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Abstract. The paper proposes two methodologies for damage identification from measured natural
frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage
model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs
of different frequencies. The performance of the method is checked for a wide variation of damage
positions and extents. The method is also extended to a discrete structure in the form of a five-storied
shear building and the simplicity of the method is demonstrated. The second method is through smeared
damage model, where the damage is assumed constant for different segments of the beam and the lengths
and centres of these segments are the known inputs. First-order perturbation method is used to derive the
relevant expressions. Both these methods are based on distributed damage models and have been checked
with experimental program on simply supported reinforced concrete beams, subjected to different stages of
symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both
the methods can be adopted together in a damage identification scenario.
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1. Introduction

The relevant connected papers, which inspire the present work, include that of Morassi (2001),

Palacz and Krawczuk (2002), Gladwell’s (2004) classical book. The pioneering work and the

resulting classical Cawley-Adams criterion states that the ratio of frequency change in two modes is

only a function of the damage location and independent of the damage magnitude (Cawley and

Adams 1979). The other papers in this field are described subsequently and by no-means the list is

exhaustive. A comprehensive survey on damage detection through vibration testing is presented by

Doebling et al. (1996). Experiments and analytical predictions conducted by Owolobi et al. (2003)

and Yang et al. (2001) provide benchmark data for researchers in this field. Silva and Gomes (1994)

have used slotted and fatigue-cracked beams in experimental modal analyses. Cracks in a cantilever
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beam are modeled as a fracture hinge by Ju and Mimovich (1986). Reinforced and plain concrete

beams are tested by Choudhury and Ramirez (1992) where changes in resonant frequencies and

power spectral densities of displacements resulting from simulated damage are studied.

Polycarbonate cantilever beam having an opening and closing crack in the interior of the beam,

running parallel to the top and bottom surfaces is studied by Prime and Shevitz (1996). Lakshmanan

et al. (1991) and Rajagopalan et al. (1996, 1999) have correlated the cracking and yielding stiffness

of the normal and fiber-reinforced concrete beams, under various stages of pre-loading with the

fundamental frequencies. A method is outlined such that from frequency measurements, maximum

load carried by the bridge in its life time could be estimated. Hassiotis and Jeong (1993) and

Hassiotis (2000) outlined a method based on first order perturbation and optimization theory to

compute the damage from measured natural frequencies. Recently, wavelet based damage detection

technique, which makes use of dynamic and static response and using ANN techniques are dealt

with by Lakshmanan et al. (2007a, b, 2008a, b).

Damage identification using measured natural frequencies, with the damage modelled as an

equivalent rotational spring is dealt with by Liang et al. (1992), Nandwana and Maiti (1997) and

Patil and Maiti (2003). Anti-resonant frequency based damage identification is proposed by Dilena

and Morassi (2004, 2009). Casas and Aparicio (1994) advocate a higher mode based damage

identification methodology using dynamic test data. Cerri and Vestroni (2000, 2005) deal with

distributed damage model and uses pseudo-experimental values to validate their method. They have

employed a minimisation procedure based on output error to identify damage in a reinforced

concrete element. In a recent paper Morassi (2007) proposes a damage identification methodology

using Fourier coefficients. Non-linear vibration characteristics and amplitude based damping values

are used as tools for damage identification by Neild et al. (2003).

2. Distributed damage model 

In this model, applicable for a damaged reinforced concrete structure, each damaged element has

a reduced (EI)eff, depending upon the moment, axial and shear force. Typically the moment

curvature (M-φ) relationship of a reinforced concrete structural member, dominated by flexure could

be estimated, using a fibre theory. The neutral axis depth is sequentially progressed with varying

concrete strains at extreme fibre, such that force equilibrium is achieved. The moment-curvature

pair, giving rise to such an equilibrium state could then be estimated. This can also be calculated

using reasonably valid approximated expressions, using a tri-linear (M-φ) relationship, denoting the

transition between cracking, yielding and ultimate moment stages. The effect of axial force could

also be accounted in estimating such relationships. The slope of the moment curvature curve could

then be used to estimate (EI)eff at a particular section depending on the moment carried by that

section. A quasi-brittle material like concrete, combined with reinforcing steel and having a large

number of closely spaced cracks, under conditions of high bond stress between steel and concrete

could be conveniently represented by an (EI)eff model, both for calculating deflections and also for

computing the natural frequencies of a flexure-dominated beam. 

