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Abstract. In this study, the Differential Transform Method (DTM) is employed in order to solve the
governing differential equation of a moving Bernoulli-Euler beam with axial force effect and investigate
its free flexural vibration characteristics. The free vibration analysis of a moving Bernoulli-Euler beam
using DTM has not been investigated by any of the studies in open literature so far. At first, the terms are
found directly from the analytical solution of the differential equation that describes the deformations of
the cross-section according to Bernoulli-Euler beam theory. After the analytical solution, an efficient and
easy mathematical technique called DTM is used to solve the differential equation of the motion. The
calculated natural frequencies of the moving beams with various combinations of boundary conditions
using DTM are tabulated in several tables and are compared with the results of the analytical solution
where a very good agreement is observed. 
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1. Introduction

Axially moving beams can represent many engineering devices, such as power transmission belt
and chain drives, high-speed magnetic tapes, band saws, pipe-conveying fluids and aerial cable
tramways. The calculation of free vibration has a great importance in the dynamic analysis of these
moving beams.

Previously, numerous researchers studied on this subject. Tabarrok et al. (1974), Buffinton and
Kane (1985) and Wickert and Mote (1990) developed the governing differential equations of motion
more accurately and sought the solutions for the problem. Hwang and Perkins investigated the
stability and free vibration of moving beams by using geometric nonlinearity resulting from the
large deformations (Hwang and Perkins 1992a, b). In the other study, a finite element based solution
for free and forced vibration of a moving beam using the Lagrangian Multiplier Method was
investigated by Sreeram and Sivaneri (1998). Öz and Pakdemirli (1999) and Öz (2001) applied the
method of multiple scales to calculate analytically the stability boundaries of an axially accelerating
beam under pinned-pinned and clamped-clamped conditions, respectively. An artificial neural
network algorithm to determine stability boundary of an axially accelerating beam was used by
Özkaya and Öz (2002). In the other study, natural frequencies of axially travelling tensioned beam
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in contact with a stationary mass were obtained by Öz (2003). Pellicano investigated the dynamic
properties of axially moving systems (Pellicano 2005). On the other hand, nonlinear free transverse
vibration of axially moving strips was studied by Chen and Yang (2007). Banerjee and
Gunawardana developed the dynamic stiffness matrix of a moving Bernoulli-Euler beam and
investigated its free flexural vibration characteristics (Banerjee and Gunawardana 2007). Lee and
Jang investigated the effects of the continuously incoming and outgoing semi-infinite beam parts on
the dynamic characteristics and stability of an axially moving beam by using the spectral element
method (Lee and Jang 2007). In the other study, an approximate Galerkin finite-element method
was applied to solve the initial boundary-value problem of a viscously damped axially moving pre-
tensioned beam including arbitrary support excitations by Cepon and Boltezar (2007). On the other
hand, the multidimensional Lindstedt-Poincare method was extended to the nonlinear vibration of
axially moving beams by Chen et al. (2007). Tang et al. analyzed the natural frequencies, modes
and critical speeds of axially moving beams based on Timoshenko model (Tang et al. 2008). Chen
and Wang investigated the stability of an axially accelerating viscoelastic beam by using an
asymptotic perturbation method and differential quadrature validation (Chen and Wang 2009). 

