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Abstract. This paper focuses on geometrically non-linear static analysis of a simply supported beam
made of hyperelastic material subjected to a non-follower transversal uniformly distributed load. As it is
known, the line of action of follower forces is affected by the deformation of the elastic system on which
they act and therefore such forces are non-conservative. The material of the beam is assumed as isotropic
and hyperelastic. Two types of simply supported beams are considered which have the following boundary
conditions: 1) There is a pin at left end and a roller at right end of the beam (pinned-rolled beam). 2)
Both ends of the beam are supported by pins (pinned-pinned beam). In this study, finite element model of
the beam is constructed by using total Lagrangian finite element model of two dimensional continuum for
a twelve-node quadratic element. The considered highly non-linear problem is solved by using incremental
displacement-based finite element method in conjunction with Newton-Raphson iteration method. In order
to use the solution procedures of Newton-Raphson type, there is need to linearized equilibrium equations,
which can be achieved through the linearization of the principle of virtual work in its continuum form. In
the study, the effect of the large deflections and rotations on the displacements and the normal stress and
the shear stress distributions through the thickness of the beam is investigated in detail. It is known that
in the failure analysis, the most important quantities are the principal normal stresses and the maximum
shear stress. Therefore these stresses are investigated in detail. The convergence studies are performed for
various numbers of finite elements. The effects of the geometric non-linearity and pinned-pinned and
pinned-rolled support conditions on the displacements and on the stresses are investigated. By using a
twelve-node quadratic element, the free boundary conditions are satisfied and very good stress diagrams
are obtained. Also, some of the results of the total Lagrangian finite element model of two dimensional
continuum for a twelve-node quadratic element are compared with the results of SAP2000 packet
program. Numerical results show that geometrical nonlinearity plays very important role in the static
responses of the beam.

Keywords: geometrical non-linearity; simply supported beams; finite element analysis; total lagrangian
finite element model; two dimensional solid continuum.

1. Introduction

With the great advances in technology in recent years, increasing demands for higher operational

speeds and lighter device constructions makes it necessary to use non-linear theory of beams. For
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example, the deflections of a leaf spring used in ground vehicles must be studied by using non-linear

theory of beams. In the past 50 years, especially, developments in aerospace engineering, robotics

and manufacturing make it inevitable to excessively use non-linear models that must be solved

numerically. Because, closed-form solutions of large-deflection problems of beams with general

loading and boundary conditions using elliptic integrals are limited. Some of these studies concerning

closed-form solutions are given in the following paragraphs: Chucheepsakul et al. (1994) studied

the large deflections of beams under moment gradients whose deformed arc lengths are not fixed by

using the elliptic integral method, the shooting-optimization method and the finite element method.

Pulngern et al. (2005) investigated large static deflection due to uniformly distributed self weight

and the critical or maximum applied uniform loading that a simply supported beam with variable-

arc-length can resist by using both finite-element method discretization of the span length based on

variational formulation and shooting method based on an elastic theory formulation. Al Sadder et al.

(2006) developed an improved finite element formulation with a scheme of solution for the large

deflection analysis of inextensible prismatic and nonprismatic slender beams. Wang et al. (1997)

considered the large deflection problem of variable deformed arc-length beams considering one end

of the beam being hinged and the beam being allowed to slide freely on a frictionless support

located at a specified distance away from this hinged end under a point load. A similar problem was

solved by He et al. (1997) in which only the frictionless support in the previous study was assumed

as a friction support. Some of the numerical studies are given in the following paragraphs: Kapania

and Li (2003) formulated and implemented exact curved beam elements incorporating finite strains

and finite rotations. Al Sadder and Al Rawi (2006) developed a quasi-linearization finite differences

scheme for large deflection analysis of prismatic and non-prismatic slender cantilever beams subjected

to various types of continuous and discontinuous external variable distributed and concentrated

loads in horizontal and vertical global directions. Li and Zhou (2005) investigated the post-buckling

behavior of a hinged-fixed beam under uniformly distributed follower forces by deriving an exact

mathematical model and using the shooting method for numerical results. Large deflection static

analysis of simple beams was investigated by Akba  and Kocatürk (2009). Geometrically nonlinear

analysis of a cantilever beam was investigated by Reddy (2004) by using an eight-node quadratic

element.

The aim of this paper is to compute the displacements of the considered simply supported beams

made of hyperelastic material.

As it is known, when two dimensions of a structural element is very small compared to the other

dimension, then, for reducing the number of unknowns, one of the beam theories is used. When the

dimensions of the considered element become close to each other, the beam theories lose accuracy

and therefore they are not valid any more. According to assumptions made in these theories, some

of the free boundary conditions can not be satisfied. However, in two dimensional solid continuum

assumption, only one dimension of the considered element is small compared to other dimensions.

