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Nonlinear vibrations of axially moving beams with 
multiple concentrated masses

Part I: primary resonance
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Abstract. Transverse vibrations of axially moving beams with multiple concentrated masses have been
investigated. It is assumed that the beam is of Euler-Bernoulli type, and both ends of it have simply
supports. Concentrated masses are equally distributed on the beam. This system is formulated
mathematically and then sought to find out approximately solutions of the problem. Method of multiple
scales has been used. It is assumed that axial velocity of the beam is harmonically varying around a
mean-constant velocity. In case of primary resonance, an analytical solution is derived. Then, the effects
of both magnitude and number of the concentrated masses on nonlinear vibrations are investigated
numerically in detail.
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1. Introduction

Axially moving beams are used in many engineering device (Ulsoy et al. 1978, Wickert and
Mote 1988, Abrate 1992). Moving beams used for transport and printing purposes in some
devices, involve various projecting parts. These projecting parts can be modeled as concentrated
mass. Thus, a conclusion about vibration characteristics of real system can be made by means of
the model. 

Large transverse vibrations are one of the most important problems in moving continua systems.
This problem is resulted from beam pre-stress, beam axial velocity change, etc. According to these
parameters, many different linear and nonlinear continua models have been constructed. By means
of these models, many studies on vibration characteristics of the real systems were carried out;
Pasin (1972), studied the stability of transverse vibrations of beams with periodically reciprocating
motion in axial direction. Simpson (1973), studied the unstressed moving beam, while their models
did not account for the effect of tension. Wickert and Mote (1990) presented a complex modal
method for axially moving continua including beams where natural frequencies and modes
associated with free vibrations serve as a basis for analysis. Wickert and Mote (1991) observed that
Rayleigh’s quotient provide a variation method in determining eigenfunctions of axially moving
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continua for gyroscopic systems. Öz and Pakdemirli (1999), and Öz (2001) obtained mode shapes
of an axially moving beam under pinned-pinned and clamped-clamped supported cases. To find
natural frequencies of an axially moving beam pinned-pinned supported, Özkaya and Öz (2002)
treated artificial neural networks. Öz (2003) calculated natural frequencies of an axially moving
beam which was in touch with a small mass under pinned-pinned and clamped-clamped boundary
conditions. Öz et al. (1998), studied dynamic stability of an axially accelerating beam with small
bending stiffness by means of multiple scale method. To construct non-resonant boundary layer
solutions for an axially accelerating beam with small bending stiffness, Özkaya and Pakdemirli
(2000) combined the method of multiple scales and the method of matched asymptotic expansions.
Öz et al. (2001) and Öz (2001) applied the method of multiple scales to calculate analytically the
stability boundaries of an axially accelerating beam. To determine stability boundary of an axially
accelerating beam, Özkaya and Öz (2002) used an artificial neural network algorithm. Based on
one-term Galerkin discretization, Ravindra and Zhu (1998) analyzed chaotic behavior of axially
accelerating beam. Pellicano et al. (2001), studied on vibrations of power transmission belts, and
developed a theoretical model. Pellicano and Vestroni (2002) investigated axially moving beam
subjected to a transverse force at super-critical velocity range. To study dynamic stability of an
axially accelerating beam subjected to a tension fluctuation, Parker and Lin (2001) adopted one-
term Galerkin discretization and the perturbation method. Chen and Yang (2007), analyzed
equations of motion of axially moving beams as two models; a partial differential equation and an
integro-partial differential equation, and obtained natural frequencies. Based on Timoshenko model,
Tang et al. (2008) analyzed natural frequencies, mode shapes, and critical velocity of the axially
moving beam for different end conditions. Lee and Jang (2007), investigated the effects of the
continuously incoming and outgoing semi-infinite beam parts on the dynamic characteristics and
stability of an axially moving beam by using the spectral element method. Finally, nonlinear
transverse vibrations of a slightly curved Euler Bernoulli beam carrying a concentrated mass has
been studied by Ozkaya et al. (2009).