DTM was applied to solve linear and non-linear initial value problems and partial differential
equations by many researches. The concept of DTM was first introduced by Zhou and he used DTM
to solve both linear and non-linear initial value problems in electric circuit analysis (Zhou 1986).
Chen and Ho solved eigenvalue problems for the free and transverse vibration problems of a rotating
twisted Timoshenko beam under axial loading by using DTM (Chen and Ho 1996, 1999). DTM was
applied to solve a second order non-linear differential equation that describes the under damped and
over damped motion of a system subject to external excitation by Jang and Chen (1997). Malik and
Dang applied DTM to the free vibration of Bernoulli-Euler beams (Malik and Dang 1998). Bert and
Zeng used DTM to investigate analysis of axial vibration of compound bars (Bert and Zeng 2004).
Özdemir and Kaya investigated flapwise bending vibration analysis of a rotating tapered cantilever
Bernoulli-Euler beam by DTM (Özdemir and Kaya 2006). In the other study, the out-of-plane free
vibration analysis of a double tapered Bernoulli-Euler beam, mounted on the periphery of a rotating
rigid hub is performed using DTM by Ozgumus and Kaya (2006). Çatal suggested DTM for the free
vibration analysis of both ends simply supported and one end fixed, the other end simply supported
Timoshenko beams resting on elastic soil foundation (Çatal 2006, 2008). Çatal and Çatal calculated
the critical buckling loads of partially embedded Timoshenko pile in elastic soil by DTM (Çatal and
Çatal 2006). Ho and Chen investigated the vibration problems of an axially loaded non-uniform
spinning twisted Timoshenko beam by using DTM (Ho and Chen 2006). Free vibration analysis of a
rotating, double tapered Timoshenko beam featuring coupling between flapwise bending and torsional
vibrations is performed using DTM by Ozgumus and Kaya (2007). In the other study, Kaya and
Ozgumus introduced DTM to analyze the free vibration response of an axially loaded, closed-section
composite Timoshenko beam which features material coupling between flapwise bending and
torsional vibrations due to ply orientation (Kaya and Ozgumus 2007). Numerical solution to buckling
analysis of Bernoulli-Euler beams and columns were obtained using DTM and harmonic differential
quadrature for various support conditions considering the variation of flexural rigidity by Rajasekaran
(2008). In this study, solution technique is applied to find the buckling load of fully or partially
embedded columns such as piles. For the first time, Yesilce and Catal investigated the free vibration
analysis of one fixed, the other end simply supported Reddy-Bickford beam by using DTM in the
other study (Yesilce and Catal 2009). Since previous studies have shown DTM to be an efficient tool
and it has been applied to solve boundary value problems for many linear, non-linear integro-
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differential and differential-difference equations that are very important in fluid mechanics,
viscoelasticity, control theory, acoustics, etc. Besides the variety of the problems to that DTM may be
applied, its accuracy and simplicity in calculating the natural frequencies and plotting the mode
shapes makes this method outstanding among many other methods.

In this study, the free vibration analysis of simply supported, fixed-fixed supported and one end
fixed, the other end simply supported and moving Bernoulli-Euler beams is performed. The
equation of motion, including the parameters for nondimensionalized multiplication factors for the
constant velocity and nondimensionalized multiplication factor for the axial tensile force, are solved
using an efficient mathematical technique, called DTM. The natural frequencies of the moving
beams are calculated by using the computer package, Matlab. 

2. The mathematical model and formulation

A moving beam, its notation and coordinate system are presented in Fig. 1. The equation of
motion for a moving Bernoulli-Euler beam can be written as (Banerjee and Gunawardana 2007)

 (1)

where  represents transverse displacement function of the beam, m is mass per unit length of
the beam, N is the axial tensile force, v is the axial velocity of the beam, Ix is moment of inertia, E
is Young’s modulus of the beam, x is spatial coordinate and t is time variable.

Assuming that the motion is harmonic we substitute for w(x, t) the following

 (2)

where  is the amplitude of the bending displacement, ω is the circular frequency and .
Eq. (1) can be converted into an ordinary differential equation by using Eq. (2) as 

(3)

where  and L is length of the beam.
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Fig. 1 Notation and coordinate system of a moving beam 
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The expression for bending rotation  is given by

 (4)

The shear force function Q(z, t) can be obtained as 

 (5)

Similarly, the bending moment function M(z, t) can be obtained as 

  (6)

3. The differential transform method (DTM)

Partial differential equations are often used to describe engineering problems whose closed form
solutions are very difficult to establish in many cases. Therefore, approximate numerical methods
are often preferred. However, in spite of the advantages of these on hand methods and the computer
codes that are based on them, closed form solutions are more attractive due to their implementation
of the physics of the problem and their convenience for parametric studies. Moreover, closed form
solutions have the capability and facility to solve inverse problem of determining and designing the
geometry and characteristics of an engineering system and to achieve a prescribed behavior of the
system. Considering the advantages of the closed form solutions mentioned above, DTM is
introduced in this study as the solution method. DTM is a semi-analytic transformation technique
based on Taylor series expansion and is a useful tool to obtain analytical solutions of the differential
equations. Certain transformation rules are applied and the governing differential equations and the
boundary conditions of the system are transformed into a set of algebraic equations in terms of the
differential transforms of the original functions in DTM. The solution of these algebraic equations
gives the desired solution of the problem. The different from high-order Taylor series method is;
Taylor series method requires symbolic computation of the necessary derivatives of the data
functions and is expensive for large orders. DTM is an iterative procedure to obtain analytic Taylor
series solutions of differential equations (Yesilce and Catal 2009).