The parameters that define a damage are shown in Fig. 1, for a contiguous single distributed

damage, position of damage given by, �0/�, extent of damage as, 2b0/� and the magnitude of damage

as, β. All these parameters are thus non-dimensionalised.
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2.1 Natural frequency change as a perturbation problem (Gatti and Ferrari 1999)

A perturbation analysis of the non-degenerate dynamic system with small perturbations occurring

in its stiffness and mass matrices is made use of to derive appropriate equations.

The unperturbed (zeroth-order) problem is 

(1)

K0 and M0 are the stiffness and mass matrices at the initial state and λi
(0) and pi

(0) are the

corresponding i-th eigen value and vector. If K1 and M1 be the small perturbations in stiffness and

mass matrices respectively, then the perturbed problem could be written as 

(2)

The eigenvalues and vectors can be expanded in terms of a parameter γ, such that zeroth, first,

etc., powers of γ correspond to the zeroth, first orders of perturbation analysis. The perturbed

portion of the original matrix, namely K1 and M1 can be replaced by γ. K1 and γ.M1 and λi and pi

are expressed as power series in γ.

The perturbed eigenvalues and vectors are written as 

(3)

By substituting the perturbed eigenvalues and vectors into Eq. (6), one obtains the following

modified eigenvalue problem 

(4)

After equating coefficients of equal powers of γ on both sides of the equation, we can write the

zeroth, first and higher order perturbation equations. These are 
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Fig. 1 Simply supported beam with a reduced EI for portion of its length
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 (5)

It is seen that zeroth order problem is the unperturbed problem. The vector pi
(1) can be expanded

on the basis of unperturbed eigen vectors and may be written as

(6)

The scalar cir is the scaling factor, with which the original mode shapes are modified to render

perturbed mode shapes. After simplification and imposing ortho-normalizing properties for both old

and new eigen vectors, the first order perturbation calculations of i-th eigenvalues and vectors can

be written as 

(7)

For the condition of a damaged structure, wherein the mass matrix does not undergo any change

from the original matrix, the above equation can be further simplified as 

(8)

From Eq. (8), it can be noted that only the ith un-perturbed eigen parameters enter into the

calculations of perturbed eigenvalues, whereas the complete unperturbed eigen solution is required

for the computation of the perturbed eigenvectors.

The perturbation equation states that the new values of frequencies can be obtained by using the

original unperturbed eigen functions.

(9)

where  is the mode shape corresponding to the initial state. By making a

substitution of , (where α is the ratio of the damaged EI as compared to the

original EI and β is the magnitude of damage) in the previous equation and simplifying, the

following expression for the normalized natural frequency is obtained for the damaged simply

supported beam.
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(10a)

(10b)

For the case of a beam with a uniform reduction of EI to αEI for its entire length, the equation

reduces to a simplest case possible

(11)

If further simplifications are made in the foregoing equation for the case of a crack situated at the

centre and for values of b0 tending towards zero 

(12)

Eq. (12) states that for a centrally situated defect, with length closer to zero, even-numbered

modes have no reduction in their frequencies. The above set of equations, though approximate and

simple and based on a first order perturbation theory, sheds insights into some concepts as

summarized below.

(a) The defect in a beam manifested in the form of a reduction in its fundamental frequencies is a

function of (i) position of damage l0, (ii) extent of damage 2b0 and (iii) the magnitude of damage β.

(b) The position of damage is such that it is sensitive to certain set of frequencies only. The

simple example is the invariance of even numbered modes to a centrally situated damage.

(c) The upper-bound of the reduced frequency for a magnitude of damage β is at best , when

the reduction in EI is full and widespread. In all other cases it is less than this value. However for a

total uniform reduction in EI, the mode shape does not change from the original state.

2.2 Damage identification from Iso-Eigen-Value-Change contours and case studies (Lak-

shmanan et al. 2010)

Ratio of the changes in Eigen values are obtained after modifying and re-writing Eq. (10b) as  

(13)

It is thus proved that the ratio of changes in Eigen values (squared frequencies) are independent of

the magnitude of damage and are functions of only the central position of damage and its extent.