The case considered at all studies about axially moving beams is that the beam is homogeneous.
Aim of this assumption is to ease the calculations in engineering works. In case of nonhomogeneity
such as trapezoid and square shapes etc. that may occur on the beam, to calculate solution as
approximate as possible to real system, they must be considered as concentrated masses. Thus, this
study has been built on vibrations and stability of axially moving beam with multiple concentrated
masses. For solutions to such systems, firstly mathematical model of the system has been derived
by means of Hamilton’s Principle. After model has been formed as dimensionless, system was
solved approximately by means of the method of multiple scales. Under primary resonance
assumption, analytical solution has been made and amplitude-phase modulation equations have been
derived. Natural frequencies of the system have been obtained from modal functions. For steady-
state solutions of the system, free-undamped and forced-damped vibrations have been investigated.
Effects of concentrated masses on vibrations have been searched with regard to both magnitude and
number of masses.

2. Problem formulation

We consider a simply supported axially moving beam-mass system shown in Fig. 1. The beam
which is prestressed with initial tensile load P moves with harmonically varying average transport
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velocity u(t). M concentrated masses are placed on the beam with equal span along L distance. The
model with s masses is made of s + 1 parts, and to formulate the model mathematically energy of the
system has been used. Total energy of the system consists of kinetic (T) and potential (U) as shown
below 

(1)

(2)

In Eqs. (1)-(2), the terms  and  are defined as transversal and longitudinal displacements,
respectively. Other properties of the beam is such that; A is the cross sectional area, ρ is the density,
I is the moment of inertia of the beam cross-section with respect to the neutral axis and E is the
Young’s Modulus. (·) and ( )' denote differentiations with respect to the time t* and the spatial
variable x*, respectively. Terms in Eq. (1) are kinetic energies of the beam and concentrated masses
respectively. Potential energy terms in Eq. (2) are due to stretching, bending and prestressing of the
beam, respectively. Using these terms of energy and invoking Hamilton’s principle 

(3)

and substituting Eqs. (1) and (2) into Eq. (3), and performing necessary calculations, it is observed
that the axial displacement  can be eliminated from the equations (see Öz et al. 2001). Finally,
one obtains the following equations of motion 

T
1
2
--- · ρ·A· v̂r 1+

( )2· x̂d
x̂
r

x̂
r 1+

∫
r 0=

s

∑
1
2
---· M· v̂r x̂ x̂

r
=

t̂ t̂=
⎝ ⎠
⎜ ⎟
⎛ ⎞2

r 1=

s

∑+=

v̂ ŵr 1+
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Fig. 1 Axially moving beam with multiple concentrated masses 
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(4)

where  and , .
There are (s + 1) equations in Eq. (4). For simply supported ends, boundary and continuity

conditions can be written as follows 

, ,

(5)

The nondimensional quantities are defined as follows

, ,  

(6)

where υ is the radius of gyration, vf and vk are stiffness and slenderness coefficients of the beam,
respectively. After some manipulation, it is obtained that there is a relation between rigidity and
slenderness as vf = vk · L/υ.

Substituting Eq. (6) into Eqs. (4) and (5), and adding damping (µ) and harmonical transverse
forcing (F) to these equations (see Chakraborty et al. 1999, Ozkaya 2009), one obtains
dimensionless equation of motion as follows 

 

(7)

and boundary conditions, which provide the equation of motion, are

, , 

 

(8)
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E·I·ŵm 1+

iv
ρ·A· ŵm 1+
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M ŵp

··
2·û·ŵp
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·

·ŵp
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3. Analytical solutions

3.1 Perturbation analysis

First, lets us consider the velocity of the beam varying harmonically about a constant velocity u0

as follows 

(9)

where ε is the book-keeping parameter. ε · u1 and Ω is the magnitude and frequency of the
harmonical variation respectively. 

We assume approximate expansions of the form

(10)

where T0 = t is the fast time scale, T1=ε · t and T2 = ε2 · t are slow time scales.
The slenderness, forcing and damping terms are treated as follows 
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Thus, problem becomes of a weakly nonlinear system.
For the method of multiple scales, time derivatives can be written as follows

  , (12,13)

where D0, D1, and D2 indicate the time derivatives with respect to T0, T1, and T2, respectively.
Inserting Eqs. (9)-(12) into Eqs. (7)-(8), and equating like powers of ε, and omitting the higher

terms of ε in the resulting equations, one obtains a general form for any power of ε as follows 
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(15)

where p = 1, 2, …s, m = s and x0 = 0, xs+1 = 1. If values of g is equal to 1, 2, and 3, Eqs. (14)-(15)
correspond to order ε0, ε1, and ε2 respectively (see Eq. (10)). 