In the present study, every finite element of the beam is assumed as a two dimensional solid

continuum. Therefore, it is necessary to satisfy free boundary conditions. Satisfying the free boundary

conditions and obtaining smooth stress distributions in the finite element analysis of two dimensional

solid continuum is not an easy task. It is more troublesome when dealing with nonlinear problems.

In this study, free boundary conditions are satisfied satisfactorily and smooth stress diagrams are

obtained by choosing a twelve-node quadratic element.

The development of the formulations of general solution procedure of nonlinear problems follows

the general outline of the derivation given by Zienkiewichz and Taylor (2000). The geometrically
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non-linear responses of considered simply supported beams subjected to a non-follower transversal

uniformly distributed load are obtained by using total Lagrangian finite element model of two-

dimensional solid continuum. The TL finite element equations of two dimensional continuum for a

twelve-node quadratic element are used. These TL twelve-node quadratic element formulations were

given by Reddy (2004). Convergence studies are performed for various numbers of elements. 

2. Theory and formulations

Two simply supported beams made of isotropic, hyperelastic material, with material or Lagrangian

coordinate system (0x1, 
0x2, 

0x3) and with spatial or Euler coordinate system (
2x1, 

2x2, 
2x3) having the

origin O is shown in Figs. 1(a),(b). 

One of the supports of the beam is assumed to be pinned and the other is a roller. The beam is

subjected to a uniformly distributed non-follower load in the transverse direction as seen from Fig. 1.

While the derivation of the governing equations for most problems is not unduly difficult, their

solution by exact methods of analysis is a formidable task. In such cases, numerical methods of

analysis provide an alternative means of finding solutions. Numerical methods typically transform

differential equations to algebraic equations that are to be solved using computers. The considered

problem is a nonlinear one. Even linear problems may not admit exact solutions due to geometric

and material complexities, but it is relatively easy to obtain approximate solutions using numerical

methods (Reddy 2004). There are some solutions for the special cases of boundary and loading

conditions for large displacements of beams in the framework of Bernoulli-Euler beam theory.

However, as far as the authors know exact solution of a nonlinear problem in the framework of two

or three-dimensional continuum approach is not possible. For the analysis of the simply supported

beam, the beam problem is considered as a two-dimensional continua problem: The total Lagrangian

Finite element model of two dimensional continuum based on the total Lagrangian formulation for a

twelve-node quadratic element is used in the study. For the solution of the total Lagrangian

formulations of TL two dimensional continuum problem, small-step incremental approaches from

known solutions are used. As it is known, it is possible to obtain solutions in a single increment of

the external force only in the case of mild nonlinearity (and no path dependence). To obtain realistic

answers, physical insight into the nature of the problem and, usually, small-step incremental approaches

Fig. 1 Simply supported beam subjected to a uniformly distributed load (a) pinned-rolled beam, (b) pinned-
pinned beam
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from known solutions are essential. Such increments are always required if the constitutive law

relating stress and strain changes is path dependent. Also, such incremental procedures are useful to

reduce excessive numbers of iterations and in following the physically correct path.

In this study, small-step incremental approaches from known solutions with Newton-Raphson

iteration method are used in which the solution for n + 1th load increment and ith iteration is

obtained in the following form 

 (1)

Where  is the stiffness matrix corresponding to a tangent direction at the ith iteration,  is

the solution increment vector at the i th iteration and n + 1th load increment,  is the residual

vector at the ith iteration and n + 1th load increment. This iteration procedure is continued until the

difference between two successive solution vectors is less than a selected tolerance criterion in

Euclidean norm given by

 (2)

A series of successive approximations gives

 (3)

where

 (4)

The tangent stiffness matrix  and the residual vector  which are to be used in Eq. (1) at

the ith iteration for the total Lagrangian finite element model of two dimensional continuum for a

twelve-node quadratic element are given below 
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Fig. 2 A twelve-node quadratic plane element
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where

(6a)

 (6b)

 (6c)
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(7)

(8)

where , ,  are the components of the second Piola-Kirchhoff stress tensor components

in the C1 configuration of the body. The considered material is hyperelastic. In this case, the

constitutive relation between the second Piola-Kirchhoff stress tensor (Transformed current force per

unit undeformed area: This tensor is symmetric whenever the Cauchy stress tensor is symmetric.)

and the Green-Lagrange strain tensor can be assumed as follows  

 (9)

Where 0Cij are the components of the reduced constitutive tensor in the C0 configuration of the

body. The reduced constitutive tensor can be written in the matrix form as follows 

 (10)