A function , which is analytic in a domain D, can be represented by a power series with a
center at , any point in D. The differential transform of the function  is given by

 (7)

where  is the original function and  is the transformed function. The inverse
transformation is defined as

 (8)

From Eqs. (7) and (8) we get
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 (9)

Eq. (9) implies that the concept of the differential transformation is derived from Taylor’s series
expansion, but the method does not evaluate the derivatives symbolically. However, relative
derivative are calculated by iterative procedure that are described by the transformed equations of
the original functions. In real applications, the function  in Eq. (8) is expressed by a finite
series and can be written as

 (10)

Eq. (10) implies that  is negligibly small. Where  is series size and the value

of  depends on the convergence of the eigenvalues.
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Theorems that are frequently used in differential transformation of the differential equations and
the boundary conditions are introduced in Table 1 and Table 2, respectively. 

3.1 Using differential transformation to solve motion equations 

Eq. (3) can be rewritten as follows

 (11)

where 

(Frequency factor)  (12)

(The first nondimensionalized multiplication factor for the velocity) (13)

(The second nondimensionalized multiplication factor for the velocity) (14)

(Nondimensionalized multiplication factor for the axial tensile force) (15)

DTM is applied to Eq. (11) by using the theorems introduced in Table 1 and the following
expression is obtained

(16)

where  is the transformed function of w(z). 
The boundary conditions of a simply supported Bernoulli-Euler beam are given below

 (17)

 (18)

(19)

(20)

Applying DTM to Eqs. (17)-(20) and using the theorems introduced in Table 2, the transformed
boundary conditions of a simply supported beam are obtained as
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The boundary conditions of a fixed-fixed beam are given below 

 (23)

(24)

(25)

(26)

Applying DTM to Eqs. (23)-(26), the transformed boundary conditions of a fixed-fixed beam are
obtained as

for z = 0;   (27)

for z = 1;   (28)

where  is the transformed function of .
The boundary conditions of one end (z = 0) fixed and the other end (z = 1) simply supported

Bernoulli-Euler beam are given below

 (29)
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(32)

Applying DTM to Eqs. (29)-(32), the transformed boundary conditions of one end fixed and the
other end simply supported beam are obtained as 

for z = 0;   (33)

for z = 1;   (34)

For simply supported beam, substituting the boundary conditions expressed in Eqs. (21) and (22)
into Eq. (16) and taking , ; for fixed-fixed supported beam, substituting the
boundary conditions expressed in Eqs. (27) and (28) into Eq. (16) and taking ,

; for one end fixed and the other end simply supported beam, substituting the boundary
conditions expressed in Eqs. (33) and (34) into Eq. (16) and taking , ; the
following matrix expression is obtained

 (35)

where c1 and c2 are constants and  (j = 1, 2) are polynomials of ω corresponding .
In the last step, for non-trivial solution, equating the coefficient matrix that is given in Eq. (35) to
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 (36)

The jth estimated eigenvalue,  corresponds to  and the value of  is determined as

 (37)

where  is the jth estimated eigenvalue corresponding to  and ε is the small tolerance
parameter. If Eq. (37) is satisfied, the jth estimated eigenvalue,  is obtained. 

The procedure that is explained below can be used to plot the mode shapes of the moving
Bernoulli-Euler beam. The following equalities can be written by using Eq. (35)

  (38)

Using Eq. (38), the constant c2 can be obtained in terms of c1 as follows

 (39)

All transformed functions can be expressed in terms of ω, c1 and c2. Since c2 has been written in
terms of c1 above,  and  can be expressed in terms c1 as follows

 (40)

 (41)

 (42)

The mode shapes can be plotted for several values of ω by using Eq. (40).
 

4. Numerical analysis and discussions

For numerical analysis, the simply supported, the fixed-fixed supported and one end fixed, the
other end simply supported beams are considered in the paper. Natural frequencies of the beams, ωi

(i = 1, 2, 3) are calculated by using computer programs prepared in Matlab by the author. Natural
frequencies are found by determining values for which the determinant of the coefficient matrix is
equal to zero. 