3.2 Primary resonance

Taking into consideration the primary resonance case, we assume the frequency of the harmonical
forcing term which defined at Eq. (9) as follows

 (16)

where ω is the corresponding natural frequency, and σ is the detuning parameter.
Taking g as 1 at Eq. (14), one obtains order ε (0) which correspond to linear problem of the

system. We assume solution of this problem as follows
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Inserting Eq. (17) into Eq. (14), one has the following differential equation which satisfies mode
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Solution of the eigenfunction Y(m+1)(x) can be written as follows
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Substituting Eq. (17) into Eq. (15), conditions which provide Eq. (18) are obtained 

, , , 

 (21)

Taking g as 2 at Eq. (14), order ε(1) of Perturbation series is obtained. Substituting Eq. (17) into
Eq. (14) and performing necessary calculations, it is observed that D1 · A(T1, T2) must be equal to
zero in order to determine a solution to this order. Thus, it must be provided that A = A(T2).
Considering this case and substituting Eq. (17) into Eq. (14), we obtain following solution of the
form
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, , , 
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(30)

Taking g as 3 at Eq. (14), problem at order ε(2) is obtained, and to determine a solution to this
problem we assume a solution of the form 
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 (33)

In order to find a solution to Eq. (32), one requires a solvability condition. Applying procedures
which are determined in Nayfeh (1981), the solvability conditions for Eqs. (32)-(33) are satisfied

 
(34)

where f and K are defined in Appendix, and for mode shapes equations are normalized as follows 

 (35)

Introducing the polar form

, (36)

where an and θn are real functions of time, one obtains the following equation from Eq. (34) 

(37)

where the phase is defined as

(38)

From the Appendix, one observes that K has both real and imaginary values. In this case,
separating Eq. (38) into the real and imaginary parts, finally, one obtains the following amplitude
and phase modulation equations 

(39)

(40)

where im and re indices indicate imaginary and real parts of K, respectively.

4. Numerical analysis

From Eqs. (17)-(20), natural frequencies can be calculated numerically. In order to understand
well the effects of the axial velocity and mass ratio on the natural frequencies, these parameter have
been drawn on the same graph. In Fig. 2 and Fig. 3, natural frequency-mean axial velocity curves
of beam with 5 and 10 concentrated masses shown, respectively. These figures present first and
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second modes. They have been found that the natural frequencies decrease with increasing both the
axial velocity and the ratio and number of masses. Once, frequency of the first mod decreases with
increasing velocity and then becomes zero, but after a certain velocity, first mode is again activated
and reaches to the second mode. Thus, mode transition occurs and this transition zone shown as
mode shapes in the figures in Öz (2001). While holding the mass ratio very small (0.01) natural
frequencies given at Fig. 2 is compatible with the ones given Öz et al. (2001).

We assume that axially moving beam-mass system has undamped-free vibrations. Taking f, σ and
µ1 as zero, how behavior system would exhibit can be investigated from non-linear frequency-
response curves. From Eq. (36), one obtains the following non-linear frequency equation

 (41)

In steady state case,  vanishes and may be taken as zero. Taking σ as zero in Eq. (38), one
obtains that . Eliminating γ from Eqs. (39)-(40) yields the non-linear frequency term as
follows 

(42)

The non-linear frequency-response curves are plotted for the steady state case in Figs. 4-7. In
these figures, effects of the ratio and number of the concentrated masses as well as effects of the
mean axial velocity and slenderness coefficient on the non-linear frequency are studied. In Fig. 4,
the effects of different slenderness coefficients, which correspond to radius of gyration, on curves
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Fig. 2 Axial velocity versus natural frequency of the
beam having 5 masses for different α values,
vf = 0.8 (dashed line: first mode, solid line:
second mode)

Fig. 3 Axial velocity versus natural frequency of the
beam having 10 masses for different α values,
vf = 0.8 (dashed line: first mode, solid line:
second mode)
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determined. According to these results, the non-linear frequency increases with the increasing radius
of gyration at any amplitude of vibration. In Fig. 5, non-linear frequency-response curves are plotted
for different mean axial velocities. Non-linear frequency decreases with the increasing axial velocity.
In Fig. 6, the non-linear frequency-response curves are plotted for different numbers of concentrated
masses with equal ratio and their effects on the non-linear frequency are searched. It is seen that the
non-linear frequencies decrease with the increasing numbers of masses. In Fig. 7 the non-linear
frequency-response curves are plotted for different ratios of the concentrated masses with equal
number, and it is seen that the non-linear frequencies decrease with the increasing ratios of the
masses. From this point, it is reached as a result that; the ratio and number of the masses have same