Where the components of the reduced constitutive tensor can be written in terms of Young

modulus E and Poisson’s ratio v as follows 

, , ,  (11)

The Green-Lagrange strain tensor is expressed in terms of displacements in the case of two-

dimensional solid continuum as follows 

(12)
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where the displacement fields of the finite element are expressed in terms of nodal displacements as

follows 

(13)

(14)

These total displacement fields and incremental displacement fields are interpolated as follows

 (15a)

(15b)
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(16)

 

(17)

 (18)

Interpolation functions for a twelve-node quadratic element are as follows

u ψ1 u1 ψ2+ u2 ψ3 u3 ψ4 u4 ψ5 u5 ψ6 u6 ψ7 u7 ψ8 u8 ψ9 u9 ψ10 u10⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅ ⋅(=

ψ11 u11 ψ12 u12⋅+⋅+ )

v ψ1 v1 ψ2+ v2 ψ3 v3 ψ4 v4 ψ5 v5 ψ6 v6 ψ7 v7 ψ8 v8 ψ9 v9 ψ10 v10⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅+⋅ ⋅(=

ψ11 v11 ψ12 v12⋅+⋅+ )

u{ }
u

v⎩ ⎭
⎨ ⎬
⎧ ⎫

ujψj x
o

1 x
o

2( , )
j 1=

12

∑

vjψj x
o

1 x
o

2( , )
j 1=

12

∑
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

Ψ[ ] ∆{ }= = =

u{ }
u

v⎩ ⎭
⎨ ⎬
⎧ ⎫

ujψj x
o

1 x
o

2( , )
j 1=

12

∑

vjψj x
o

1 x
o

2( , )
j 1=

12

∑
⎩ ⎭
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎧ ⎫

Ψ[ ] du{ }= = =

ψ[ ]
ψ1

0

0

ψ1

ψ2

0

0

ψ2

ψ3

0

0

ψ3

ψ4

0

0

ψ4

ψ5

0

0

ψ5

ψ6

0

0

ψ6

ψ7

0

0

ψ7

ψ8

0

0

ψ8

ψ9

0

0

ψ9

ψ10

0

0

ψ10

ψ11

0

0

ψ11

ψ12

0

0

ψ12

=

∆{ }T u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8 u9 v9 u10 v10 u11 v11 u12 v12{ }=

du{ }T u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8 u9 v9 u10 v10 u11 v11 u12 v12{ }=

ψ1[ ] 1

32
------ 1

2
0
x1

a
----------–⎝ ⎠

⎛ ⎞ 1
2
0
x2

b
----------–⎝ ⎠

⎛ ⎞ 10 9
4
0
x1
2

a
2

----------
4
0
x2
2

b
2

----------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=

ψ2[ ] 9

32
------ 1

2
0
x1

a
----------–⎝ ⎠

⎛ ⎞ 1
4
0
x2
2

b
2

----------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

1
6
0
x2

b
----------–⎝ ⎠

⎛ ⎞=

ψ3[ ] 9

32
------ 1

2
0
x1

a
----------–⎝ ⎠

⎛ ⎞ 1
4
0
x2
2

b
2

----------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

1
6
0
x2

b
----------+⎝ ⎠

⎛ ⎞=

ψ4[ ] 1

32
------ 1

2
0
x1

a
----------–⎝ ⎠

⎛ ⎞ 1
2
0
x2

b
----------+⎝ ⎠

⎛ ⎞ 10 9
4
0
x1
2

a
2

----------
4
0
x2
2

b
2

----------+
⎝ ⎠
⎜ ⎟
⎛ ⎞

+–
⎝ ⎠
⎜ ⎟
⎛ ⎞

=



684 T. Kocatürk and .D. AkbaSç sç

(19)

Numerical calculations of the integral seen in the rigidity matrices will be calculated by using

five-point Gauss rule.

The true stress, namely stress in the deformed configuration is defined to be the current force per

unit deformed area. The relation between the Cauchy stress tensor components 2σij and the second

Piola-Kirchhoff stress tensor components  can be written as follows 

 (20)

Where 0ρ and 2ρ represent the mass densities of the material in configurations C0 and C2

respectively. The relation between the 0ρ and 2ρ is as follows 

 (21)
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The following transformation rule hold between the components of the elasticity tensors in

different configurations  

  (23)

It is assumed in the study that the components of the reduced constitutive tensor remain constant

during the deformation. Namely, it is assumed that 0ρ ≈ 2ρ and therefore 0Cij = 2Cij. The error

introduced by this assumption can be negligible if the strains are relatively small but the difference

can be significant in large deformation problems.

