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Abstract. This study shows how uncertainties of data like material properties quantitatively have an
influence on structural topology optimization results for dynamic problems, here such as both optimal
topology and shape. In general, the data uncertainties may result in uncertainties of structural behaviors
like deflection or stress in structural analyses. Therefore optimization solutions naturally depend on the
uncertainties in structural behaviors, since structural behaviors estimated by the structural analysis method
like FEM need to execute optimization procedures. In order to quantitatively estimate the effect of data
uncertainties on topology optimization solutions of dynamic problems, a so-called interval analysis is
utilized in this study, and it is a well-known non-stochastic approach for uncertainty estimate. Topology
optimization is realized by using a typical SIMP method, and for dynamic problems the optimization
seeks to maximize the first-order eigenfrequency subject to a given material limit like a volume.
Numerical applications topologically optimizing dynamic wall structures with varied supports are studied
to verify the non-stochastic interval analysis is also suitable to estimate topology optimization results with
dynamic problems.
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1. Introduction

In the recent years, there has been an increased interest in the simulation of structural systems

with uncertainties. The interest in uncertain structural systems stems from the fact that uncertainties

remain in most models of real world problems. Uncertainties arise either due to our lack of

knowledge, or due to intrinsic variabilities of physical quantities. Data like domain geometry,

material properties, or loads, are usually not known perfectly. Due to the uncertainties in the model,

it is uncertain to what degree the prognoses of numerical simulations match reality and this fact is

often ignored in traditional engineering practice. Clearly, it is desirable to quantify the uncertainties

in the answer, and different approaches have been proposed for this as follows.
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A stochastic approach is described by stochastic models, and then uncertain parameters are

described by random variables. Uncertain spatial properties are modeled by random fields.

Alternatively, fuzzy sets may be used to describe uncertainties (Neumaier 2003, 2004). Uncertain

parameters are described by possibility functions specifying their degree of belonging to a set.

Maglaras et al. (1997) compare random and fuzzy models of uncertainty and state that uncertainty

is better represented by a stochastic description if enough statistical information is available and that

otherwise fuzzy theory is better suited. However, given that only small amounts of statistical

information about data are available only in a few specialized cases, the fuzzy and stochastic

approaches can not deliver reliable solutions without sufficient experimental data.

In contrast to fuzzy and stochastic methods, set methods are independent of a probability or

possibility measure. They assume that parameters are inside given sets. Then they compute sets in

that the response is guaranteed to lie. Representatives of this approach are interval analysis (Moore

1966) and its generalizations to ellipsoidal and convex modeling (Zhiping 2003).

In structural designs and analyses, what causes uncertainty of structural responses is generally

divided into internal and external components of structures. The former is the uncertainty by

boundary conditions, loading conditions, assumptions of modeling, and analytical assumption, the

latter is the uncertainty by the workmanships and natural environmental conditions. 

In particular, these uncertainties of structural behaviors may also have an effect on optimal

designs of structures. Topology optimization design (Bendsøe et al. 1988) as a representative of

structural optimization designs produces both optimal shape and topology of required structures and

then provides conceptual design information to designers. Topology optimization design including

the effect of uncertainty may give more reliable and practical solutions than conventional design

assuming uncertainties are excluded in data and all data are nominal values.

This study presents a dynamic topology optimization design considering numerical uncertainties

of structural behaviors. The uncertainties of structural behaviors result from numerical uncertainties

of initial data such as structural parameters and loading conditions. Here in order to evaluate data

uncertainties and structural behaviors during optimization procedures, interval arithmetic is utilized

as a kind of non-stochastic methods. It is assumed in the interval arithmetic that the numerical

uncertainties of initial data are defined as a tolerance error and systematic uncertainties of structures

are represented by uncertainty combination of initial data. Optimal design results of structure can be

easily yielded with reliable structural safety by considering critical cases of uncertainty

combinations. It is a main advantage of the present method. For dynamic topology optimization

design, a density distribution method (Bendsøe et al. 1988) is carried out since it is superior to other

optimization methods with respect to reducing computational burdens.

In this study, numerical applications of varied structures like a cantilever, a clamped structure, and

a structure with fixed four supports are investigated for the dynamic topology optimization design

by finite element method using interval arithmetic. The optimal results with uncertainties are

compared with conventional topology optimization solutions without considering the uncertainties

and efficiency of the present approach is demonstrated.

The outline of this study is as follows. In Section 2, the theory of interval arithmetic and an

interval change function are described. Dynamic topology optimization formulation and algorithm

related to data uncertainty are presented in Section 3. Numerical applications and discussion for

uncertainty estimate of dynamic topology optimization design of some structure are studied in

Section 4 followed by the conclusions in Section 5.
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2. Non-stochastic interval analysis

2.1 Interval arithmetic

In structural designs and analyses, what causes uncertainty of structural responses is generally

divided into internal and external components of structures. The former is the uncertainty by

boundary conditions, loading conditions, assumptions of modeling, and analytical assumption, the

latter is the uncertainty by the workmanships and environmental conditions. Fig. 1 shows the

uncertainty of structural response and its reason with respect to initial data of structures.