Fig. 4 Non-linear frequency-response curves for
different slenderness coefficients. vf = 0.8,
u0 = 1, u1 = 0.1, 5 masses, α= 0.1 

Fig. 5 Non-linear frequency-response curves for
different mean axial velocities. vf = 0.8, vk1 =
0.4 (ν = L/2), u1 = 0.1, 5 masses, α = 0.1

Fig. 6 Non-linear frequency-response curves for
different mass numbers. vf = 0.8, vk1 = 0.4
(ν = L/2), u0 = 1, u1 = 0.1, α = 0.1

Fig. 7 Non-linear frequency-response curves for
different mass ratios. vf = 0.8, vk1 = 0.2 (ν = L/
4), u0 = 1, u1 = 0.1, m = 5 masses 
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the effect, and the non-linear frequency decreases with increasing these parameters.
We assume that axially moving beam-mass system has damped-forced vibrations. In Eqs. (39)-

(40),  and  vanish for the steady-state case. Taking these parameters as zero, fixed-points can be
found. Stability of these fixed-points are sought by means of the following Jacobian matrix

(43)

where it is assumed that  and , and terms with 0 indices define fixed points of the
steady state. If eigenvalues of the Jacobian matrix have negative real parts, these fixed points are
stable.

In Figs. 8-11 force-response curves are drawn to investigate effects of the ratio and number of the
concentrated masses as well as those of the axial mean velocity and slenderness coefficient of the
beam on vibration response of the system. In these curves, it assumed that forcing is f = 1 and
damping is µ1 = 0.1, and solid lines denote stable and dashed lines denote unstable solutions. In
Fig. 8, force-response curves are plotted for different slenderness coefficients. In these curves, as
slenderness ratio increases, hardening behavior increases, multi-valued region expands, but
maximum magnitudes have no notable variation. In Fig. 9, force-response curves are drawn for
different mean axial velocities. According to this figure as axial velocity increases, multi-valued
region expands and maximum magnitudes increase. In Fig. 10, different numbers of masses with the
same ratios are considered, and it is seen that maximum magnitudes increase, and multi-valued
region expands with the increasing of number of the masses. In Fig. 11, different mass ratios are
considered for the same number of the masses, and it is seen that multi-valued region expands and
maximum magnitudes increase with increasing mass ratios.
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a a
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Fig. 8 Force-response curves for different slenderness
coefficients. vf = 0.8, u0 = 1, u1 = 0.1, m = 5
masses, α = 0.1

Fig. 9 Force-response curves for different mean axial
velocities. vf = 0.8, vk1 = 0.4 (ν = L/2), u1 = 0.1,
m = 5 masses, α = 0.1
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5. Conclusions

Aim of this study is to measure vibration behaviors of axially moving beams with multiple
concentrated masses in primary resonance case. First, beam is assumed as Euler-Bernoulli type, and
beam’s both ends are simply supported. Then mathematical model is built assuming that
concentrated masses are placed on the beam with equal spans. Obtained differential equations are
solved by means of the method of multiple scales (a perturbation method). 

From the first order in perturbation expansions, natural frequencies of the system are calculated. It
is observed that natural frequencies decrease with increasing both the mass numbers and the mass
ratios. Frequency of the first mode becomes zero with the increasing mean axial velocity, after that
if velocity continues to increase first mode is activated again and transition to the second mode
occurs. 

By means of the second and third orders of the perturbation expansions, the amplitude and phase
modulation equations are obtained. For steady state case, behaviors of undamped-free and forced-
damped vibrations are investigated by means of these equations. Investigations on both mass
numbers and mass ratios result the same behavior. According to this result; system has hardening
type behavior and non-linear frequency increases with increasing frequency. It is observed that with
increasing either mass numbers or mass ratios, the non-linear frequency decreases, the multi-valued
region expands, and maximum amplitude increases.

According to the results obtained from this study, writers are investigating 3:1 internal resonances
that may occur in the system. It will be presented effects of the numbers and ratios of the
concentrated masses as well as the effects of the slenderness ratios on the 3:1 internal resonances.
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