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Abstract. Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an
unstable postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium
bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When a shallow
fixed arch is subjected to a central step load, the load imparts kinetic energy to the arch and causes the
arch to oscillate. When the load is sufficiently large, the oscillation of the arch may reach its unstable
equilibrium path and the arch experiences an escaping-motion type of dynamic buckling. Nonlinear
dynamic buckling of a two degree-of-freedom arch model is used to establish energy criteria for dynamic
buckling of the conservative systems that have unstable primary and/or secondary equilibrium paths and
then the energy criteria are applied to the dynamic buckling analysis of shallow fixed arches. The energy
approach allows the dynamic buckling load to be determined without needing to solve the equations of
motion. 

Keywords: dynamic buckling; energy conservation; escaping-motion; lower dynamic buckling load;
nonlinear equilibrium path; step loading of infinite duration; upper dynamic buckling load.

1. Introduction

Shallow fixed arches have a nonlinear primary equilibrium path with limit points and an unstable

postbuckling equilibrium path, and they may also have bifurcation points at which equilibrium

bifurcates from the nonlinear primary path to an unstable secondary equilibrium path. When an in-

plane step load is applied to a shallow circular arch that is fully braced laterally (Fig. 1), the load

will impart kinetic energy to the arch and cause the arch to oscillate about a stable equilibrium

position. If this load is sufficiently large, the oscillation may reach an unstable equilibrium position,

which may then induce dynamic buckling of the arch. The stability criterion of Laplace or Lagrange

is used in this paper. According to this criterion, dynamic buckling is defined as a state at which an

escaping motion either becomes unbounded or has very large amplitudes. The minimum load

corresponding to this state is defined as the dynamic buckling load. 
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The dynamic buckling of a structure under a general dynamic load is often solved using the

equation of motion method. Numerical solutions of the equations of motion for various values of

the load parameter to obtain the response of a structural system are often used for dynamic buckling

analysis (Budiansky and Hutchinson 1964, Donaldson and Plaut 1983, Matsunaga 1996, Huang et al.

2003). The load parameter at which there exists a large change in the response is considered as the

critical one. However, when the equation of motion approach is used to deal with the dynamic

buckling of a continuum, the continuum needs to be reduced to a multi-degree-of-freedom system

and the calculations require a large amount of time, which often makes its application very difficult

for analysis. In addition, the accuracy of this approach often depends on the number of degrees-of-

freedom of the reduced system and on the accuracy of the numerical method adopted (Matsunaga

1996, 2008, Huang et al. 2003). When this approach is applied to nonlinear systems, the difficulty

is the intractability of the highly nonlinear differential equations of motion, despite of the

availability of modern efficient computational techniques and high speed computers. The solutions

of such nonlinear initial-value problems are quite sensitive to the initial conditions, and so the

numerical difficulties may lead to less reliable and possibly erroneous solutions.

When a structure such as shallow arches and shells is subjected to a step load, the oscillation of

the structure may reach the unstable equilibrium path and the structure experiences an escaping-

motion type of buckling. Energy approaches can be used to derive for the dynamic buckling

analysis of such structures. Simitses (1990) used energy approaches to study the dynamic buckling

of suddenly loaded structures. Levitas et al. (1997) adopted Poincaré-like simple cell mapping to

present a study of the global dynamic stability of a shallow elastic arch that is subjected to uniform

constant radial loading. Pinto and Gonçalves (2000) investigated a strategy for the active non-linear

control of the oscillation of a shallow arch-like simply supported buckled beam in order to prevent

dynamic instability. Kounadis et al. (1999, 2004) developed energy and geometric methods,

performed a number of investigations of the nonlinear dynamic buckling of autonomous systems,

and proposed useful dynamic buckling criteria based on a geometric consideration. They studied the

nonlinear dynamic buckling of autonomous non-dissipative N-degree-of-freedom systems (Kounadis

et al. 2004), established dynamic instability criteria using characteristic distances associated with the

geometry of the zero level total potential energy, and demonstrated the reliability and efficiency of

the criteria by a comparison with the results based on the Verner-Runge-Kutta scheme. Kounadis

and Raftoyiannis (2005) discussed non-linear dynamic buckling of a two degree-of freedom (2-

DOF) imperfect planar system with symmetric imperfections under a step load of infinite duration

Fig. 1 A shallow fixed arch subjected to a sudden central load of infinite duration
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using energy and geometric considerations. Raftoyiannis et al. (2006) used Catastrophe Theory to

investigate dynamic buckling of a simple geometrically imperfect frame. Sophianopoulos et al.