Indirectly, the method is to find out the ratio of variation in frequencies as the normalising factor,

, is only , which is a constant for any pair of frequencies. Having eliminated a variable

(β), out of three, it is possible to construct curves such that the variation of Eigen-change-ratios can

be visualised. Varying values of  which give rise to constant Eigen-change-ratios

, for a simply supported beam are plotted in the form of contours. Figs. 2 and 3

show the contours of equal Eigen-change-ratios, for pairs of Eigen values namely 2-1 (n = 2, m = 1)
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and 4-2, respectively. The curves are generated for a beam of 500 segments.

The exercise is not just a theoretical one and certain physical in-sights are obtained:

(a) Contours are symmetrical indicating that a symmetrical damage affects the frequencies equally.

(b) The π/4 radians boundary line shows that the extent of damage , on the Y-axis shall at

best be twice the centre of damage location , on the X-axis.

(c) Contours at the top most point of the figure, indicate a wide-spread constant damage and all

frequencies are affected equally and hence the ratio is 1.0.

(d) Contours closer to support are around 3 to 4, indicating that high frequencies are affected more

by off-centric damage.

(e) As a converse of point (d), contours closer to mid-span, for 21, 31 and 41 contours show

smaller values especially for small amounts of damage. 

This exercise on the theoretical damage identification study involves certain example problems

which are solved using these contours. 

The six example validation problems (Lakshmanan et al. 2010) solved are as follows : (β is the

magnitude of damage, kept as 0.10)

(a) (b) 

(c) (d) 

(e) (e) 

It is seen than case (a) to case (d) are un-symmetrical damage patterns and case (e) and case (f)

are symmetrical damages. For example, in case (a)  for the pairs of 2-1, 4-2, 3-1

and 4-1 frequency ratios are 1.897, 0.129, 0.968 and 0.245 respectively. The intersection point of all

the contours indicate the position and extent of damage, which in this case works out to be 0.25 and

0.1 respectively (Fig. 4(a)). Figs. 4(b) shows the results of case (b). After the geometric details of
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Fig. 2 Iso-Eigen-Change contours for frequency ratio
2 : 1 (Increment : 0.07843)

Fig. 3 Iso-Eigen-Change contours for frequency ratio
4 : 2 (Increment : 0.07843)
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the damage are got, Eq. (10b) is used to extract the magnitude of damage. The least square

estimation can be adopted, for this over-determined set of equations, (with four equations and one

un-known), which in this case works out to be 0.10.

It is to be observed that, for symmetrical damages, the intersection point is also a point of zero

slope and hence the contours are tangential to each other. An extra frequency information may be

required to resolve this issue or additionally, the authors (Lakshmanan et al. 2008b) propose a static

based system identification procedure, which shall resolve a symmetric and an un-symmetric

damage, in conjunction with dynamic measurements. 

2.3 Effect of error bounds on Iso-Eigen-Value-Change contours 

An extension of this work is the study of the performance of this damage identification

methodology, with errors in frequency ratios. The previously mentioned case studies, namely, (a)

 (b)  are repeated with error

bounds in measurements (Lakshmanan et al. 2010). For example, an error bound of ±5% is

2b0/� 0.1= �0/� 0.25= β, , 0.1= 2b0/� 0.3= �0/� 0.25= β, , 0.1=

Fig. 4 (a,b) Prediction of damage position and extent from Iso-Eigen-change contours (a) D1, (b) D2

Fig. 5 Prediction of damage position and extent with 5% error bounds from Iso-Eigen-change contours (a)
D1, (b) D2
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introduced artificially on each of these contour plots. This means that the previously generated

contours, would have given rise to a fresh pair of contours of values 0.95 and 1.05 times the

original values. All the eight curves are super-imposed and shown for these two cases (Fig. 5(a) and

Fig. 5(b)). The inference is that, even though the region of intersection has widened, divergence of

results is not seen and the centre of the intersected area is still the actual damaged point. Also it is

to be noted that errors of 5% magnitudes are rather large. Ideally typical source or error is the

change in the frequency, for a small extent of damage situated in a node position of a beam, thus

giving a small change in ∆ω 2. This coupled with the frequency resolution in FFT, may end up

giving a larger error.