The total displacements of a particle in the two configurations C0 and C2 can be written as

(24)

From Eq. (23), the relation between 2xi and 
0xi can be written as follows 

(25)

A material line dL before deformation deforms to the line dl (consisting of the same material as

dL) after deformation as follows
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or more explicitly
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The formulations given by Eqs. (5) to (28) are adopted from Reddy (2004).
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Poisson’s ratio is taken as v = 0.2 for the hyperelastic material. Convergence analysis is performed

for external distributed load q = 70 N/cm2 for various numbers of finite elements in 0x1 and 
0x2

directions when L/h = 8. It is seen from Table 1(a) and Figs. 3 and 4 that, when the number of finite

elements in 0x1 direction is m = 35 and when the number of elements in 0x2 direction is n = 6 for the

total Lagrangian finite element model of two dimensional continuum for a twelve-node quadratic

element, the considered stresses and displacements converge perfectly. It is seen from Table 1(b)

that when the number of finite elements in 0x1 direction is m = 70 for the SAP2000 solution of the

problem, the considered displacements converge perfectly. Therefore, in the numerical calculations,

the number of finite elements in 0x1 direction is taken as m = 35 and the number of elements in 0x2
direction is taken as n = 6 for the total Lagrangian finite element model of two dimensional

continua. For the SAP2000 analysis, the number of elements in 0x1 direction is taken as m = 70.

Note also that all the computations of the total Lagrangian finite element model of two dimensional

continuum are performed in-house. 

Fig. 5 shows that increase in load causes increase in difference between the vertical displacement

values of the linear and the nonlinear solutions and also between the displacement values of the

finite element model of two dimensional continuum and SAP2000 for geometrically nonlinear case.

Table 1(a) Convergence analysis of finite element model of two dimensional continuum for pinned-rolled
beam for stresses in 0x1 = 8 cm, 0x2 = 0.0 cm and for displacements in 0x1 = 8 cm, 0x2 = 0.0 cm (at
the middle of the beam) for distributed load q = 70 N/cm2, beam length L = 16 cm. m: number of
elements in 0x1 direction, n: number of elements in 

0x2 direction

m n
Stresses (N/cm2) Deflection (cm)

2
σ11

2
σ22

2
σ12 u (8; 0) v (8; 0)  u (16; 0)

15

2  -238.0111 -263.3170 0  -2.6711 -5.3997 -5.3421

4  -239.8984  -264.7628 0 -2.6710 -5.4065 -5.3420

6  -240.1717 -265.5260 0 -2.6710 -5.4130 -5.3420

8  -240.2631  -265.8356 0  -2.6710 -5.4161 -5.3420

20

2 -239.2291 -264.1622 0  -2.6711 -5.4078 -5.3422

4 -240.4986 -265.5659 0  -2.6710 -5.4131 -5.3420

6 -240.6484 -266.0938 0  -2.6710 -5.4178 -5.3420

8  -240.7618  -266.3642 0  -2.6710 -5.4192 -5.3420

25

2 -240.0188  -264.7759 0  -2.6711 -5.4117 -5.3422

4  -240.8388 -266.1170 0  -2.6710 -5.4155 -5.3420

6 -240.8946 -266.4585 0  -2.6710 -5.4197 -5.3420

8  -240.9302  -266.5015 0 -2.6710 -5.4209 -5.3420

30

2  -240.2818 -264.9948 0  -2.6711 -5.4139 -5.3422

4  -240.9477 -266.3192 0 -2.6710 -5.4176 -5.3420

6  -240.9682 -266.5891 0 -2.6710 -5.4214 -5.3420

8  -241.0126  -266.6012 0  -2.6710 -5.4218 -5.3420

35

2  -240.5084  -265.1899 0 -2.6711 -5.4153 -5.3422

4 -241.0446 -266.5104 0 -2.6710 -5.4187 -5.3420

6 -241.0686 -266.6197 0 -2.6710 -5.4219 -5.3420

8 -241.0702  -266.6263 0 -2.6710 -5.4221 -5.3420
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Table 1(b) Convergence analysis of SAP2000 solution for pinned-rolled beam for stresses in 0x1 = 8 cm, 0x2 =
0.0 cm and for displacements in 0x1 = 8 cm, 0x2 = 0.0 cm (at the middle of the beam) for distributed
load q = 70 N/cm2, beam length L = 16 cm. m: number of elements in 0x1 direction

m
Deflection (cm)

u (8; 0) v (8; 0) u (16; 0)