An interval Analysis is a field of mathematics that accounts for numerical imprecision and

physical uncertainty with intervals using set-based operations. In the interval arithmetic, the errors

or uncertainties are always denoted by intervals.

From this principle, we define intervals firstly. In general, an interval arithmetic operation °
between intervals a and b is given as

 

 (1)

where the hull of a set produces the minimum and maximum bounds. Interval vectors and interval

matrices are nothing more than standard vectors and matrices with intervals instead of scalar values

for components and elements (Alefeld et al. 2000, Sunaga 1958, Dwyer 1951, Moore 1966).

Let  be a structural parameter vector with bound error or uncertainties and

where 

 (2)
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Fig. 1 Structural response uncertainty by uncertainties of initial data
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then

 (3)

where  is the lower bound of an interval and  is the upper bound of an

interval. Also we define the mid-point of an interval cc by

  (4)

We define the uncertainty of an interval  by

 (5)

In a similar way, expressed by , the mid-point and uncertainty of a n-dimensional

interval vector  can be described by

 (6)

and

  (7)

Commonly used notions are the mid-point of an interval vector 

 (8)

and the uncertainty of an interval vector ∆X

 (9)

A matrix whose elements are the interval parameters is called an interval matrix and expressed by

, in which  and  consist of each lower and upper bound. Similarly, the mid-point

and uncertainty of n-dimensional interval matrix  can be expressed by

 (10)

and

 (11)

Commonly used notions are the mid-point of an interval matrix  as follows.

 (12)

and the uncertainty of an interval matrix ∆A as follows.
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 (13)

For many operations, including standard arithmetic operations of addition, subtraction,

multiplication and division, the resulting set is also an interval that can be conveniently defined in

term of end-points of the argument intervals.

Let  and  be the intervals, then the operations are defined by the

following formulas.

 (14)

 (15)

 

  (16)

  (17)

2.2 Interval change function

An interval change function is evaluated as a mathematical formulation which is composed of the

upper and lower bounds with respect to the tolerance error x. A basic idea behind the interval

change function is quantitatively to calculate the changes of the required results that take place in

uncertainty problems, when a small change (i.e., uncertainty) is made by the uncertain parameters

against some nominal values in the structural system.

Considering whether numerical uncertainties of the initial data exist or not, a generalized scenario

function of the uncertainty  may be written as follows:

  (18)

where
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structures. Except for members with certainty, the interval change functions determine geometric

and material properties of uncertain members with respect to the structural system. The different

combinations of members with and without uncertainties results in different systematic behaviors.

3. Topology optimization formulation for dynamic problems

3.1 Governing equation for dynamic problems

Governing equation for free vibration systems considered in this study can be written as

  (19)

By using Laplace transformation Eq. (19) can be rewritten as

  (20)

By substituting ω2 for l into Eq. (20), the final eigenvalue problem is defined as

(21)

where K and M are the global stiffness and mass matrix, respectively. ωi is the i-th eigenfrequency

and ui denotes the corresponding eigenvector depending on ωi. In order to numerically solve

Eq. (21), K and M have to be the symmetric and positive definite (Lehoucq et al. 1998) stiffness

and mass matrices of the finite element-based, generalized structural eigenvalue.

3.2 Topology optimization formulations for dynamic problems

Eigenvalue optimization designs are profitable for mechanical structural systems subjected to

dynamic loading conditions like earthquakes and wind loads. The dynamic behaviors of structural

systems can be estimated by eigenfrequency which describes structural stiffness. In general

maximizing first-order eigenfrequency can be an objective for dynamic topology optimization

problems since stiffness of structures also increases when eigenfrequency increases. Problems of

topology optimization for maximizing natural eigenfrequencies of vibrating elastostatic structures

have been considered in the studies (Pedersen 2000, Rong et al. 2002, Barbarosie et al. 2009).

Assuming that damping can be neglected, such a dynamic design problem can be formulated as

follows.

 (22.1)
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where these discrete formulations for the dynamic problem are equal to continuous formulations for

static problems except for objective and governing equation.

3.3 Constitutions of K and M by interpolation scheme of SIMP material

According to the SIMP approach (Bendsøe et al. 1988), the material density distribution affects

element stiffness and the element stiffness-density relationship may be expressed in terms related to

Young’s modulus , is associated with the updated element density  and it is defined as

, ,  (23)

where E0 and Φ0 denote nominal values of Young’s modulus and material density of elements,

respectively, and Ne is the number of elements.