(2008) adopted the Lienard-Chipart stability criterion to study the local instability of two degree of

freedom weakly damped systems. Investigations of the dynamic buckling of shallow arches have

hitherto concentrated on sinusoidal arches under loads distributed as half sine-waves (Lo and Masur

1976, Gregory and Plaut 1982, Simitses 1990) using sine series methods. Matsunaga (1996) and

Huang et al. (2003) used the method of power series expansion of the displacement components to

investigate the free vibration and dynamic stability of circular arches, and presented an approximate

theory for the dynamic buckling loads of shallow circular arches. In these studies, the coupling

between the normal and axial deformations was not considered. Ignoring this coupling may be valid

for very shallow sinusoidal arches. However, the coupling between the radial (normal) and axial

displacements in a circular shallow arch is significant and so should be considered, particularly

when exact closed form solutions are sought, as was pointed out by Bradford et al. (2002) and Pi et al.

(2008). Pi and Bradford (2008) applied the energy approach to the dynamic buckling of pin-ended

arches, considered the coupling of the radial and axial deformations, and obtained closed form

solutions for the lower and upper dynamic buckling of the pin-ended arches. 

This paper uses a 2-DOF arch model to derive the energy criteria for dynamic buckling of the

conservative systems that have unstable primary and/or secondary equilibrium paths and applies the

criteria to the in-plane dynamic buckling analysis of undamped shallow fixed circular arches that

are subjected to a central step load of infinite duration.

2. Energy criteria for dynamic buckling

2.1 Static equilibrium and buckling of the two-degree-of-freedom system

The 2-DOF arch system proposed by Simitses (1990) (Fig. 2) is used to establish the energy

criteria for dynamic buckling. The system has three rigid massless bars AB, BC and CD pinned

together by joints B and C. The rotations of B and C are restrained by linear rotational springs at B

and C. The inclined angles θ0 of AB and CD are initially equal to each other. The ends A and D of

the two inclined bars AB and CD are simply supported. A horizontal linear spring is connected to

the roller support D to restrain the horizontal motion of the end D. Two equal masses m are

attached to the pin-joints B and C respectively. Two equal vertical step loads Q are applied to joints

B and C of the system simultaneously. The motion of the system can be described by the angular

displacement responses θ1 and θ2 of two rigid bars AB and CD, and the angular velocities  and

 of two masses where   and t is the time.

θ
·
1

θ
·
2 θ

· ∂θ/∂t=

Fig. 2 A two degree-of-freedom arch model and loading
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The total energy of the system can be expressed as

(1)

where the total potential energy U is given by

(2)

and the kinetic energy T is given by

(3)

in which the variables γ and η are defined by

(4)

the dimensionless stiffness parameter of the springs α, the dimensionless load Q*, and the ratio of

bar lengths λ are defined by

(5)

and the angle ρ is given by

 (6)

where k is the stiffness of the horizontal linear elastic spring, kφ is the stiffness of the rotational

springs, L is the length of the horizontal bar, and R is the length of the inclined bars. and

 and  are the dimensionless angular velocity of the system, and the

dimensionless time parameter τ is defined by .

For static equilibrium, it is necessary that the derivatives of the total potential energy given by

Eq. (2) with respect to the variables γ and η vanish, i.e.

(7)

which leads to

(8)

and

 (9)
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The surface described by Eqs. (8) and (9) for a system with the initial angle θ0 = 15o, the ratio

λ = 1, and the dimensionless stiffness parameter α = 0.01 is shown in Fig. 3 as variations of the

dimensionless load Q* with the dimensionless angular displacements β1/θ0 and β2/θ0 where

β1 = (θ0 − θ1) and β2 = (θ0 − θ2). The path of the symmetric deformations lies in the vertical plane

formed by the Q* axis and the line β1 = β2 (i.e., η = 0) as shown in Fig. 3. It can be seen from Fig. 3

that there exist limit points in the symmetric equilibrium path. The limit points of the symmetric

curve can be determined by

(10)

which leads to

(11)