10 -2.4377 -5.2398 -4.8751

20 -2.4371 -5.2215 -4.8742

30 -2.4371 -5.2181 -4.8740

40 -2.4369 -5.2168  -4.8740

50 -2.4370 -5.2164 -4.8740

60 -2.4370 -5.2161 -4.8740

70 -2.4370 -5.2159 -4.8739

75 -2.4370 -5.2159 -4.8739

80 -2.4370 -5.2159 -4.8739

 100 -2.4370 -5.2159 -4.8739

Fig. 3 Convergence analysis for (a) 2σ11 (L/2, h/2), (b) 
2
σ22 (L/2, h/2) for various values of m and n

 

Fig. 4 Convergence analysis for v (L/2, h/2) for various values of m and n



688 T. Kocatürk and .D. AkbaSç sç

Increase in load is more effective in the vertical displacements of the linear solution. This situation

may be explained as follows: In the linear case, arm of the external forces or arm of the external

resultant force do not change with the magnitude of the external forces, and therefore the

displacements depend on the external forces linearly. However, in the case of nonlinear analysis, the

arm of the external forces change with the magnitude of the external force and, as the magnitude of

the force increases the arm of these external forces decrease. However, as the forces increase the

configuration of the beam become close to vertical direction and therefore increase in the load does

not cause a significant increase in displacements after certain load level in which the configuration

of the beam is close to the vertical direction. This situation is seen in Fig. 6 and Fig. 7 which shows

the displaced configuration of the beam. After this load, it is expected that axial rigidity of the beam

gains more importance than its flexural rigidity.

In the geometrically linear analysis, when there is no horizontal component of external loads

affecting on the beam, namely when the external loads are perpendicular to the beam axis, the

Fig. 5 Vertical displacement at 0x1 = 8 cm, 0x1 = 0-load curve for geometrically linear and geometrically
nonlinear cases for q = 70 N/cm2, L = 16 cm, h = 2 cm, m = 35, n = 6, for (a) pinned-rolled beam, (b)
pinned-pinned beam
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Fig. 6(a) Displaced configuration for q = 20 N/cm2, L = 50 cm, h = 2 cm for pinned-rolled beam

Fig. 6(b) Displaced configuration for q = 20 N/cm2, L = 50 cm, h = 2 cm for pinned-pinned beam

Fig. 7(a) Displaced configuration for q = 3 N/cm2, L = 50 cm, h = 2 cm for pinned-rolled beam

Fig. 7(b) Displaced configuration for q = 3 N/cm2, L = 50 cm, h = 2 cm for pinned-pinned beam



690 T. Kocatürk and .D. AkbaSç sç

normal stress component 0σ11 of stress tensor is zero at 
0x2 = 0 along the 0x1 axis and then the 

0x1
axis is called as neutral axis. Because the equilibrium equations are written with respect to the

initial configuration in which there is no displacement. However, in the geometrically nonlinear

case, while the deflections occur, the non-follower external forces considered in this study do not

remain perpendicular to the axis of the beam. This situation can be observed from Figs. 6 and 7. 

The boundary conditions in the geometrically linear case are satisfied perfectly: Because in the

present analysis, for L = 16 cm, h = 2 cm, m = 35 and n = 6, when q = 70 N/cm2, 0σ22 = 34.98 N/cm2

≈ 35 N/cm2. Now, the satisfaction of the boundary conditions in the geometrically nonlinear case

will be investigated. For pinned-rolled beam, the angle between the tangent direction of any point of

the upper or lower face after deformation of the beam and horizontal direction before deformation

can be obtained by using Eq. (26). For q = 70 N/cm2, for 0x1 = 16/3 cm and 0x2 = −1 cm, by using

Eq. (26), the components of the line dl (consisting of the same material as dL) after deformation in

the horizontal and vertical directions which was the horizontal unit material line dL before

deformation are obtained as 0.9420 in the horizontal direction and −0.7093 in the vertical direction

for the beam shown in Fig. 1(a). By using these quantities, tangent of the line is −0.7093/0.9420

and therefore the angle between the tangent direction of the related point of the upper face and the

horizontal direction is 36.978o. 

The components 2σ11 = 1261.5 N/cm2, 2σ22 = 753.1192 N/cm2, 2σ12 = −949.0193 N/cm2 of the

stress tensor for the element shown in Fig. 8(a) in the considered location are found from the

analysis and now it is desired to find the components of the stress tensor for the element shown in

Fig. 8(b) of the same location by using the stress transformation equations for plane stress state 

(29)
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Fig. 8 Stress state for pinned-rolled beam at (a) 0x1 = 16/3 cm and 0x2 = −1 cm, (b) stress state for rotated
element corresponding to 0x1 = 16/3 cm and 0x2 = −1 cm
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From these equations (2σ11)θ = 1989.6 N/cm2, (2σ22)θ = 25.0024 N/cm2 and (2σ12)θ = −17.9707 N/

cm2. These values show that the boundary conditions are satisfied in the nonlinear case. Because 

dL = 1.00 cm→ dl = 1.1363 cm

= 30.7907 N/cm2 35/dl = 30.8017 N/cm2  (32)