According to the penalized Young’s module, element stiffness matrix of four-node square

elements with eight-DOF used in this study is written as

  

(24)
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,

,
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  (25)

where  is a material tensor of each finite element i and includes the updated term of Young’s

modulus  which has been defined by the updated element density average . ν is Poisson’s

ratio.

According to dynamic topology optimization problems using SIMP material, mass matrix also

includes the same penalty formulation such as the stiffness matrix. Therefore it can be written as

  (26)

For the mass matrix, a lumped mass matrix ML, a consistent mass matrix MC or a combination of

those two can be used. The lumped and consistent mass matrices are written as respectively in case

discretization of eight-node square elements with 8 DOFs.

  (27)

   (28)

where Φ and A denote the material density and area of elements, respectively and I is the 8×8 unit

matrice.

3.4 Definition of uncertainty data by using interval arithmetic

In this study it is assumed that material properties such as E and ν have data uncertainties. When

uncertainties of the data are considered, stiffness of structure may be described by interval

arithmetic formulations in global systems.

Through interval arithmetic, E and ν including data uncertainty described by upper and lower

bounds may be written as follows, respectively.
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  (30)

where , and  are nominal values of density, Young’s modulus, and Poisson’s ratio,

respectively. α,  are tolerance errors of uncertainty of data.

3.5 Numerical algorithm for dynamic topology optimization design considering uncertainty

The topology optimization processes are composed of structural analysis, sensitivity analysis and

optimization method in turn of procedures. 

When the repetitive solution is converged during optimization procedures, all iterations are

finished and optimal solutions are obtained. For structural analysis, finite element method using

interval arithmetic of section 2.1 is utilized. 

A variational approach with adjoint method is applied for sensitivity analysis. With respect to

design variables s (for instance, material element densities), the total differential form (Haug et al.

1986) of the objective function is the combination of parts of an explicit partial derivative and an

implicit partial derivative as follows.

(31)

According to dynamic topology optimization, the total derivative of objective function of

Eq. (22.1) is written as a simple discrete formulation as follows.

(32)

An OC (Optimality Criteria) method (Sigmund 2001) of gradient-based concepts is used for the

optimization method since it can reduce computational consumptions of many design variables. By

considering heuristic updating scheme (Bendsøe 1995) introducing a moving limit to prevent 

from changing to much in one iteration, the design variables can now be updated using

(33)

and

(34)

The above-mentioned algorithm of total processes is shown in Fig. 2. The developed MATLAB

code for dynamic topology optimization design is based on MATLAB code (Sigmund 2001) for

static designs. In MATLAB program Eigenvalue problem can be easily solved by using internal

functions for user comfort. One of internal functions is “eigs” to automatically produce

Eigenfrequency and Eigenvector by inputting a global stiffness matrix, a global mass matrix, and an

Eigenmode order. It is shown in Fig. 3.
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4. Numerical applications and discussion

Structural models for the numerical examples of dynamic topology optimization design

considering uncertainties are a cantilever structure, a clamped structure, a structure with four fixed

supports as shown in Fig. 4. A 4 m × 2 m design domain is discretized using 40 × 20 square finite

elements with four nodes. The nominal material parameters are Young’s modulus of concrete

E = 1.0 GPa and Poisson’s ratio ν = 0.3. For dynamic topology optimization problem objective

function is maximal fundamental first-order eigenfrequency. Penalty parameter is k = 3.0 for the

SIMP approach. Mass is combined with each half of consistent mass and lumped masses, and it is

Fig. 2 Topology optimization algorithm by considering data uncertainty

Fig. 3 Internal function “eigs” stored in MATLAB codes

Fig. 4 Structural models
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used for eigenvalue analyses into dynamic topology optimization design. The volumes of 30% for a

cantilever structure, 40% for a clamped structure, and 50% for a structure with four fixed supports

are fixed during entire optimization procedures.

Material properties of E and ν are assumed to be uncertainty data with the error of 5% and 10%

in this study. Uncertainty phases on systematic structural analyses and topology optimization design

results are divided by whether they are uncertain or not into dynamic structural behaviors as shown

in Table 1. As can be seen, uncertainty models are A5~H5 with the error of 5%, A10~H10 with the

error of 10%, and I0 without error. Here l, o, and u denote a lower bound value, a nominal value,

and an upper bound value, respectively.