2.4 Application of Cawley-Adams criterion for a discrete structure with a contiguous sin-

gle damage

The method of Cawley-Adams criterion and the resulting equations are used to identify a single

uniform damage for a simply supported beam in the previous section. However, for a discrete

structure, a general purpose closed form expression may not be easily derived and a numerical

exercise is carried out to generate the frequency shift information for a five storied, three-bay shear

frame (Fig. 6). The damage is assumed as contiguous. Five cases are computationally evaluated,

namely, single storey damage, two contiguous storey damage, three contiguous storey damage and

up to all five storey damage. The centre of damage is also varied from the bottom most storey to

the top storey. The information on the ratio of Eigen value shift between various modes are

evaluated and plotted. Fig. 7 shows the ratio of Eigen-value change between (a) second and first

modes and (b) between third and first modes. Fig. 8 shows the ratio of Eigen-value change between

(a) third and second modes and (b) between fourth and first modes. X-axis shows the position of

damage and Y-axis gives the ratio of Eigen value change. These curves, though generated for a β =

10% are valid for larger values of β up to 30%.

Fig. 6 Discrete structure taken for damage estimation using Cawley-Adam’s criterion
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Let us see as to how these set of curves could be used to find the damage of this framed structure.

A uniform damage of bottom three stories is assumed to be inflicted on to this structure, as a result

of which the first five frequencies have undergone a change. The following data is obtained as a

result of experimental modal analysis on this shear structure prior to and after damage:

(a) Eigen values prior to damage : 8.1014, 69.0279, 171.5370, 283.0830, 368.2507

(b) Eigen values after damage : 7.3903, 65.8189, 160.8715, 267.0006, 348.9188

(c) Ratio of Eigen value Change : 0.08775, 0.04648, 0.06218, 0.05681, 0.05250

(d) Ratio of change in Eigen values between modes : 0.53 (Second to first mode),

 0.71 (Third to first mode), 1.34 (Third to second modes), 0.65 (Fourth to first mode) 

From inspection of Figs. 7 and 8, the following damage possibilities exist:

Second to first mode:

(a) Bottom three storeys 

(b) Single storey at third floor

Fig. 7 Ratio of Eigen value change for the discrete structure between (a) second and first and (b) third and
first modes

Fig. 8 Ratio of Eigen value change for the discrete structure between (a) third and second and (b) fourth and
first modes
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Third to first mode:

(a) Bottom three storeys

(b) Middle 3 storeys

Third to Second mode:

(a) Bottom three storeys

(b) Top four storeys

(c) Top three storeys

Fourth to first mode:

(a) Bottom three storeys

(b) Bottom two storeys

(c) Third and fourth storeys

Out of these various possibilities, we may conclude that the only possibility that is common for

all Eigen value changes is : Damage to bottom three storeys. Thus we can say the Cawley-Adams

criteria hold promise for damage identification even for a discrete structure.

2.5 Evaluation of extent of damage for a symmetric damage

We shall try to resolve the problems in identification of symmetrical central damage for a simply

supported beam from the Iso-Eigen-Value-Change contours by resorting to another related method.

Supposing that an a-priori knowledge exists such that the likely damage onto a structure is

symmetric, distributed and centrally located, the fact is advantageously utilised to estimate both the

extent of damage and the magnitude. We shall revert back to Eq. (10b) and simplify the same for

symmetric damages.
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Fig. 9 Prediction of damage extent for a symmetrical distributed damage with Eigen-value-change-ratio
between third and first modes
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(14c)

Between the third and first modes, the equation is further simplified as

(14d)

Eq. (14d) is plotted in Fig. 9 and the horizontal intersection point on this bell-shaped curve for an

Eigen-change-ratio obtained from the experiment shall indicate the extent of uniform damage.

However, there are two points of intersection, which can be resolved by solving Eq. (14a), for both

the points and estimating the true extent of damage and its magnitude. The previous cases (e) and

(f), which have given a ratio of 0.58 and 0.76 are solved and the damage extent is estimated as 30%

and 20% respectively.