The arch system may also buckle in a bifurcation mode from a prebuckling symmetric equilibrium

configuration defined by {γ, η, Q*} to a buckled equilibrium configuration defined by {γ + γb, η + ηb,

Q*} under a constant load Q* where γb and ηb are the infinitesimal buckling displacements. By

considering the equilibrium at the configurations {γ, η, Q*} and (γ + γb, η + ηb, Q
*}, the condition for

more than one equilibrium configuration in the close vicinity can be obtained as

(12)

and

(13)

For symmetric buckling, , while for asymmetric buckling, . Hence, Eq. (12) leads to

the condition for symmetric buckling given by Eq. (11) while Eq. (13) leads to the condition for

asymmetric buckling as

∂Q*

∂γ
--------- 0=
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2
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Fig. 3 Static equilibrium path
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(14)

The buckling loads are also shown in Fig. 3. It can be seen that the magnitudes of the bifurcation

buckling loads of this system are lower than those of the corresponding limit point buckling loads. 

2.1 Equation of motion of a two-degree-of freedom system

The equations of motion for the 2-DOF arch system (Fig. 2) can be obtained as

(15)

and

(16)

The differential equations of motion given by Eqs. (15) and (16) can be solved simultaneously by

numerical procedures such as the Runge-Kutta procedure. Dynamic buckling of a system with an

initial inclined angle θ1 = θ2 = θ0 = 20o, a dimensionless stiffness parameter α = 0.02, and a ratio

λ = 1 is investigated using Eqs. (15) and (16). It is assumed that at time τ = 0, the system is at rest.

Hence, the initial conditions are θ1 = θ2 = θ0 = 20
o and . The results by the Runge-

Kutta procedure are shown in Fig. 4 as variations of the dimensionless angular displacement

responses β1/θ0 and β2/θ0 with the dimensionless time τ. It can be seen that when the step load Q
* =

α 1 2λ+( )2 2λ
2
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2
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Fig. 4 Symmetric escaping motion of the 2-DOF system
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0.013, 0.014, or 0.015 is applied, the system simply oscillates about a stable equilibrium position.

When the step load Q* = 0.01522 is applied, the amplitude of the motion of the system becomes so

large that an escaping motion, i.e., dynamic buckling of the system, occurs. Because the initial

conditions are symmetric, only the symmetric responses were obtained and the angular displacement

responses for β1/θ0 coincide with β2/θ0 as shown in Fig. 4. 

In addition to symmetric dynamic buckling, asymmetric dynamic buckling of the system is

possible. To produce asymmetric responses of the system, slightly different values are assigned to

the initial angles as , , and . The results are shown in Fig. 5

as variations of the dimensionless angular displacement responses β1/θ0 and β2/θ0 with the

dimensionless time τ. It can be seen that when the step load Q* = 0.010, 0.011, or 0.012 is applied,

the motion of the system is simply oscillatory. When the step load Q* = 0.01267 is applied, the

amplitude of the motion of the system becomes so large that escaping motion occurs. It can also be

seen that for the small step load Q* = 0.010 or 0.011, the oscillation of the system is still symmetric

in the range of integration (τ = 185) although the initial condition is asymmetric. For the step loads

Q* = 0.012 and 0.01267, the asymmetric oscillation occurs at τ = 180 and 150, respectively. 

2.3 Energy criteria for dynamic buckling

Because the structure and step loads form a conservative system, the total energy of the system

must satisfy the principle of energy conservation, i.e., the total energy of the system has to be equal

to a constant during the motion of the system. The value of the constant is determined from the

initial condition. Because the system is at rest initially, which means that there are no deformations

(i.e., the angular responses θ1, θ2 are equal to its initial angle θ0) and the velocities  are equal to

zero  at time t = 0. Hence, the total energy E at t = 0 is equal to zero. According to the

θ1 θ0 2
o

+ 10 9–×= θ2 θ0= θ
·
1 θ

·
2 0= =

θ
·
1 θ
·
2,

Fig. 5 Asymmetric escaping motion of the 2-DOF system
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principle of energy conservation, for t ≥ 0

(17)

It can be seen from Eqs. (3) and (17) that the kinetic energy T of the system is a positive definite

function of the velocities  and . Hence, to satisfy the principle of energy conservation given by

Eq. (17), motion of the system is possible only when the total potential energy U is non-positive. In

this case, the step loading imparts kinetic energy and deformation potential energy (or spring

energy) to the system, and causes the system to oscillate about an equilibrium position. When the

step loads are small, the total potential energy at a stable equilibrium position is negative and so the

system oscillates about this position. The oscillation amplitudes increase with an increase of the

loads. When the step loads become so large that the total potential energy at an unstable equilibrium

position is non-positive, the oscillation of the system may reach an unstable equilibrium position

and the system may buckle dynamically at the unstable equilibrium position. Hence, for a possible

dynamic buckling of the system, U ≤ 0, i.e., the critical condition is U = 0. This can also be

justified by searching for stationary points of the total energy E given by Eq. (1). 