The numerical results of this paper are obtained based on uniform, rectangular Bernoulli-Euler
beams with the following data as:

m = 0.31855 kN.sec2/m ;  kN.m2 ; L = 3.0 m ; Nr = 0.00, 0.50 and 1.00; α =
0.50, 1.00 and 2.00

Using DTM, the frequency values of the moving simply supported beam for the first three modes
are presented in Table 3, the first three frequency values of the moving fixed-fixed beam are
presented in Table 4 and one end fixed, the other end simply supported beam’s the first three
frequency values are presented in Table 5 being compared with the frequency values obtained by
using analytical method for the different values of the first nondimensionalized multiplication factor
for the velocity (α) and nondimensionalized multiplication factor for the axial tensile force (Nr).
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Table 3 The first three natural frequencies of a moving beam with simply supported boundary condition for a range of axial load (N
r
) and

moving speed (α) parameters

METHOD

 N
r
 = 0.00

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

18 513.2040 2095.1676 --- 496.8372 2080.0642 --- 463.2732 2049.6414 ---

28 513.2040 2106.3344 4753.9788 496.8372 2095.3074 4746.4218 463.2732 2073.1086 4733.2551

38 513.2040 2106.3344 4754.4013 496.8372 2095.3074 4744.8359 463.2732 2073.1086 4725.6734

Analytic Method 513.2040 2106.3344 4754.4013 496.8372 2095.3074 4744.8359 463.2732 2073.1086 4725.6734

METHOD

N
r
 = 0.50

α  = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

18 526.7454 2108.5621 --- 510.7003 2093.4862 --- 477.8615 2063.1166 ---

28 526.7454 2119.7267 4767.3768 510.7003 2108.7272 4759.8285 477.8615 2086.5870 4746.6791

38 526.7454 2119.7267 4767.7985 510.7003 2108.7272 4758.2412 477.8615 2086.5870 4739.0951

Analytic Method 526.7454 2119.7267 4767.7985 510.7003 2108.7272 4758.2412 477.8615 2086.5870 4739.0951

METHOD

N
r
 = 1.00

α  = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

18 539.9494 2121.8727 --- 524.2011 2106.8239 --- 492.0269 2076.5062 ---

28 539.9494 2133.0349 4780.7374 524.2011 2122.0622 4773.1976 492.0269 2099.9789 4760.0649

38 539.9494 2133.0349 4781.1581 524.2011 2122.0622 4771.6087 492.0269 2099.9789 4752.4787

Analytic Method 539.9494 2133.0349 4781.1581 524.2011 2122.0622 4771.6087 492.0269 2099.9789 4752.4787

N

N

N
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Table 4 The first three natural frequencies of a moving beam with fixed-fixed supported boundary condition for a range of axial load (N

r
) and

moving speed (α) parameters

METHOD

 N
r
 = 0.00

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

24 1188.4691 3295.5910 --- 1177.0048 3284.1362 --- 1154.0594 3261.1949 ---

34 1188.4691 3299.3809 6474.3052 1177.0048 3291.0973 6465.8910 1154.0594 3274.4817 6448.8437

44 1188.4691 3299.3809 6476.3793 1177.0048 3291.0973 6468.4431 1154.0594 3274.4817 6452.5635

Analytic Method 1188.4691 3299.3809 6476.3793 1177.0048 3291.0973 6468.4431 1154.0594 3274.4817 6452.5635

METHOD

N
r
 = 0.50

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

24 1195.8666 3305.8525 --- 1184.4521 3294.3504 --- 1161.6072 3271.3360 ---

34 1195.8666 3309.3697 6485.2355 1184.4521 3301.0798 6476.8349 1161.6072 3284.4522 6459.8112

44 1195.8666 3309.3697 6487.3378 1184.4521 3301.0798 6479.4010 1161.6072 3284.4522 6463.5203

Analytic Method 1195.8666 3309.3697 6487.3378 1184.4521 3301.0798 6479.4010 1161.6072 3284.4522 6463.5203

METHOD

N
r
 = 1.00

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

24 1203.2144 3316.0988 --- 1191.8490 3304.5448 --- 1169.1031 3281.4498 ---

34 1203.2144 3319.3265 6496.1445 1191.8490 3311.0302 6487.7581 1169.1031 3294.3908 6470.7589

44 1203.2144 3319.3265 6498.2773 1191.8490 3311.0302 6490.3399 1169.1031 3294.3908 6474.4582

Analytic Method 1203.2144 3319.3265 6498.2773 1191.8490 3311.0302 6490.3399 1169.1031 3294.3908 6474.4582