2.6 Smeared distributed damage model

For a multiple damage scenario, Eq. (10) is modified and written as 
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which takes the frequencies of the beam prior to and after damage. Using this input, the program

computes the damage on each of the beam segment. The damage distribution is assumed to be

symmetric. Physically in the case of a bridge, suffering damage due to traffic induced loading,

bending moment and shear force distributions are symmetrical and hence a symmetrical damage

pattern can be reasonably assumed. Also, such an assumption gives rise to information on damage

at ‘2N’ sites, if frequency information is available only for ‘N’ modes. However, in cases where the

damage is really un-symmetric, then some additional assumptions have to be made on the extent of

the damage and this also has to be kept un-symmetric to solve Eq. (16). The resulting matrix

becomes singular, for a symmetric distribution of the extent of damage, if the condition of

symmetry is not explicitly made use of. 

Figs. 10 and 11 compare the damages predicted by the method vis-à-vis the actual damages. As

can be seen from these figures, a wide variation of damage patterns are simulated and tested to

evaluate the efficiency of the developed method. It is important to verify the range of validity of

Fig. 10 Comparison of damage magnitudes predicted by smeared damage model with simulated damage
values (Damage pattern : P1-NE to P4-NE)
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Eqs. (15), (16a) and (16b), as the first-order perturbation method (or Eigen sensitivity method) is

approximate. Also, damage identification algorithms are known to produce false-alarms at un-

damaged zones, particularly when the region is of relatively low strain energy density. For example,

it is easier to detect damage at a simply supported beam-centre or a cantilever beam-support, due to

the higher contribution of the elements situated at these places towards frequency reduction. Hence

a large damage has to be simulated at supports and tested. Further, wherever, the damage pattern

cannot be described as smooth Fourier functions and there are abrupt variations, then also the

detection algorithm may show errors. Hence the testing cases involve,

a. Progressively increasing damage magnitudes

b. Damage patterns following typical mode shape patterns

c. Damage patterns following the reversed mode shape patterns ( )

d. Abrupt variation of damages in adjacent elements.

1 sin nπx/�( )–

Fig. 11 Comparison of damage magnitude predicted by smeared damage model with simulated damage values
(Damage pattern : P5-NE to P8-NE)
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Table 1(a) Comparison of simulated and retrieved damages (%) (P1-NE to P6-NE)

Beam
Segment

P1-NE P2-NE P3-NE P4-NE P5-NE P6-NE

S+ R++ S+ R++ S+ R++ S+ R++ S+ R++ S+ R++

1 25 23.2 30 30.5 5 3.0 10 9.8 5 4.8 25 24.8

2 20 20.5 5 6.6 30 30.0 20 20.0 15 14.9 15 15.0

3 5 6.2 20 19.8 10 11.0 30 30.8 25 25.7 5 5.6

4 20 20.6 25 26.6 15 17.0 20 20.7 15 15.7 15 15.7

5 25 25.4 10 7.0 20 23.2 10 10.9 5 5.8 25 25.8

Table 1(b) Comparison of simulated and retrieved damages (%) (P7-NE to P12-NE)

Beam
Segment

P7-NE P8-NE P9-NE P10-NE P11-NE P12-NE

S+ R++ S+ R++ S+ R++ S+ R++ S+ R++ S+ R++

1 30 32.6 55 49.3 70 72.2 70 68.1 20 26.7 70 89.8

2 10 10.2 45 48.6 65 63.2 65 68.3 50 50.9 40 38.7

3 10 10.5 60 59.5 60 63.4 75 75.9 30 32.4 60 64.1

4 20 20.3 45 47.7 75 76.4 85 81.3 50 51.0 30 35.5

5 20 20.1 65 67.1 75 75.3 85 86.4 40 40.1 40 39.7

S+ : Simulated damage % ; R++ : Retrieved damage % 

Fig. 12 Performance of smeared damage model (Damage pattern : P2) with artificial error ingress (a) error
pattern E1 (b) error pattern E2 (c) error pattern E3 (d) error pattern E4
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Tables 1(a) and 1(b) show the various patterns (P1-NE to P12-NE, NE stands for no measurement

errors) as validation examples giving a comparison of simulated and retrieved damages. Damages in

beam segments 6-10 are symmetric with reference to centre line of the beam (Beam segment-1 is

near support and 5 is near mid-span). Towards verification of the performance of the method in the

presence of noise an artificial noise ingression in the form of (a) uniform +1% distortion, (b)

uniform −1% distortion and (c and d) flip-flop 1% error is induced and the retrieved damages are

plotted in Fig. 12.