Because the dynamic buckling occurs when the oscillation of the system reaches one of unstable

static equilibrium positions of the system, the oscillation reaches one of its extrema. From calculus,

the necessary conditions for extrema of the total energy E can be expressed as

(18)

and

(19)

Substituting Eq. (2) into Eqs. (18) and (19) leads to these necessary conditions as

(20)

and

(21)

Substituting Eq. (3) into Eq. (21) leads to

(22)

from which, during dynamic buckling, the kinetic energy of the system vanishes as

(23)

Substituting this equation into Eq. (17) leads to another necessary condition for dynamic buckling

of the system as

(24)
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which indicates that during dynamic buckling, the potential energy of load is equal to the

deformation energy (or spring energy) of the system.

Eqs. (20) and (24) form the necessary conditions for dynamic buckling of the system. The

dynamic buckling load  and the corresponding angular displacement responses γD and ηD can be

obtained by solving Eqs. (20) and (24) simultaneously.

Applying the necessary conditions given by Eqs. (20) and (24) to the problem investigated in the

section 2.2 leads to two solutions: Q* = 0.01267 and Q* = 0.01522 which are the same as those

obtained by the method of equations of motion. The lower dynamic buckling load Q* = 0.01267

corresponds to the saddle points of the total potential energy surface and the total potential energy at

the saddle points vanishes as shown in Fig. 6. The upper dynamic buckling load Q* = 0.01522 is

QD

*

Fig. 6 Saddle points and lower dynamic buckling load

Fig. 7 Maximum point and upper dynamic buckling load
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associated with the maximum of the total potential energy surface and the total potential energy at

the maximum vanishes as shown in Fig. 7. The nature of the dynamic buckling loads obtained from

the necessary conditions given by Eqs. (20) and (24) can be determined by the nature of the

corresponding stationary points. The condition for the upper dynamic buckling load is that

, (25)

and

(26)

The second order partial derivatives of the total potential energy for the upper buckling load Q* =

0.01522 satisfy both conditions given by Eqs. (25) and (26). 

The condition for the lower dynamic buckling load is that

and (27)

have opposite signs, or that

(28)

The second order partial derivatives of the total potential energy for the lower buckling load Q* =

0.01267 satisfy the conditions given by Eqs. (27) and (28).

The energy criteria for determination of dynamic buckling loads of an undamped conservative

system under step loading of infinite duration can be summarized as

(1) the static equilibrium path of the system has an unstable branch;

(2) the dynamic buckling occurs at an unstable static equilibrium point;

(3) the total potential energy of the system vanishes at the unstable static equilibrium point.

3. In-plane dynamic buckling of shallow fixed arches

3.1 In-plane static equilibrium of shallow fixed arches

The energy criteria developed in the previous section is applied to the dynamic buckling of an

undamped shallow fixed arch that is subjected to a central step load. The total energy E of the arch

and load system consists of kinetic and potential energies as

 (29)

where T and U are the kinetic and potential energies and are given by

and (30)

in which m is the mass density per unit length of the arch, R is the radius of initial curvature of the

arch, A is the area of the cross-section,  is the velocity in the radial direction and
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, v is the radial displacement of the centroid,  is the Dirac-delta, σ and ε are the

longitudinal normal stress and strain and they are given by

, (31)

where E is the Young’s modulus, ( )' = ∂( )/∂θ, θ is the angular coordinate, , w is the axial

displacement of the centroid, and y is the coordinate in the principal axis system of the cross-

section.

For static analysis, the kinetic energy vanishes and it has been shown by Bradford et al. (2002)

and Pi et al. (2008) that the axial compressive force N in the arch is constant and that the

differential equation of equilibrium in the radial direction can be expressed as

with (32)

and the boundary conditions at fixed ends  are , where I is the second moment

of area of the cross-section about its major princpal axis.

