaining part of slab thickness is considered as a flange for the beams in y-y direction. For the

dynamic analysis, the Newmark scheme with a maximum time step of 5 msec is used with Rayleigh

damping with the mass and initial stiffness multipliers of . 

The history of vertical displacement and velocity for joint N1 after removal of the middle column

(B-1) is shown in Fig. 17. The maximum displacement of joint N1 obtained from the frame model

is 208 mm, which is close to the value of 234 mm predicted by the LS-DYNA analysis. In general,

the correlation between the LS-DYNA and frame models for predicting the global response of the

structure is reasonable. The LS-DYNA model, however, can potentially capture local effects of 3D

stress state on the material response as well as the higher modes of deformation, which the frame

element is incapable of predicting.

a b 0.001= =

Fig. 16 Plan and outline of the 3-storey building model in LS-DYNA (Shi et al. 2008)
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The total time of analysis for the 3D frame model on a PC with a 3.0 GHz dual-core Intel

processor and running Windows Vista was just 140 seconds, which is comparable with the

computation time (approximately 5 minutes) for an explicit procedure such as that used in the LS-

DYNA solver.

9. Conclusions

The formulation of a nonlinear reinforced concrete frame element including torsion is derived.

The formulation takes both physical and second order geometrical nonlinearities into account.

The developed frame element is used for static and dynamic progressive collapse assessment of

3D reinforced concrete frames based on the alternate load path method and it is shown that the

element is computationally very efficient while maintaining good accuracy. Furthermore, by

comparing the maximum displacements predicted by models with linear torsion (l/torsion) and

nonlinear torsion (nl/torsion) it was shown that the torsional behaviour of reinforced concrete

elements satisfying minimum standard requirements is not significant for progressive collapse

assessment of the framed structures studied.

Different levels of damping were used for progressive collapse analysis and it was shown that

adopting a reasonable value of damping for nonlinear dynamic analysis of frames improves the

numerical stability and can avoid an underestimation of displacements.

Comparing the results of nonlinear static and dynamic analysis, the dynamic to static ratio of

maximum displacement was estimated and it was shown that the impact load factor of 2 adopted by

different guidelines, for example GSA (2003), to take account of the dynamic effects in an

equivalent static analysis, provides a reasonably conservative upper bound for the studied cases. 

The importance of nonlinear analysis for progressive collapse assessment of frames was

demonstrated by comparing linear and nonlinear dynamic analysis results. Finally, it was

demonstrated that the stable implicit modelling approach developed in this thesis, combined with

the efficient model formulation, could have a similar computational efficiency as the, conditionally

stable, explicit formulations currently available.

Fig. 17 History of (a) vertical displacement, (b) vertical velocity of joint N1 



444 Hamid R. Valipour and Stephen J. Foster

References

ACI 318-99 (1999), Building Code Requirements for Structural Concrete and Commentary, American Concrete
Institute, Farmington Hills, MI.

CEB-FIP Model Code 1990: Design Code (1993), Thomas Telford, London.
AS3600-2009 (2009), Australian Standard, Concrete Structures.
Bairan, J.M. and Mari, A.R. (2007), “Multiaxial-coupled analysis of RC cross-sections subjected to combined

forces”, Eng. Struct., 29(8), 1722-1738.
Bao, Y., Kunnath, S.K., El-Tawil, S. and Lew, H.S. (2008), “Macromodel-based simulation of progressive

collapse: RC frame structures”, J. Struct. Eng., 134(7), 1079-1091.
Bathe, J.K. (1997), Finite Element Procedures, McGraw Hill, New York.
Carol, I. and Murcia, J. (1989), “Nonlinear time-dependent analysis of planar frames using an ‘exact’

formulation. I. Theory”, Comput. Struct., 33(1), 79-87.
Cervenka, V., Cervenka, J. and Pukl, R. (2002), “ATENA - A tool for engineering analysis of fracture in

concrete”, Sadhana - Academy Proceedings in Engineering Sciences, 27(4), 485-492.
Cervenka, V., Jendele, L. and Cervenka, J.  (2005), “ATENA program documentation, Part 1: theory”, Prague.
Coleman, J. and Spacon, E. (2001), “Localization issues in force-based frame elements”, J. Struct. Eng.-ASCE,

127(11), 1257-1265.
Collins, M.P. and Lampert, P. (1971), “Redistribution of moments at cracking- the key to simpler torsion design”,

Department of Civil Engineering, University of Toronto, Toronto.
Cornelissen, H.A.W., Hordjik, D.A. and Reinhardt, H.W. (1986), “Experimental determination of crack softening

characteristics of normal weight and lightweight concrete”, Heron, 31(2), 45-56.
DoD (2005), Design of Building to Resist Progressive Collapse, Washington DC.
Ellingwood, B. and Leyendecker, E.V. (1978), “Approaches for design against progressive collapse”, J. Struct.

Eng.-ASCE, 104(ST3), 413-423.
Gong, S., Lu, Y., Tu, Z. and Jin, W. (2009), “Validation study on numerical simulation of RC response to close-

in blast with a fully coupled model”, Struct. Eng. Mech., 32(2), 283-300.
GSA (2003), Progressive Collapse Analysis and Design Guidelines for New Service Administration, Washington

DC.
Hsu, T.T.C. (1984), Torsion of Reinforced Concrete, Van Nostrand Reinhold, New York.
Hsu, T.T.C. and Burton, K.T. (1974), “Design of reinforced concrete spandrel beams”, J. Struct. Div., 100(1),

209-229.
Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), “Progressive collapse of multi-storey

buildings due to sudden column loss - Part I: Simplified assessment framework”, Eng. Struct., 30(5), 1308-
1318.