For pinned-pinned beam, the angle between the tangent direction of any point of the upper or

lower face after deformation of the beam and horizontal direction before deformation can be

obtained by using Eq. (26). For q = 70 N/cm2, for 0x1 = 16/3 cm and 0x2 = −1 cm, by using Eq. (26),

the components of the line dl (consisting of the same material as dL) after deformation in the

horizontal and vertical directions which was the horizontal unit material line dL before deformation

are obtained as 1.0871 in the horizontal direction and −0.2367 in the vertical direction for the beam

shown in Fig. 1(b). By using these quantities, tangent of the line is −0.2367/1.0871 and therefore

the angle between the tangent direction of the related point of the upper face and the horizontal

direction is 12.2836o. 

The components 2σ11 = 1076,1 N/cm2, 2σ22 = 83,3551 N/cm2, 2σ12 = −232,263 N/cm2 of the stress

tensor for the element shown in Fig. 9(a) in the considered location are found from the analysis and

now it is desired to find the components of the stress tensor for the element shown in Fig. 9(b) of

the same location by using the stress transformation equations for plane stress state 

 (33)

(34)

(35)

From these equations (2σ11)θ = 1127,7 N/cm2, (2σ22)θ = 31,7236 N/cm2 and (2σ12)θ = −4,8661 N/

cm2. These values show that the boundary conditions are satisfied in the nonlinear case. Because 
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Fig. 9 Stress state for pinned-pinned beam at (a) 0x1 = 16/3 cm and 0x2 = −1 cm, (b) stress state for rotated
element corresponding to 0x1 = 16/3 cm and 0x2 = −1 cm
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dL = 1.00 cm→ dl = 1.0904 cm

= 32,0946 N/cm2 35/dl = 32,0979 N/cm2  (36)

By using Eq. (8), the support reactions are obtained in nodes of related finite elements. The  and

 values given in Tables 2 and 3 are support reactions at the end A in the 0x1 and 
0x2 respectively,

The  and  values given in Tables 2 and 3 are support reactions at the end B in the 0x1 and
0x2 respectively.

In Table 4, very great values of loads are used for obtaining displacements close to L/2. It is seen

from Table 4 that the difference between the results of two dimensional solid continuum (2DSC)

and SAP2000 which uses Timoshenko beam theory increases with decrease in the length of the

beam. It can be said that when the ratio L/h is approximately equal or greater than 8, then both of

the finite element model of two dimensional continuum and the SAP2000 can be used to analyze

the problem in the geometrically linear case. However, in the geometrically nonlinear case, for the

difference ratio ((2DSC-SAP2000)/2DSC) lower then 1%, L/h ratio must be equal or greater than 25.

It is known that in the failure analysis, the most important quantities are the principal normal

stresses 2σmax, 
2σmin and the maximum shear stress 

2σ12max 
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Table 2 Displacements and support reactions for pinned-rolled beam for L = 16 cm, h = 2 cm

q (N/cm2) u (8; 0) (cm) v (8; 0) (cm)  (N)  (N)  (N)

10 -0.3682 -1.5364 0 80.00 80.00

20  -0.6190 -2.7769 0 160.00 160.00

30  -1.1209 -3.6745 0 240.00 240.00

50  -2.0073  -4.8714 0 400.00 400.00

70 -2.6710 -5.4219 0 560.00 560.00

A
x

0

1

A
x

0

2

B
x

0

2

Table 3 Displacements and support reactions for pinned-pinned beam for L = 16 cm, h = 2 cm

q (N/cm2) u (8; 0) (cm) v (8; 0) (cm)  (N)  (N)  (N)  (N)

10 0 -0.9923 120.4108 120.4108 80.00 80.00

20 0 -1.4145 248.2611 248.2611 160.00 160.00

30 0 -1.6952 359.4557 359.4557 240.00 240.00

50 0 -2.0904 552.8717 552.8717 400.00 400.00

70 0 -2.3947 720.4720 720.4720 560.00 560.00

A
x

0

1

B
x

0

1

A
x

0

2

B
x

0

2
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Table 4 Displacements for pinned-rolled beam for various lengths of beam

L/h = 8 q = 70 N/cm2 (L = 16 cm, h = 2 cm)

(cm)
2-D (m = 35, n = 6) Sap 2000 (m = 70) Diffirence % = × 100

Linear Non-linear Linear Non-linear Linear Non-linear

u (8; 0) 0.00 -2.6710 0.00 -2.437 - 8.761

v (8; 0) -11.2076 -5.4219 -11.1838 -5.2173 0.212 3.773

u (16; 0) 0.00 -5.3420 0.00 -4.874 - 8.761

L/h = 10 q = 50 N/cm2 (L = 20 cm, h = 2 cm)