The solution for the radial displacement can be obtained from Eq. (32) as (Bradford et al. 2002,

Pi et al. 2008)
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nonlinear relationship with the central load, which can be expressed as
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(38)

which leads to

(39)

with

, (40)

(41)

Solving Eqs. (35) and (39) simultaneously leads to exact solutions for static limit point buckling

loads and the corresponding axial compressive forces.

In addition to static limit point buckling, an arch may buckle in a bifurcation mode, which is

associated with antisymmetric buckling displacements. It has be shown (Bradford et al. 2002, Pi

et al. 2008) that for bifurcation antisymmetric buckling of shallow fixed arches, it is required that

(42)

whose lowest solution is . Substituting this into Eq. (35) leads to the equation for

bifurcation antisymmetric static buckling loads as

(43)

Typical static equilibrium path and buckling behaviour of shallow fixed arches are shown in Fig. 8

for a shallow fixed arch with a length S = 21.6 m, a geometric parameter λ = 50, and a radius of

gyration of the cross-section r = 0.108 m. It can be seen that the limit point buckling dominates the

static buckling behaviour of fixed arches and that the bifurcation buckling occurs at the unstable

descending branch of the primary equilibrium path (Bradford et al. 2002). This is different from

shallow pin-ended arches. For most of shallow pin-ended arches, the bifurcation buckling dominates

its buckling behaviour and bifurcation buckling occurs at the stable ascending branch of the primary

equilibrium path (Bradford et al. 2002, Pi et al. 2008).

3.3 In-plane dynamic buckling

Because the arch and step load form a conservative system, the total energy of the system must

satisfy the principle of energy conservation, i.e., the total energy of the system has to be constant

during the motion of the system. The value of the total energy can be determined from the initial

condition. Because the system is at rest and unstressed initially, i.e., the strain ε = 0, the velocity

 and Q = 0 at time t = 0, from Eq. (29), the initial total energy E = 0 at time t = 0. From the

principle of energy conservation, for time t ≥ 0, the total energy of the system still vanishes, i.e. 
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energy T of the system is a positive definite function of the velocity . Hence, from Eq. (44),

motion of the system is possible when the total potential energy U is non-positive.

From the static analysis, for a load that is higher than a certain value, it corresponds to a near

stable equilibrium position, an unstable equilibrium position, or a remote stable equilibrium position

(Fig. 8). When the step load is small, the total potential energy of the system at the corresponding

near stable equilibrium position is negative and so the system oscillates about this position.

However, under the small load, the total potential energy of the arch system at the corresponding

unstable equilibrium position is positive and the total energy of the arch does not vanish. Hence, the

principle of energy conservation is not satisfied and the motion of the arch system to the unstable

equilibrium position is impossible. As the value of the step load increases, the total potential energy

of the system at the unstable equilibrium position decreases and the oscillation amplitudes of the

system increase. When the step load is so large that the total potential energy of the system at the

corresponding unstable equilibrium position becomes zero and from the principle of energy

conservation, the oscillation of the system reaches the unstable equilibrium position and dynamic

buckling of the arch system occurs. Hence, vanishing of the total potential energy U of the arch

system is a necessary condition for the dynamic buckling of a shallow fixed arch under a step load

of infinite duration. By substituting Eqs. (31) and (33), vanishing of the total potential energy of the

shallow fixed arch given by Eq. (30) can be expressed as 

(45)

where

, (46)

 (47)

ṽ·

U A3 Q*( )
2

B3Q
* C3+ + 0= =

A3

µΘ 1 4cos
2
µΘ/2( )+[ ] 5sin µΘ( )–

2µ
2Θ2

cos
2
µΘ/2( )

---------------------------------------------------------------------------------= B3

3sin µΘ( ) µΘ 1 2cos
2
µΘ/2( )+[ ]–

2cos
2
µΘ/2( )

---------------------------------------------------------------------------------=

C3

µ
5Θ5

λ
2

------------
µ
2Θ2

cot µΘ( )
2

--------------------------------
µ
3Θ3

2sin
2
µΘ( )

------------------------- 1–+ +=

Fig. 8 Static equilibrium and buckling of shallow fixed arches
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Because the dynamic buckling occurs at an unstable equilibrium position, the dynamic buckling

load also needs to satisfy the equilibrium equation given by Eq. (35). The dynamic buckling load

and the corresponding axial forces can then be obtained by solving Eqs. (35) and (45)

simultaneously and the corresponding unstable equilibrium position can be determined using

Eq. (33). The equilibrium equation given by Eq. (35) describes the primary symmetric deformation

of the arch and the load obtained is the upper dynamic buckling load.