The following trends can be observed regarding the inverse problem of damage retrieval from

changes in Natural frequencies (Figs. 10, 11 and 12 and Tables 1(a) and 1(b)):

(a) Up to 30% damage values, the prediction is within tolerable limits.

(b) Difference in the predicted value is more at regions of less strain energy density.

(c) The method predicts damages well, even when its variation is abrupt and not smooth.

(d) For larger damage values (more than 30%), the prediction is good if the average damage is not

very much different from the peak damage. Where there is larger variation between damages, the

prediction shows higher errors.

(e) The percentage difference is the maximum at regions of lower damage values.

2.7 Comparison of smeared damage model with the method of Iso-Eigen-Value-Change

contours 

Table 2 gives the comparative evaluation of both the methods and also lists the pros and cons of

each method.

2.8 Experimental investigations

There are two algorithms discussed, one based on Iso-Eigen-Value-Change contours for uniform

distributed damage and the other is a smeared damage model with the necessary inputs on the

lengths and positions of the segments. Iso-Eigen-Value-Change contours lend themselves to simple

curves if a-priori information on the symmetrical damage is available. Laboratory testing is carried

on four reinforced concrete beams with simply supported boundary conditions. These beams are

Table 2 Comparison of the two methods 

Aspect compared Smeared damage model Iso-Eigen-Value-Change contours 

Method of damage 
detection

Natural frequency based ; requires 
change in frequency ratio.

Natural frequency based; requires ratio 
of change in frequencies between two 
modes.

Multiple/single damage iden-
tification

Multiple damage and uniform damage 
within a segment

Single contiguous and uniform damage

Limitation of Damage magni-
tude

Found to be valid up to 30% damage Since damage magnitude is not explic-
itly used, valid for larger magnitudes of 
damage

Limitation Requires initial input on position and 
extent of damage

Estimates position and extent but mag-
nitude has to be still estimated by 
smeared damage model
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divided into two sets, one pair for symmetrical loading, with a concentrated central load and the

other pair for un-symmetrical loading with an off-centric loading. Hence the induced damages are

either symmetric or un-symmetric. In each pair there are two beams, one with equal reinforcement

at top and bottom (2#12), type-1, UR, and the other with more number of bottom bars (4#12) and

two compression-side bars (2#6), type-2, OR to tie the reinforcement cage. The concrete is designed

to be M25 (Characteristic Strength of 25 MPa) and the steels are of grade Fe-415 (Yield stress of

Fig. 13 Section details of tested RC beams 

Fig. 14 Schematic view of static and dynamic testing arrangement on simply supported reinforced concrete
beams
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415 MPa). Fig. 13 shows the sections of the RC beam. The beams are subjected to various

magnitudes of loads, starting from the virgin state to the theoretically calculated crack-initiation

load, and two stages in-between the cracking and yielding stage, and a stage well beyond the yield

stage (with constant load and large deflections). The applied load is measured with an in-built load

cell of the Instron 50 kN servo-hydraulic actuator and the central deflection is measured with a

0.01 mm precision Mitutoyo dial gauge. After each stage of loading, the beams are un-loaded and

the natural frequencies and mode shapes are measured. Fig. 14 shows the test arrangement for the

dynamic measurement, which consists of a B&K-4370 accelerometer, B&K piezo-electric based

force transducers, two B&K-2635 charge amplifiers for conditioning these signals and an AND dual

channel FFT analyser for computing the frequency response function of the acceleration response

with reference to the force input. Dynamic force is applied through a Philips 30 N electro-dynamic

spring-loaded shaker, which is energised by a power amplifier with sinusoidal signal from a signal

generator. Measurements are made at 29 locations each separated by 100 mm, by the rowing

accelerometer. Resonances are identified by the quadrature response of (Imaginary component) FRF

at different points. Fig. 15 shows the typical cracked profile of the tested beams, under symmetrical

and un-symmetrical load conditions.