(cm)
2-D (m = 35, n = 6) Sap 2000 (m = 70) Diffirence % = × 100

Linear Non-linear Linear Non-linear Linear Non-linear

u (10; 0) 0.00 -4.0024 0.00 -3.7641 - 5.953

v (10; 0) -19.2717 -7.2047 -19.259 -7.0404 0.065 2.280

u (20; 0) 0.00 -8.0049 0.00 -7.5283 - 5.953

L/h = 15 q = 20 N/cm2 (L = 30 cm, h = 2 cm)

(cm)
2-D (m = 35, n = 6) Sap 2000 (m = 70) Diffirence % = × 100

Linear Non-linear Linear Non-linear Linear Non-linear

u (15; 0) 0.00 -6.7492 0.00 -6.5664 - 2.708

v (15; 0) -38.5173 -11.1495 -38.511 -11.0474 0.016 0.915

u (30; 0) 0.00 -13.4985 0.00 -13.1327 - 2.708

L/h = 20 q = 10 N/cm2 (L = 40 cm, h = 2 cm)

(cm)
2-D (m = 35, n = 6) Sap 2000 (m = 70) Diffirence % = × 100

Linear Non-linear Linear Non-linear Linear Non-linear

u (20; 0) 0.00 -9.5529 0.00 -9.4092 - 1.504

v (20; 0) -60.5891 -15.1074 -60.588 -15.0558 0.0018 0.342

u (40; 0) 0.00 -19.1059 0.00 -18.8184 - 1.504

L/h = 25 q = 5 N/cm2 (L = 50 cm, h = 2 cm)

(cm)
2-D (m = 35, n = 6) Sap 2000 (m = 70) Diffirence % = × 100

Linear Non-linear Linear Non-linear Linear Non-linear

u (25; 0) 0.00 -11.7637 0.00 -11.6477 - 0.986

v (25; 0) -73.808 -18.7235 -73.807 -18.6741 0.0014 0.263

u (50; 0) 0.00 -23.5275 0.00 -23.2953 - 0.986

2DSC SAP2000–

2DSC
--------------------------------------------
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⎛ ⎞

2DSC SAP2000–

2DSC
--------------------------------------------
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2DSC SAP2000–
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2DSC SAP2000–

2DSC
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⎝ ⎠
⎛ ⎞

2DSC SAP2000–

2DSC
--------------------------------------------
⎝ ⎠
⎛ ⎞
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An eight-node quadratic element was used by Reddy (2004) to solve an uniformly loaded cantilever

beam: It was noted by Reddy (2004) that the stresses could not be obtained truly apart from the

Gauss points. Also, it is found by us that the boundary conditions at the free surfaces of the beam

cannot be satisfied in the eight-node quadratic element. Therefore, a twelve-node quadratic element is

used in this study instead of eight-node quadratic element and as shown above, boundary conditions

at the free surfaces are satisfied perfectly. Also, it will be shown in the following figures that the

stresses are obtained truly everywhere on the cross section.

The stress diagrams at 0x1 = 8 cm along the 0x2 axis are given in Figs. 10-17 for geometrically

nonlinear and linear cases for q = 70 N/cm2, L = 16 cm, h = 2 cm. In Figs. 10, 11, the stress

distributions for geometrically linear case is denoted by 0σ11, 
0σ22, the Cauchy stress distributions is

denoted by 2σ11, 
2σ22 and the second Piola-Kirchhoff stress tensor is denoted by ,  forS

2

0 11
S
2

0 22

Fig. 10 Normal stresses for the cross section at
0x1 = 8 cm for the pinned-rolled beam for
q = 70 N/cm2, L = 16 cm, m = 35, n = 6, 0σ11

(-); 2σ11 (-·-·-);  (---)S
2

0 11

Fig. 11 Normal stresses for the cross section at
0x1 = 8 cm for the pinned-rolled beam for
q = 70 N/cm2, L = 16 cm, h = 2 cm, m = 35,
n = 6, 0σ22 (-); 2σ22 (-·-·-);  (---)S

2

0 22

Fig. 12 The principal stresses 2
σmin, 

2
σmax and

maximum shear stress 2σ12max at 
0x1 = 8 cm

for the pinned-rolled beam for q = 70 N/cm2,
L = 16 cm, h = 2 cm, m = 35, n = 6 in the
geometrically non-linear case, 2σ12max (-);
2
σmin (-·-·-); 

2
σmax (---)

Fig. 13 The principal stresses 0
σmin, 

0
σmax and

maximum shear stress 0σ12max at 
0x1 = 8 cm

for the pinned-rolled beam for q = 70 N/cm2,
L = 16 cm, h = 2 cm, m = 35, n = 6 in the
geometrically linear case, 0

σ12max (-);
0
σmin (-·-·-); 

0
σmax (---)
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q = 70 N/cm2, m = 35, n = 6.