The total potential energy U may also vanish on the secondary bifurcation unstable equilibrium

path. It has been shown that at the secondary bifurcation unstable equilibrium path of a shallow

fixed arch,  (Pi and Bradford 2009). Substituting this into Eq. (45) leads to the

necessary condition for the lower dynamic buckling load as

(48)

Typical solutions for the upper and lower dynamic buckling loads for a shallow fixed arch with a

length S = 21.6 m, a geometric parameter λ = 60, and a radius of gyration of the cross-section r =

0.108 m are shown in Fig. 9, where the solid line is the primary equilibrium path under static

loading, the dashed line is the secondary equilibrium path after bifurcation buckling, and the dot-

dashed line represents the zero total potential energy ( ). The intersection point du of the curve

of zero total potential energy and the primary unstable equilibrium path asbs defines the upper

dynamic buckling load while the intersection point dl of the curve of zero total potential energy and

the secondary equilibrium path ab defines the lower dynamic buckling load. Variations of the

dimensionless upper and lower dynamic buckling loads Q* with the geometric parameter λ are

shown in Fig. 10 for fixed arches with a length S = 21.6 m and a radius of gyration of the cross-

section r = 0.108 m. It can be seen that the dynamic buckling load Q* increases with an increase of

the geometric parameter λ. For comparison, variations of the static limit point buckling loads and

the bifurcation buckling load with the geometric parameter λ are also shown in Fig. 10 for these

fixed arches. It can be seen that both the upper and lower dynamic buckling loads are lower than

the corresponding static buckling loads. It can also be seen that when the geometric parameter λ =

µΘ 1.4303π≈

1.038Q
*2

13.975Q*– 45.363
1.4303π( )5

λ
2

--------------------------+ + 0=

U 0=

Fig 9 Upper and lower dynamic buckling loads Fig. 10 Comparisons of dynamic buckling loads
with their static counterpart for fixed arches 
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43, the upper and lower dynamic buckling loads are equal to each other and Q* = 5.925, which can

be obtained by substituting  into Eqs. (35) and (45) and solving them for the dynamic

load Q* and λ. For shallow fixed arches with the geometric parameter λ < 43, there is no lower

dynamic buckling.

The results for the dynamic and static buckling loads for pin-ended arches with the same length S

and radius gyration r (Pi and Bradford 2008) are shown in Fig. 11 for comparison. It can be seen

that both the upper and lower dynamic buckling loads are lower than the corresponding static

buckling loads. It can also be seen that the lower dynamic buckling loads of pin-ended arches are

much lower than their upper counterparts. However, the lower dynamic buckling loads of fixed

arches are only slightly lower than their upper counterparts (Fig. 10). When the geometric parameter

λ = 8.25, the lower and upper dynamic buckling loads are equal to each other and Q* = 2.477. For

shallow pin-ended arches with the geometric parameter λ < 8.25, there is no lower buckling load.

4. Conclusions

A 2-DOF arch model was used to develop energy criteria for the dynamic buckling of a

conservative undamped system under step loading of infinite duration based on the principle of

conservation of energy. Comparison with the results of equation of motion method showed the

results obtained from the energy method are accurate. The energy criteria were applied to the

dynamic buckling analysis of shallow fixed circular arches under a central step load of infinite

duration. The exact primary equilibrium path and the secondary equilibrium path after bifurcation

were obtained, which are essential for the dynamic buckling analysis using energy approaches.

Analytical solutions for the upper and lower dynamic buckling loads of shallow fixed arches under

a central step loading with infinite duration were derived. It was found that the upper and lower

dynamic buckling loads of a shallow fixed arch due to the central step loading is lower than its

static limit point buckling and bifurcation buckling loads. The energy approach allows the dynamic

buckling load to be determined without the need to solve the equations of motion of the arch

system.

µΘ 1.4303π≈

Fig. 11 Comparisons of dynamic buckling loads with their static counterpart for pin-ended arches
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