3. Discussion of experimental results

Table 3 gives the de-generation of the condition of the RC beams from an initial un-cracked

state to various damage states, subjected to progressively increasing central concentrated loads,

with reduction in flexural natural frequency as the indicator of damage. The state of damage is

symmetric for both the sets of beams. The beam-type-2 (OR) by virtue of its larger reinforcement

ratio has higher load capacity as evinced by its ultimate load capacity (26 kN). Various flexural

Fig. 15 Typical damage patterns in the symmetrically and un-symmetrically damaged beams 
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Table 3 Variation of natural frequencies for symmetrically damaged beams

Flexural 
Mode

Beam-Type-1 (UR) (Frequencies-Hz) Beam-Type-2 (OR) (Frequencies-Hz)

Virgin 
State

DS1 DS2 DS3 DS4
Virgin 
State

DS1 DS2 DS3 DS4

Applied 
Load (kN)

0 2.4 7.0 14.0 14.0* 0 2.4 7.0 14.0 26.0*

1 30.00 29.125 27.575 26.325 19.33 29.50 28.38 26.83 26.13 19.83

2 108.75 108.25 106.25 99.625 79.50 107.00 106.23 103.15 102.50 90.75

3 270.00 264.00 256.75 251.95 193.85 270.00 263.0 255.40 250.56 215.63

4 422.50 417.38 404.325 389.25 332.53 425.00 417.63 403.50 399.30 345.45

Table 4 Variation of natural frequencies for un-symmetrically damaged beams

Flexural 
Mode

Beam-Type-1 (UR)
(Frequencies-Hz)

Beam-Type-2 (OR) 
(Frequencies-Hz)

Virgin State DS1 DS2 DS3 DS4 Virgin State DS1 DS2

Applied 
Load (kN)

0 2.4 7.0 12.4 12.4* 0 7.0 26

1 30.00 29.75 28.25 28.15 24.50 30.00 29.40 25.98

2 108.50 107.75 103.27 100.00 90.00 107.00 105.40 93.85

3 270.00 269.88 258.88 256.00 229.60 269.00 268.5 239.88

4 428.00 424.00 408.00 400.83 359.30 425.00 417.13 376.30

Note : DS indicates Damage States after application of loads
 * - Load remains same but displacement is a larger value

Fig. 16 Typical Iso-Eigen-Change contours for the experimental beam (Type-1, UR, DS-1)
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modes are identified by the mode shapes, which are also measured from the imaginary part of

FRF. The first observation is that, applied load alone cannot be a good indicator of damage. DS3

and DS4 states, for beam-type-1 show such a big difference in frequencies for same load but for

different irrecoverable energy levels. Hence the damage state as indicated by the drop in

frequencies is more related with the energy lost from the system rather than the load applied.

Table 4 gives the condition of the un-symmetrically damaged beams of both types under varying

damage states.

For symmetrically damaged beams with a centrally located contiguous damage, the method of

Iso-Eigen-Change contours is initially applied and the position of the damage is found to be at the

mid-position or very close to the centre. Fig. 16 shows the identification of symmetrical damage

location from Iso-Eigen-Value-Change contour. However larger scatter is seen in the curve for the

extent of damage. Fig. 17 shows the retrieved damage from the frequency information, identified

from the smeared damage model and using appropriate matrix equations (Eq. (16)), for beam type-

1. Similar information for beam-type-2 is given in Fig. 18. 

Totally ten segments of equal lengths are assumed for the smeared damage model. The end-

segments are assumed to be un-damaged. A symmetrical damage assumption is made use of and the

four natural frequency information is used to extract the damage in the four segments on one-side

of the central-line. Both Figs. 17 and 18 show a larger damage value at the centre and as the

Fig. 17 Damage variation in symmetrically damaged beams (Beam Type – 1 (UR)) 
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damage progresses, the magnitude of central damage increases and the extent of damage also

increase. This can be explained as the position of the beam, where the cracking moment got just

exceeded shall move farther towards the supports as the load intensity increases and hence the

extent of damage should roughly correspond to these two points situated on either side of the load. 

Fig. 17(c) however shows higher damage values close to mid-span but on the adjacent segments.