Kaewkulchai, G. and Williamson, E.B. (2004), “Beam element formulation and solution procedure for dynamic
progressive collapse analysis”, Comput. Struct., 82(7-8), 639-651.

Khandelwal, K., El-Tawil, S., Kunnath, S.K. and Lew, H.S. (2008), “Macromodel-based simulation of
progressive collapse: Steel frame structures”, J. Struct. Eng., 134(7), 1070-1078.

Kim, J. and Park, J. (2008), “Design of steel moment frames considering progressive collapse”, Steel Compos.
Struct., 8(1), 85-98.

Klus, J.P. (1968), “Ultimate strength of reinforced concrete beams in combined torsion and shear”, Am. Concrete
Inst. J., 65(3), 210-216.

Lampert, P. and Thurlimann, B. (1968), “Torsionsversuche an stahlbetonbalken, (Torsion test of reinforced
concrete beams)”, Report No. Nr 6506-2, Institute Fur Baustatik, ETH Zurich (in German), Zurich.

Mander, J.B., Priestley, M.J.N. and Park, R. (1988), “Theoretical stress-strain model for confined concrete”, J.
Struct. Eng., 114(8), 1804-1826.

Mitchell, D. and Collins, M.P. (1974), “The behavior of structural concrete beams in pure torsion”, Report No.
74-06, Department of Civil Engineering, University of Toronto, Toronto.

Mohamed, O.A. (2009), “Assessment of progressive collapse potential in corner floor panels of reinforced
concrete buildings”, Eng. Struct., 31(3), 749-757.

Navarro Gregori, J., Miguel Sosa, P., Fernandez Prada, M.A. and Filippou, F.C. (2007), “A 3D numerical model



Nonlinear analysis of 3D reinforced concrete frames: effect of section torsion 445

for reinforced and prestressed concrete elements subjected to combined axial, bending, shear and torsion
loading”, Eng. Struct., 29(12), 3404-3419.

Rahal, K.N. and Collins, M.P. (1996), “Simple model for predicting torsional strength of reinforced and
prestressed concrete sections”, ACI Struct. J., 93(6), 658-666.

Sasani, M. (2008), “Response of a reinforced concrete infilled-frame structure to removal of two adjacent
columns”, Eng. Struct., 30(9), 2478-2491.

Sasani, M. and Kropelnicki, J. (2008), “Progressive collapse analysis of an Rc structure”, Struct. Des. Tall Spec.,
17(4), 757-771.

Sasani, M. and Sagiroglu, S. (2008a), “Progressive collapse of reinforced concrete structures: A multihazard
perspective”, ACI Struct. J., 105(1), 96-103.

Sasani, M. and Sagiroglu, S. (2008b), “Progressive collapse resistance of hotel San Diego”, J. Struct. Eng.,
134(3), 478-488.

Shi, Y., Hao, H. and Li, Z. (2008), “An improved procedure for progressive collapse analysis of RC frames to
blast loading”, Blast Design and Modelling Forum. Canberra.

Valipour, H.R. (2009), “Nonlinear analysis of reinforced concrete frames under extreme loadings”, PhD
Dissertation, School of Civil and Environmental Engineering, The University of New South Wales, Sydney,
Australia.

Valipour, H.R. and Foster, S.J. (2008), “A total secant flexibility-based formulation for frame elements with
physical and geometrical nonlinearities”, Finite Elem. Anal. Des., (submitted for publication).

Valipour, H.R. and Foster, S.J. (2009a), “Non-local damage formulation for a flexibility-based frame element”, J.
Struct. Eng.-ASCE, 135(10), 1213-1221.

Valipour, H.R. and Foster, S.J. (2009b), “Nonlinear reinforced concrete frame element with torsion”, J. Eng.
Struct., (submitted for publication).

Valipour, H.R., Huynh, L. and Foster, S.J. (2009), “Analysis of RC beams subjected to shock loading using a
modified fibre element formulation”, Comput. Concrete, 6(5), 377-390.

Valipour, H.R. and Foster, S.J. (2010), “A Total secant flexibility-based formulation for frame elements with
physical and geometrical nonlinearities”, Finite Elem. Anal. Des., 46(3), 288-297. 

Valipour, H.R. and Foster, S.J. (2010), “Nonlinear reinforced concrete frame element with torsion”, J. Eng.
Struct., 32(4), 988-1002. 

Vecchio, F.J. and Collins, M.P. (1986), “Modified compression-field theory for reinforced concrete elements
subjected to shear”, J. Am. Concrete. Inst., 83(2), 219-231.

Weerheijm, J., Mediavilla, J. and Van Doormaal, J.C.A.M. (2009), “Explosive loading of multi storey RC
buildings: Dynamic response and progressive collapse”, Struct. Eng. Mech., 32(2), 193-212.

Yagob, O., Galalf, K. and Naumoski, N. (2009), “Progressive collapse of reinforced concrete structures”, Struct.
Eng. Mech., 32(6), 771-786.

Yi, W.J., He, Q.F., Xiao, Y. and Kunnath, S.K. (2008), “Experimental study on progressive collapse-resistant
behavior of reinforced concrete frame structures”, ACI Struct. J., 105(4), 433-439.

Young, W.C. and Roark, R.J. (2001), Roark's Formulas for Stress and Strain, McGraw-Hill Professional.