The principal normal stresses 2σmax, 
2σmin and the maximum shear stress 

2σ12max distributions for

the geometrically nonlinear case are given in Fig. 12. The principal normal stresses 0σmax, 
0σmin and

the maximum shear stress 0σ12max distributions for the geometrically linear case are given in Fig. 13.

It is seen from Figs. 12 and 13 that the principal normal stresses and the maximum shear stress

obtained in the geometrically linear case are very greater than the principal normal stresses and the

maximum shear stress obtained in the geometrically nonlinear case. In Figs. 14-17, the similar

diagrams to the diagrams given by Figs. 10-13 for the pinned-rolled beam are given for the pinned-

pinned beam. Again, it is seen from Figs. 16 and 17 that the principal normal stresses and the

maximum shear stress obtained in the geometrically linear case are very greater than the principal

normal stresses and maximum shear stress obtained in the geometrically nonlinear case. It can be

Fig. 15 Normal stresses for the cross section at
0x1 = 8 cm for the pinned- pinned beam for
q = 70 N/cm2, L = 16 cm, h = 2 cm, m = 35,
n = 6, 0σ22 (-); 2σ22 (-·-·-);  (---)S

2

0 22

Fig. 14 Normal stresses for the cross section at
0x1 = 8 cm for the pinned- pinned beam for
q = 70 N/cm2, L = 16 cm, h = 2 cm, m = 35,
n = 6, 0σ11 (-); 2σ11 (-·-·-);  (---)S

2

0 11

Fig. 16 The principal stresses 2
σmin, 

2
σmax and

maximum shear stress 2σ12max at 
0x1 = 8 cm

for the pinned- pinned beam for q = 70 N/
cm2, L = 16 cm, h = 2 cm, m = 35, n = 6 in
the geometrically non-linear case, 2

σ12max

(-); 2σmin (-·-·-); 
2
σmax (---)

Fig. 17 The principal stresses 0
σmin, 

0
σmax and

maximum shear stress 0σ12max at 
0x1 = 8 cm

for the pinned- pinned beam for q = 70 N/
cm2, L = 16 cm, h = 2 cm, m = 35, n = 6 in
the geometrically linear case, 0σ12max (-);
0
σmin (-·-·-); 

0
σmax (---)
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observed from Figs. 12 and 16 that the principal normal stresses and the maximum shear stress

obtained in the pinned-rolled beam are very greater than the principal normal stresses and maximum

shear stress obtained in the pinned-pinned beam for geometrically nonlinear case. 

4. Conclusions

The geometrically non-linear static responses of a cantilevered beam made of hyperelastic material

subjected to a non-follower transversal uniformly distributed load has been studied. In the study, the

finite element model of the beam is constructed by using total Lagrangian finite element model of

two dimensional continuum for a twelve-node quadratic element. The considered highly non-linear

problem is solved by using incremental displacement-based finite element method in conjunction

with Newton-Raphson iteration method. There is no restriction on the displacements. The effects

of the geometric non-linearity and pinned-pinned and pinned-rolled support conditions on the

displacements and on the stresses are investigated. The comparison and the convergence studies are

performed. By using a twelve-node quadratic element, the free boundary conditions are satisfied

perfectly which are not satisfied before in other studies and very good stress diagrams are obtained

which are not obtained for two-dimensional continuum models of geometrically non linear analyses

of beams. It is known that in the failure analysis, the most important quantities are the principal

normal stresses and the maximum shear stress. Therefore, these stresses are investigated and shown

by figures in detail which are very different from the related stresses of geometrically linear case.

It is observed from the investigations that geometrical non-linearity and pinned-pinned and pinned-

rolled support conditions play very important role on the responses of the beam as the displacements

increase. In fact, as it is known, after some values of displacements which can be determined

according to the parameters of the problem, it is inevitable to analyze the problem as geometrically

non-linear. Also, it is seen from the investigations that the difference between the results of finite

element model of two dimensional solid continuum and SAP2000 which uses Timoshenko beam

theory increases considerably in the geometrically nonlinear case while the beam length/beam height

ratio decreases Therefore, for small ratios of beam length/beam height, finite element model of two

dimensional solid continuum must be used instead of SAP2000 which uses Timoshenko beam theory.
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