This is little un-realistic and this shall only be attributed to the small fluctuations in the

experimental results. Also, small negative damage magnitudes, predicted by this model (negative

damage is growth of EI) are due to experimental fluctuations. 

As discussed earlier, with a-priori information on the symmetrical nature of a contiguous, centrally

located damage pattern and using Eq. (14) and Fig. 9, the extent and magnitudes of damage are

retrieved for these two beam-types. For beam type-1, the damage extent 2b0/� increases as 0.18,

0.30, 0.35 and 0.70, for the various damage states and the damage magnitude β increases as 0.15,

0.28, 0.36 and 0.59 respectively. For beam type-2, the damage extent 2b0/� increases as 0.21, 0.30,

0.28 and 0.60, for the various damage states and the damage magnitude β increases as 0.17, 0.31,

0.41 and 0.61 respectively. Both in this case as well as in the case of Iso-Eigen-Change, the relevant

expressions are derived based on a uniform damage within the damaged segment. This may not be

true in the case of experimental results, where in reality a gradient of damage actually exists. Hence

a deviation is likely in the prediction of the damage extent by these models, but it is surmised that

the centre of damage is likely to be closer. Also, first-order perturbation method is known to falter

Fig. 18 Damage variation in symmetrically damaged beams (Beam Type – 2 (OR)) 
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beyond a β value of 40% and prediction of 70% damage (in DS4), using smeared damage model is

likely to be more erroneous. Since β cancels out in the first method, it is likely that the damage

magnitudes predicted by Eq. (14) are more reliable.

Fig. 19 shows the identification of typical un-symmetrical damage location from Iso-Eigen- Value-

Change contours. Though the actual damage location is 0.36 �, from one end of the beam, the

results of the contour plot show variation ranging from 0.36-0.42 times �. As in the symmetrical

case, a scatter is seen in the extent of damage also. Having determined the position of the damage, a

smeared damage model is employed in this case also and verified. For the purpose of analysis, a

six-segment un-symmetrical damage distribution is assumed, with lengths of segments, 0.15, 0.20,

0.25, 0.10, 0.20 and 0.10 of �. The first and last segments are assumed un-damaged and the rest of

the four segments are solved using information of the four frequency changes. Fig. 20 shows the

results of damage progression for beam type-1 (UR) and Fig. 21 shows the damage progression for

beam type-2 (OR). As seen in the case of symmetrically damaged beams, as the applied load

increases, the magnitude of damage at the load application point, (where the bending moment is

also maximum) increases. Also, the extent of damage widens as the damage progresses. The

negative damage is attributed to the experimental fluctuations. 

Fig. 19 Experimental damage identification using Iso-Eigen-Change contours for un-symmetrically damaged
beams (a), (b) – Type-1 (UR), DS1 and DS2, (c) - Type-2 (OR), DS1
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4. Conclusions

The paper compares the two models for damage estimation, one based on Iso-Eigen-Value-Change

contours using the ratio of frequency change between two modes and the other based on smeared

damage approach assuming a linear relationship between damage and Eigen value reduction

Fig. 20 Damage variation in un-symmetrically damaged beams (Beam Type – 1 (UR)) 

Fig. 21 Damage variation in un-symmetrically damaged beams (Beam Type – 2 (OR)) 
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(smeared damage model). Both the methods are illustrated for a simply supported beam. The

damage identification method using Iso-Eigen-Value-Change contours is also extended and

demonstrated for a discrete five storied shear frame and the power of the method is proved. As the

damage magnitude is not directly obtained by Iso-Eigen-Value-Change contours, a smeared damage

identification method is to be necessarily used. This is based on first-order perturbation technique,

such that damage magnitudes can also be retrieved back. Though both the methods are based on

first-order perturbation technique, the cancellation of the damage magnitude in the first method

indicates that it shall be more robust with reference to large change in β. For larger magnitudes of

damage, the smeared damage identification method is likely to falter, however the solace is that one

does not wait for a larger damage to happen, before recognising it at a smaller level. An elegant

simple equation is brought out as a result of further simplification on a centrally located, symmetric,

contiguous damage. The experiment conducted on a simply supported reinforced concrete beam has

given encouraging results and further work is in progress in this direction for other structural

elements. 
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