N

N

N



D
ifferen

tia
l tra

n
sfo

rm
 m

eth
o
d
 fo

r free vib
ra

tio
n
 a

n
a
lysis o

f a
 m

o
vin

g
 b

ea
m

6
5
5

Table 5 The first three natural frequencies of a moving beam with one end fixed and the other end simply supported boundary condition for a
range of axial load (N

r
) and moving speed (α) parameters

METHOD

 N
r
 = 0.00

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

20 813.5463 2645.9725 --- 800.1197 2623.6030 --- 773.0699 2577.4379 ---

30 813.5463 2670.2269 5574.8766 800.1197 2660.7023 5561.4429 773.0699 2641.5731 5533.0130

40 813.5463 2670.2269 5582.3526 800.1197 2660.7023 5573.6679 773.0699 2641.5731 5556.2819

Analytic Method 813.5463 2670.2269 5582.3526 800.1197 2660.7023 5573.6679 773.0699 2641.5731 5556.2819

METHOD

N
r
 = 0.50

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

20 823.6082 2657.7423 --- 810.2993 2635.4946 --- 783.4961 2589.5062 ---

30 823.6082 2681.7175 5586.9824 810.2993 2672.1978 5573.5576 783.4961 2653.0797 5545.1534

40 823.6082 2681.7175 5594.4368 810.2993 2672.1978 5585.7546 783.4961 2653.0797 5568.3737

Analytic Method 823.6082 2681.7175 5594.4368 810.2993 2672.1978 5585.7546 783.4961 2653.0797 5568.3737

METHOD

N
r
 = 1.00

α = 0.50 α  = 1.00 α  = 2.00

ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)
ω1

 (rad/sec)
ω2 

(rad/sec)
ω3 

(rad/sec)

DTM

20 833.5408 2669.4651 --- 820.3456 2647.3428 --- 793.7797 2601.5355 ---

30 833.5408 2693.1586 5599.0610 820.3456 2683.6437 5585.6444 793.7797 2664.5364 5557.2650

40 833.5408 2693.1586 5606.4948 820.3456 2683.6437 5597.8151 793.7797 2664.5364 5580.4392

Analytic Method 833.5408 2693.1586 5606.4948 820.3456 2683.6437 5597.8151 793.7797 2664.5364 5580.4392

N

N

N
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As the axial tensile force acting to the beams is increased for the other variable (α) is being

constant, the natural frequency values of all moving beams increased. This result indicates that, the

increasing for the axial tensile force leads to augmentation in natural frequency values for all

boundary conditions. This result is very important for the effect of axial tensile force.

A decrease is observed in natural frequency values of the first three modes of the moving beams

for the condition of N
r
 ratio being constant and the values of the first nondimensionalized

multiplication factor for the velocity (α) is increased. This result indicates that, the first

nondimensionalized multiplication factor for the velocity leads to reduction in natural frequency

values for all boundary conditions.

In application of DTM, the natural frequency values of the moving beams are calculated by

increasing series size . In Table 3-Table 5, convergences of the first three natural frequencies are

introduced. Here, it is seen that; for simply supported beam, when the series size is taken 38; for

fixed-fixed beam, when the series size is taken 44 and for one end fixed, the other end simply

supported beam, when the series size is taken 40, the natural frequency values of the third mode can

be appeared. Additionally, here it is seen that higher modes appear when more terms are taken into

account in DTM applications. Thus, depending on the order of the required mode, one must try a

few values for the term number at the beginning of the calculations in order to find the adequate

number of terms.

5. Conclusions

In this study, starting from the governing differential equation of motion in free vibration of the

moving beam, DTM algorithms are developed by using Bernoulli-Euler beam theory and the

iterative-based computer programs are developed for the solution of linear-homogeneous frequency

equation set relating to free vibration of the moving beams with simply supported, fixed-fixed and

one end fixed, the other end simply supported boundary conditions. Variation in free vibration

natural frequencies for the first three modes of the beams is investigated for the different values of

the first nondimensionalized multiplication factor for the velocity and nondimensionalized

multiplication factor for the axial tensile force. The calculated natural frequencies of the moving

beams by using DTM are compared with the results of the analytical solution. 

The essential steps of the DTM application includes transforming the governing equation of

motion into algebraic equations, solving the transformed equations and then applying a process of

inverse transformation to obtain any desired natural frequency. All the steps of the DTM are very

straightforward and the application of the DTM to both the equation of motion and the boundary

conditions seem to be very involved computationally. However, all the algebraic calculations are

finished quickly using symbolic computational software. Besides all these, the analysis of the

convergence of the results show that DTM solutions converge fast. When the results of the DTM

are compared with the results of analytical method, very good agreement is observed. 
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