Table 1 Uncertainty combination models

Data

Error of uncertainty

5% 10% 0%

A5 B5 C5 D5 E5 F5 G5 H5 A10 B10 C10 D10 E10 F10 G10 H10 I0

E l l o u u o l u l l o u u o l u o

ν l o l u o u u l l o l u o u u l o

Fig. 5 Optimal topologies by considering the uncertainty error of 5% and 10% including a nominal optimal
topology
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4.1 Dynamic topology optimization designs of a cantilever structure

Fig. 5 shows optimal topologies of a cantilever structure as shown in Fig. 4(a) by using a jagged

density distribution contour designed by error of 5% and 10% including a nominal optimal solution

without considering uncertainties. Results of uncertainty cases of E and ν to take all lower bound

values or all upper bound values, in which differences from a nominal optimal solution are the

greatest, are shown here. As can be seen, a joint part of a blue circle connected by four structural

members moves toward a maximal stiffness structure according to degree of data error. The range

of the movement at error of 10% is greater than that of 5%. Two joints are produced in case

E_u/ν_u with the error of 10%.

Fig. 6 shows converged objective function values of each uncertainty case as shown in Table 1. In

uncertainty cases E_up/nu_up and E_low/nu_low, differences from the nominal value of the case

E_o/nu_o are the biggest at the error of both 5% and 10%.

4.2 Dynamic topology optimization designs of a clamped structure

Fig. 7 presents optimal topologies of a clamped structure as sketched in Fig. 4(b) by using a

jagged density distribution contour designed by error of 5% and 10% including a nominal optimal

solution without considering uncertainties. As can be seen a hole size changes according to ultimate

uncertainty cases E_u/ν_u and E_l/ ν_l in comparison with a nominal case, while global topology is

fixed. Moreover, the change of hole size is the greatest at the error of 10% like an example 4.1.

Fig. 8 shows converged objective function values of each uncertainty case as shown in Table 1.

The graph is all the same to that of Fig. 6.

4.3 Dynamic topology optimization designs of a structure by four fixed supports

Fig.  9 presents optimal topologies of a structure with four fixed supports as sketched in Fig. 4(c)

by using a jagged density distribution contour designed by error of 5% and 10% according to

ultimate uncertainty cases E_u/ν_u and E_l/ν_l in comparison with a nominal case, including a

Fig. 6 Converged objective function values of each uncertainty case
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nominal optimal solution without considering uncertainties. As can be seen results on the error of

5% are almost all the same, but changes of holes in small circles and horizontal members in large

circles occurs at error of 10%.

Fig. 7 Optimal topologies by considering the uncertainty error of 5% and 10% including a nominal optimal
topology

Fig. 8 Converged objective function values of each uncertainty case
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Fig. 10 shows converged objective function values of each uncertainty case as shown in Table 1.

The history of the curve is all the same to that of Figs. 6 and 8.

Finally, as can be seem in numerical applications of section 4.1, 4.2, and 4.3, it can be found that

the effect of uncertainty cases as shown in Table 1 is E_up & ν_up > E_low & ν_low > E_low &

Fig. 9 Optimal topologies by considering the uncertainty error of 5% and 10% including a nominal optimal
topology

Fig. 10 Converged objective function values of each uncertainty case
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ν_o E_up & ν_o > E_up & ν_low > E_low & ν_up > E_o & ν_up > E_o & ν_low. From this fact,

it can be found that the weakest effect factor of material properties on uncertainties of dynamic

topology optimization is Poisson’s ratio ν, and dynamic topology optimization results are the most

sensitive to uncertainties of Young’s modulus E.

As can be seen in final topologies in Figs. 5, 7, and 9, the use of different uncertainty values of

Young’s modulus and Poisson’s ratio in SIMP gives slightly different optimal topologies. However

the slight different results are significant, since they are linked to investigate the most appropriate

location and connectivity among the so-called quasi-members described by density distributions.

Although these present trivial exercises focus on macro-mechanics like civil and architectural

engineering, the consideration of structural uncertainty may be more significant in the fields

concentrating on micro-mechanics such as magnetics and electronics.

5. Conclusions

In this study, uncertainties of dynamic topology optimization design results are quantitatively and

non-stochastically estimated by using a well-known interval analysis which is based on interval

arithmetic of lower and upper bounds of given data.

According to numerical applications the following results are obtained in this study. First, when

data uncertainties of material properties like Young’s modulus and Poisson’ ratio are assumed to

carry out dynamic topology optimization design, a globally optimized topology like connectivity

among members is fixed, but a locally optimal shape like material boundaries is very sensitive at

like holes or joints, which extend, move, or are newly created into a given design space. Second,

uncertainty error of Young’s modulus is more sensitive on topology optimization results than that of

Poisson’s ratio. Third, like as uncertainties of static topology optimization from data uncertainties

which are verified at last researches (Lee et al. 2006a, b), data uncertainties also affect topology

optimization results of dynamic problems.

In order to escape the interval analysis from a classical mathematical tool and treat it into

practical mechanical problems, in the future’s work, uncertainties on varied mechanical problems

like buckling or plasticity resulted from the data uncertainty need to be investigated, and finally

may be linked to uncertainty estimate on structural optimization design, especially topology

optimization, generally termed a synthesis of mechanical principles.
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